sonyps4.ru

Выбор структурной схемы передающей части радиолинии и расчет радиолинии. Общая схема радиосвязи

1. Основы радиосвязи. Основы радиосвязи и телевидения

1. Основы радиосвязи

Целью изучения данной темы является ознакомление с общими принципами организации радиосвязи, изучение структурных схем систем радиосвязи, основных функциональных узлов радиопередатчиков и радиоприемных устройств, знакомство с основными техническими показателями приемопередающих устройств.

1.1. Общие принципы организации радиосвязи

Может возникнуть вопрос, нельзя ли для того чтобы передать с помощью радиоволн человеческую речь или музыку, звуковые колебания превратить в электрические, а последние с помощью антенны преобразовать в электромагнитные волны, чтобы затем в приемном пункте электромагнитные волны снова превратить в звуковые?

Звуковые колебания, воспринимаемые человеческим слухом, лежат обычно в полосе частот от 20 до 20 000 Гц, т.е. такие колебания создадут волны длиной от 15 000 до 15км. Антенны же могут эффективно излучать электромагнитные колебания только тогда, когда их размеры соизмеримы с длиной волны.

Однако сами по себе колебания высокой частоты информацию не несут. Посылать их по линии связи бесполезно. Так же бесполезно, как посылать телеграмму с адресом, но без текста: она дойдет сравнительно быстро, но ее получатель сведений не получит.

Таким образом, в нашем распоряжении есть сообщение, содержащее информацию, но не способное дойти до получателя. Есть и высокочастотное колебание, которое найдет своего получателя, но не принесет ему информацию. Как соединить вместе необходимые качества сообщения и безынформативного колебания?

Единственный способ - попытаться наложить на высокочастотное колебание отпечаток сообщения, т.е. использовать высокочастотное колебание лишь в роли переносчика сообщения, содержащего информацию. С этой целью нужно изменять один или несколько признаков (параметров) несущего колебания в соответствии с изменениями сообщения. Тогда мы получим высокочастотное колебание с меняющимися во времени параметрами по закону передаваемого сообщения. Рассмотренный процесс называется модуляцией.

Рисунок 1.1. Структурная схема радиолинии

На рисунке 1.1 приведена упрощенная структурная схема радиолинии. Передаваемое сообщение поступает на преобразователь (микрофон, телевизионную камеру или телеграфный аппарат), который преобразует его в электрический сигнал. Последний поступает на радиопередающее устройство, состоящее из модулятора (М), синтезатора несущей частоты (СЧ) и усилителя модулированных колебаний (УМК). С помощью модулятора один из параметров высокочастотного колебания изменяется по закону передаваемого сообщения. С помощью антенны (А) энергия радиочастотных колебаний передатчика излучается в тракт распространения радиоволн.

На приемном конце радиоволны наводят ЭДС в антенне. Радио-приемное устройство с помощью селективных (избирательных) цепей (СЦ) отфильтровывает сигналы от помех и других радиостанций. В детекторе (Д) происходит процесс, обратный модуляции, – выделение из модулированных колебаний исходного электрического сигнала, который управлял радиопередатчиком. С помощью преобразователя (громкоговорителя, телеграфного аппарата, приемной телевизионной трубки) электрический сигнал связи преобразуется в сообщение, доставляемое абоненту.

Рассмотренная радиолиния обеспечивает одностороннюю передачу сообщения, что приемлемо только в службах оповещения. Одностороннюю радиосвязь представляет собой, в сущности, и радиовещание, хотя в этом случае прием ведется не в одном, а во множестве пунктов. Прием во многих пунктах ведется также при циркулярной передаче: распоряжения передаются многим исполнителям; сообщения передаются из пресс-центра редакциям газет и т.д.

Для организации двусторонней радиосвязи в каждом пункте надо иметь и передатчик и приемник. Если при этом передача и прием на каждой радиостанции осуществляются поочередно, то такая радиосвязь называется симплексной (рисунок 1.2, а ). Двусторонняя радиосвязь, при которой связь между радиостанциями реализуется одновременно, называется дуплексной (см. рис. 1.2, б ).

При дуплексной радиосвязи передача в одном и другом направлениях ведется, как правило, на разных несущих частотах. Это делается для того, чтобы приемник принимал сигналы только от передатчика с противоположного пункта и не принимал сигналов собственного передатчика.

Для радиосвязи на большие расстояния применяют радиопередатчики мощностью в десятки и сотни киловатт. Поэтому, хотя при дуплексной связи приемник настраивается не на ту частоту, на которую настроен свой передатчик, трудно обеспечить его нормальную работу вблизи мощного передатчика. Исходя из этого приемник и передатчик приходится размещать на расстоянии в десятки километров друг от друга.

Симплексная связь используется, как правило, при наличии относительно небольших информационных потоков. Для объектов с большой нагрузкой характерна дуплексная связь.

Если необходимо иметь радиосвязь с большим числом объектов, то организуется так называемая радиосеть (рисунок 1.3). Одна радиостанция, называемая главной (ГР), может передавать сообщения как для одного, так и для нескольких подчиненных объектов. Ее радист-оператор следит за порядком в радиосети и устанавливает очередность работы на передачу подчиненных станций (ПР). Последние при соответствующем разрешении могут обмениваться информацией не только с ГР, но и между собой. Этот вариант организации радиосети может быть построен на основе как сложного симплекса (рисунок 1.3, а), так и сложного дуплекса (рисунок 1.3, б). В первом случае возможно использование совмещенных приемопередатчиков и общей рабочей радиоволны (частоты). Во втором случае ГР ведет передачу на одной частоте, а принимает на нескольких (по числу подчиненных радиостанций). Несмотря на различие в частотах приема и передачи, здесь, как и при простом дуплексе, необходимо располагатьприемник и передатчик на удалении друг от друга. Иначе из-за помех, создаваемых передающим устройством, одновременный прием сообщений может стать невозможным.

Рисунок 1.3. Структурные схемы радиосетей:

а – сложный симплекс; б – сложный дуплекс.

Центры крупных промышленных районов соединяются линиями радиосвязи со многими пунктами. В этих условиях передатчики и передающие антенны располагают на радиостанции, которую называют передающим радиоцентром. Приемники и приемные антенны располагают на приемном радиоцентре.

Процессы в электроэнергетических сооружениях, на электрифициро-ванных железных дорогах, в электрических установках и бытовых электроприборах, множество которых имеется в городах, связаны с излучением электромагнитных волн. Поскольку эти излучения могут быть помехами радиоприему, приемный радиоцентр обычно помещается в стороне от населенных пунктов и железных дорог. Для соединения источников сообщения с радиопередатчиками и радиоприемниками и контроля качества радиосвязи в городах оборудуют радиобюро.

1.2. Радиопередающие устройства

Основные функциональные узлы радиопередатчика. Схема и конструкция радиопередатчика зависят от различных факторов: назначения, диапазона рабочих волн, мощности и т.д. Тем не менее можно выделить некоторые типичные блоки, которые с теми или иными вариациями имеются в большинстве передатчиков.

Структура передатчика (рисунок 1.4) определяется его основными общими функциями, к которым относятся:

  • получение высокочастотных колебаний требуемой частоты и мощности;
  • модуляция высокочастотных колебаний передаваемым сигналом;
  • фильтрация гармоник и прочих колебаний, частоты которых выходят за пределы необходимой полосы излучения и могут создать помехи другим радиостанциям;
  • излучение колебаний через антенну.

Рисунок 1.4. Функциональная схема радиопередатчика.

Остановимся более подробно на требованиях к отдельным функциональным узлам радиопередатчика.

Генератор высокой частоты, часто называемый задающим или опорным генератором, служит для получения высокочастотных колебаний, частота которых соответствует высоким требованиям к точности и стабильности частоты радиопередатчиков.

Синтезатор преобразует частоту колебаний опорного генератора, которая обычно постоянна, в любую другую частоту, которая в данное время необходима для радиосвязи или вещания. Стабильность частоты при этом преобразовании не должна существенно ухудшаться. В отдельных случаях синтезатор частоты не нужен, например если генератор непосредственно создает колебания нужной частоты. Однако с синтезатором легче обеспечить требуемую высокую точность и стабильность частоты, так как он, во-первых, работает на более низкой частоте, на которой легче обеспечить требуемую стабильность; во-вторых, он работает на фиксированной частоте. Кроме того, современные синтезаторы приспособлены для дистанционного или автоматического управления синтезируемой частотой, что облегчает общую автоматизацию передатчика.

Промежуточный усилитель высокой частоты, следующий за синтезатором, необходим по следующим причинам:

  • благодаря промежуточному усилителю с достаточно большим коэффициентом усиления от опорного генератора и синтезатора не требуется значительной мощности;
  • применение промежуточного усилителя между синтезатором и мощным усилителем ослабляет влияние на генератор и синтезатор возможных регулировок в мощных каскадах передатчика и в антенне.

Усилитель мощности (его называют генератором с внешним возбуждением ) увеличивает мощность радиосигнала до уровня, определяемого требованиями системы радиосвязи. Главным требованием к усилителю мощности является обеспечение им высоких экономических показателей, в частности коэффициента полезного действия.

Выходная цепь служит для передачи усиленных колебаний в антенну, для фильтрации высокочастотных колебаний и для согласования выхода мощного оконечного усилителя с антенной, т.е. для обеспечения условий максимальной передачи мощности.

Модулятор служит для модуляции несущих высокочастотных колебаний передатчика передаваемым сигналом. Для этого модулятор воздействует в зависимости от особенностей передатчика и вида модуляции (амплитудная, частотная, однополосная и др.) на один или несколько блоков из числа обведенных пунктиром на рисунке 1.4. Например, частотная модуляция может получаться в синтезаторе частоты либо (реже) в генераторе высокой частоты; амплитудная модуляция получается воздействием на мощный и промежуточный усилители.

Устройство электропитания обеспечивает подведение ко всем блокам токов и напряжений, необходимых для нормальной работы входящих в их состав транзисторов, ламп и прочих электронных элементов, а также систем автоматического управления, устройств защиты от аварийных режимов и прочих вспомогательных цепей и устройств. Система электропитания содержит выпрямители, электромашинные генераторы с двигателями внутреннего сгорания, аккумуляторы, инверторы (преобразователи) низкого постоянного напряжения в более высокое или обратно, трансформаторы, коммутационную аппаратуру, резервные источники питания и устройства для автоматического перехода с основного источника на резервный в случае неисправностей и т.п.

На рисунке 1.4 не показаны многочисленные объекты вспомога-тельного оборудования, входящие в состав передатчика (особенно мощного), например средства автоматического и дистанционного управления; контрольно-измерительные приборы, устройства дистанционного контроля и сигнализации; устройства защиты и блокировки, выключающие цепи высокого напряжения при аварийных режимах или опасности для обслуживающего персонала и др.

Радиопередатчики диапазонов километровых, гектометровых и декаметровых волн обычно размещаются группами на специальных предприятиях – передающих радиостанциях. При большом числе передатчиков радиостанции называются радиоцентрами. Радиовещательные передатчики метровых и дециметровых волн, кaк правило, размещаются вместе с передатчиками телевизионного вещания. Предприятия связи, на которых установлены эти передатчики, называются радиотелевизионными передающими станциями (центрами).

Технические показатели радиопередатчиков. К основным показателям радиопередатчика относятся: диапазон волн, мощность, коэффициент полезного действия, вид и качество передаваемых сигналов.

В соответствии с классификацией волн различают передатчики километровых, гектометровых, декаметровых и других волн. С этим различием связаны соответствующие особенности конструкций, так как в разных диапазонах различны конструкции колебательных контуров и типов усилительных элементов. Передатчик может работать на одной или нескольких выделенных для него фиксированных волнах, либо он может настраиваться на любую длину волны в непрерывном диапазоне волн.

Мощность передатчика обычно определяется как максимальная мощность высокочастотных колебаний, поступающая в антенну при отсутствии модуляции, при непрерывном излучении. Однако этой характеристики недостаточно для оценки мощности радиопередатчика. Дело в том, что в технике радиосвязи часто приходится иметь дело с сигналами, напряжение которых изменяется в очень широких пределах и в сравнительно короткие промежутки времени может принимать значения, в несколько раз превосходящие средний уровень. Характерным примером подобного режима может служить радиолокационный передатчик, излучающий импульсы длительностью около 1 мксек, разделенные интервалами около 1 мсек, т.е. в 1000 раз большей длительности. Если бы при проектировании передатчика расчет велся на то, что в моменты этих выбросов мощность излучения соответствовала бы номинальной мощности, то фактическая средняя мощность излучения была бы во много раз меньше. Передатчик был бы использован значительно слабее своих возможностей, а при необходимости обеспечить большую дальность радиосвязи потребовалось бы применить передатчик значительно большей мощности.

В системах радиовещания промежутки времени, в которые амплитуда колебаний достигает максимальных значений, занимают обычно большую часть общего времени работы передатчика (например, 10-20%), длительность их доходит до десятков миллисекунд, но и в этом случае описанное временное форсирование передатчика возможно, хотя и в меньших пределах.

В соответствии с изложенным мощность передатчика, помимо цифры максимальной мощности, при непрерывной работе характеризуют значениями пиковой мощности, которая может быть обеспечена в течение ограниченных промежутков времени. Например, если средняя мощность передатчика при непрерывной работе 100 кВт, то она может доходить до 200 кВт, если длительность импульсов не превышает интервалов между ними.

Важнейшими показателями радиопередатчика являются стабильность излучаемой им частоты и уровень побочных излучений. Дело в том, что если строго соблюдается присвоенная данному передатчику частота сигнала, то настроенный на эту частоту приемник начинает принимать передаваемые сигналы тотчас после включения, не требуя подстроек; это способствует удобству эксплуатации и высокой надежности радиосвязи, а также облегчает автоматизацию оборудования. Кроме того, частотные диапазоны, используемые для радиосвязи и вещания, переуплотнены сигналами одновременно работающих радиостанций, поэтому если частота передатчика отличается от разрешенного значения, то она может приблизиться к частоте другого передатчика, что вызовет помехи приему его сигналов.

По существующим международным нормам отклонение от номинала частоты передатчика для радиосвязи на гектометровых волнах не должно превышать 0,005%; для радиовещательных передатчиков отклонение частоты в этом диапазоне не должно превышать 10 Гц. На декаметровых волнах допустимая нестабильность частоты для передатчиков мощностью более 0,5 кВт равна 15·10 - 6 , что соответствует в диапазоне от 4 до 30 МГц абсолютному отключению частоты от 60 до 450 Гц. Некоторые системы радиосвязи по своему принципу требуют, чтобы стабильность частоты была значительно лучше, чем предусматривается указанными нормами.

Гармоническими излучениями (гармониками) передатчика называются излучения на частотах, в целое число раз превышающих частоту передаваемого радиосигнала.

Известно, что при действии в нелинейной цепи, например двух ЭДС с частотами f 1 и f 2 спектр тока содержит, помимо составляющих с этими частотами и их гармоник, также составляющие с частотами вида mf 1 ± nf 2 , где т и п –целые числа. Это явление и лежит в основе взаимной модуляции; оно обусловлено наличием в передатчике элементов, обладающих нелинейными характеристиками, главным образом транзисторов или электронных ламп.

Интенсивность побочных излучений характеризуется мощностью соответствующих колебаний в антенне передатчика. Например, по действующим международным нормам радиопередатчики на частотах до 30 МГц должны иметь мощность побочных излучений не менее чем в 10000 раз (на 40 дБ) ниже мощности основного излучения и не более 50 мВт.

Показатели, определяющие качество передачи вещательного сигнала (электроакустические показатели), в принципе не отличаются от аналогичных параметров электрического канала вещания, что естественно, поскольку передатчик является частью канала – трактом вторичного распределения.

Некоторое отличие заключается лишь в том, что эти показатели нормируются и измеряются относительно уровня сигнала, соответствующего определенному коэффициенту модуляции сигналом частотой 1000 Гц. Для допустимого отклонения амплитудно-частотной характеристики этот коэффициент равен 50%.

Коэффициент гармоник определяется при коэффициенте модуляции 50, 90, а также 10%, что обусловлено наличием в модуляторе передатчика специфических искажений вида двустороннего ограничения, заметных при большом коэффициенте модуляции, вида центральной отсечки, заметных при малом коэффициенте модуляции. Защищенность от интегральной помехи и от псофометрического шума измеряется относительно уровня модулирующего сигнала, соответствующего 100% модуляции. Эксплуатационный персонал часто употребляет термин уровень шумов, который оценивается в децибелах относительно уровня модулирующего сигнала с частотой 1000 Гц, соответствующего коэффициенту модуляции 100%. Численно он равен величине запрещенности от интегральной помехи, взятой со знаком "минус".

1.3. Радиоприемные устройства

Назначение и классификация радиоприемных устройств. Радиоприемные устройства используют для радиосвязи, звукового и телевизионного вещания, радионавигации, радиолокации, paдио-, телеуправления и т.д. Радиоприемное устройство должно содержать все необходимые узлы для осуществления следующих процессов:

  • выделения из всей совокупности электрических колебаний, создаваемых в антенне внешними электромагнитными полями, сигнала от нужного радиопередатчика;
  • усиления высокочастотного сигнала;
  • детектирования, т.е. преобразования высокочастотного модулированного сигнала в ток, изменяющийся по закону модуляции;
  • усиления продетектированного сигнала.

Дальнейшее преобразование сигнала зависит от конкретных особенностей применения радиоприемника. Если, например, приемник предназначен для одноканальной радиотелефонной связи либо звукового или телевизионного вещания, то принятый сигнал после усиления превращается в звук и изображение при помощи телефона, громкоговорителя и приемной телевизионной трубки.

Если приемник предназначен для многоканальной радиосвязи, то продетектированный и усиленный сигнал подводится к оконечному устройству, в котором происходит разделение сигналов по отдельным каналам и, если требуется, дополнительная их обработка.

Применяемые в настоящее время радиоприемники делятся на профессиональные и бытовые. Первые предназначаются для использования на линиях радиосвязи и для решения различных навигационных, телеметрических и других специальных задач. Вторые служат для приема программ звукового и телевизионного вещания.

Радиоприемные устройства можно классифицировать:

  • по роду работы (радиотелефонные, радиотелеграфные, телевизионные, радионавигационные, радиолокационные и др.);
  • по виду модуляции (с амплитудной модуляцией (AM), частотной модуляцией (ЧМ), однополосной амплитудной модуляцией (ОБП) и т.д.);
  • по диапазону волн принимаемых сигналов (километровые, гектометровые, декаметровые и т.д.);
  • по месту установки (стационарные, переносные, самолетные, автомобильные и др.);
  • по схеме электропитания (от сети постоянного и переменного токов).

Основные показатели радиоприемников. Показатели радиоприемников определяются их назначением. Для радиоприемников разных типов они могут быть различными.

Чувствительность характеризует способность приемника принимать слабые сигналы. Она обычно оценивается наименьшим значением ЭДС или мощностью радиосигнала в антенне, при которой возможен устойчивый прием с нормальным воспроизведением сигнала без недопустимого искажения его помехами.

Чувствительность приемников в зависимости от их назначения может колебаться в широких пределах. Так, чувствительность радиовещательных приемников находится в пределах 50-300 мкВ в зависимости от класса качества. Чувствительность радиолокационных приемников имеет значения порядка 10 -12 - 10 -15 Вт. Для приемников с ферритовой антенной используется понятие чувствительности по напряженности поля. Она имеет значение от 0,3 до 5 мВ/м.

Высокая чувствительность может быть практически реализована лишь в том случае, если уровень внешних помех или собственных шумов на выходе приемника в несколько раз ниже уровня сигнала. Поэтому приемники разных видов необходимо характеризовать не только их чувствительностью, но и так называемой реальной чувствительностью, под которой понимается минимальная ЭДС в антенне, при которой обеспечивается не только нормальная мощность на выходе, но получается определенное превышение уровня сигнала над уровнем внешних помех или собственных шумов.

Избирательностью (селективностью) радиоприемного устройства называется его способность выделять из различных сигналов, отличающихся по частоте, сигнал принимаемой станции. В соответствии с этим избирательность приемника оценивается как относительное ослабление сигналов посторонних радиостанций, работающих на различных волнах, по отношению к сигналам принимаемого передатчика, на волну которого этот приемник настроен. Избирательность осуществляется главным образом входящими в состав приемника колебательными контурами и фильтрами.

Понятие избирательности поясняет рисунок 1.5, на котором показан спектр частот трех радиостанций, из которых две крайние мы рассматриваем как помехи. Из рисунка 1.5 видно, что если фильтры приемника обладают прямоугольной частотной характеристикой, соседние (мешающие) радиостанции не создадут на его выходе никакого сигнала (рисунок 1.5 б). Если же частотная характеристика фильтра далека от идеальной, то на его выходе кроме полез ного сигнала будет прослушиваться помеха (рисунок 1.5 в).

Естественно, что наибольшие трудности представляет ослабление помех от ближайших по частоте посторонних сигналов, т.е. сигналов соседнего частотного канала. Поэтому для оценки качества приемника всегда определяется его селективность в отношении помех соседнего канала.

В первом приближении количественную оценку избирательности можно производить по резонансной характеристике приемника, изображающей зависимость коэффициента усиления от частоты колебаний в антенне. Благодаря применению колебательных контуров и фильтров резонансная характеристика при настройке приемника на какую-либо частоту сигнала имеет вид, подобный рисунку 1.6. Избирательность в отношении помехи на частоте f c определяется вэтом случае как

Где К 0 – коэффициент усиления на частоте настройки; К п – коэффициент усиления на частоте f п.

Селективность удобно определять также в децибелах:

Так как передаваемое сообщение имеет определенную полосу частот, другой не менее важной функцией приемника является прием сигнала высокой частоты со всеми его боковыми частотами, т.е. одновременный прием определенной полосы частот. При этом необходимо, чтобы соотношения между амплитудами составляющих спектра сигнала оставались без изменений. Последнее можно обеспечить лишь при постоянной чувствительности приемника в определенной полосе частот. Поэтому понятно, что идеальная амплитудная частотная характеристика (АЧХ) приемника должна быть прямоугольной. При такой форме приемник одинаково принимает спектр боковых частот полезного сигнала, т.е. полоса пропускания такого устройства однозначно определяется как 2 f . Одновременно приемник с такой АЧХ обладал бы идеальной избирательностью, поскольку не пропускал бы сигналов мешающих станций и помех, частоты которых отличаются на f .

Частотная характеристика реального приемника отличается от прямоугольной. Полосой пропускания в данном случае называют область частот, в пределах которой ослабление спектра принимаемых колебаний не превышает заданного значения. Считается, что искажения будут не заметны на слух, если неравномерность АЧХ в пределах полосы пропускания не превышает 3 дБ. Это соответствует уровню . Именно на этом уровне отсчитывается полоса пропускания. Частотные свойства контура могут быть заданы его добротностью .

Качество воспроизведения принятого сигнала зависит от различного рода искажений сигнала в отдельных каскадах приемника. К этим искажениям относятся частотные, фазовые и нелинейные. На качество принятого сигнала будут влиять также различного рода помехи: атмосферные, промышленные, помехи от соседних по частоте передатчиков, а в диапазонах УКВ - собственные шумы приемника.

Структурные схемы радиоприемников. В настоящее время находят применение приемники прямого усиления, регенеративные, суперрегенеративные, супергетеродинные с одинарным и двойным преобразованиями частоты. Рассмотрим более подробно структурные схемы приемника прямого усиления и супергетеродинного. Ha рисунке 1.7 представлена структурная схема приемника прямого усиления.

Входная цепь (ВЦ) выделяет полезный сигнал из всей совокупности колебаний, наводимых в антенне от различных радиопередатчиков и других источников электромагнитных колебаний, ослабляет мешающие сигналы. Усилитель радиочастоты (УРЧ) усиливает поступающие из входной цепи полезные сигналы и обеспечивает дальнейшее ослабление сигналов мешающих станций. Детектор (Д) преобразует модулированные колебания радиочастоты в колебания, соответствующие передаваемому сообщению: звуковому, телеграфному и др. Усилитель низкой частоты (УНЧ) усиливает продетектированный сигнал по напряжению и мощности до величины, достаточной для приведения в действие оконечного устройства (громкоговорителя, реле, приемной телевизионной трубки и др.). Оконечное устройство (ОУ) преобразует электрические сигналы в исходную информацию (звуковую, световую, буквенную и др.).

Приемник прямого усиления не может обеспечить хорошую избирательность и высокую чувствительность, особенно в ди апазонах коротких и ультракоротких волн. Это объясняется тем, что по мере повышения частоты возрастает полоса пропускания резонансной цепи. Так, полоса пропускания одиночного контура 2f и его добротность Q связаны соотношением , где f с – частота принимаемого сигнала.

На высоких частотах полоса пропускания контура возрастает и кроме полезного сигнала контур будет пропускать помеху.

Заметим, что сделать селективную цепь приемника прямого усиления с прямоугольной или даже близкой к ней характеристикой практически невозможно, так как этот контур должен быть перестраиваемым. Фильтры, обеспечивающие прямоугольные характеристики. - это многоконтурные системы, перестраивать которые одной ручкой настройки невозможно. В связи с этим приемник прямого усиления обладает плохой избирательностью.

От указанных недостатков свободен супергетеродинный приемник (рисунок 1.8). Его отличительной особенностью является использование в нем преобразователя частоты, состоящего из смесителя (С) и гетеродина (Г). На выходе преобразователя мы получаем промежуточную частоту, усиливаемую в дальнейшем усилителем промежуточной частоты (УПЧ).

Преобразователем частоты называется устройство, предназначенное для переноса спектра сигнала из одной области частот в другую без изменения амплитудных и фазовых соотношений между компонентами спектра. Поскольку при таком переносе форма спектра сигнала не меняется, то не будет меняться и закон модуляции сигнала. Изменяется только значение несущей частоты сигнала f с, которая становится равной некоторой преобразованной частоте f пр.

К преобразователю частоты кроме напряжения сигнала с частотой f с, подводится напряжение гетеродина (маломощного автогенератора) с частотой f г. При взаимодействии этих напряжений в преобразователе частоты возникаю составляющие различных комбинационных частот, из которых используется только одна. Обычно используется составляющая f пр = f г – f с.

На практике значение f пр обычно меньше частоты несущей сигнала f с, но больше частоты модулирующего сигнала F c .

Поскольку преобразованная частота f пр занимает промежуточное значение между f с и F с, то она называется промежуточной частотой.

Название супергетеродин составное (супер+гетеродин), в котором слово гетеродин указывает на характерный для супергетеродинных приемников каскад-гетеродин. Этот каскад является неотъемлемой частью преобразователя частоты. Приставка супер означает, что в супергетеродинных приемниках преобразованная частота f пр расположена в области частот выше (сверх) частоты модуляции F c .

Преобразование несущей частоты радиосигнала в промежуточную приводит к улучшению фильтрации соседних каналов радиосвязи. Например, пусть в антенне действует ЭДС сигналов с несущими частотами f 1 = 20 МГц (полезный сигнал) и f 2 = 20,2 МГц. Относительная разность частот между станциями . Контур в радиочастотном диапазонеимеет добротность 20-50, т.е. относительную полосу пропускания 5-2%. В рассматриваемом примере станция f 2 отличается от избранной всего на 1% и поэтому будет создавать заметную помеху. Если произвести преобразование несущей частоты f 1 , то при частоте сигнала гетеродина f г = 20,5 МГц получаются две промежуточные частоты f пр1 = 20,5 - 20 = 0,5 МГц и f пр2 = 20,5 – 20,2 = 0,3 МГц, относительная разность между которыми . Как видно, относительная разность увеличиласьот 1 до 40%. В этих условиях станция, работающая на частоте f 2 , не будет помехой для фильтров преобразователя частоты, настроенных на частоту f пр =0,5 МГц, даже если их добротность соизмерима с добротностью контуров УРЧ.

В супергетеродинных приемниках основное усиление и изби-рательность осуществляются после преобразования частоты в усилителе промежуточной частоты (УПЧ). Важным достоинством супергетеродинного приемника является то, что в процессе его перестройки на другую станцию промежуточная частота f пр не меняется. Достигается это за счет того, что при перестройке приемника на другую частоту сигнала f с одновременно изменяется частотагетеродина f г таким образом, чтобы разность f г – f с = f пр осталась неизменной.

Следовательно, при перестройке супергетеродинного приемника достаточно изменить резонансные частоты входной цепи, УРЧ и гетеродина. Перестраивать УПЧ при этом не требуется. Поскольку УПЧ не перестраивается, то его характеристики не меняются. При этом частотная характеристика контуров УПЧ может быть получена достаточно близкой к прямоугольной, так как в нем могут быть использованы фильтры любой степени сложности. Именно по этой причине супергетеродинные приемники обеспечивают высокую избирательность.

Недостатком супергетеродинных приемников является наличие в них побочных каналов приема, главным из которых является зеркальный.

Зеркальный канал имеет несущую частоту f зерк, отличающуюся от частоты полезного сигнала f с на удвоенную промежуточную частоту f зерк = f с + f пр (рисунок 1.9).

Частоты f с и f зерк расположены зеркально симметрично относительно частоты гетеродина f г. Разность между f зерк и f г равна промежуточной частоте, как и в случае полезного сигнала. Поэтому если на преобразователь частоты поступают сигналы станций f с и f зерк, то на его выходе обе станции дадут напряжение промежуточной частоты. Если сигнал частоты f с является полезным, то сигнал частоты f зерк, попавший на преобразователь, является помехой. Очевидно, что ослабление помехи по зеркальному каналу должно происходить до преобразователя частоты. Для улучшения избирательности по зеркальному каналу промежуточная частота должна быть высокой. Тогда несущие частоты f с и f зерк значительно различаются. При этом коэффициент передачи входной цепи (она тоже обладает резонансными свойствами) на частоте f зерк существенно меньше, чем на частоте f с, и сигнал зеркальной станции будет значительно подавлен входной цепью. При наличии в приемнике УРЧ зеркальная помеха дополнительно подавляется за счет избиpaтeльныx свойств УРЧ.

Однако при высокой промежуточной частоте уменьшается коэффициент устойчивого усиления УПЧ и расширяется его полоса пропускания, что приводит к снижению чувствительности приемника и его избирательности по соседнему каналу. Как видно, требование к величине промежуточной частоты довольно противоречиво.

Другим побочным канатом является канал, частота которого равна промежуточной. Сигнал такой частоты, поступающий на вход преобразователя, без каких-либо изменений попадает па УПЧ. Для его устранения радиовещательные станции не должны работать на промежуточной частоте, а случайные помехи с частотами, близкими к промежуточной, должны быть подавлены соответствующими фильтрами на входе приемника.

В бытовых радиовещательных приемниках несущая частота составляет 465 кГц, т.е. она расположена в окне между границами радиовещательных диапазонов ДВ и СВ - 285,5-525 кГц.

В приемниках, работающих на магистральных линиях радиосвязи, требуются более высокие чувствительность и избирательность как по соседнему, так и по зеркальному каналам. Это невозможно выполнить при выборе одной промежуточной частоты, поэтому в таких приемниках применяют двойное преобразование частоты. При двойном преобразовании частоты первую промежуточную частоту выбирают достаточной высокой (порядка 1 МГц), за счет чего обеспечивается высокая избирательность по зеркальному каналу. Вторая промежуточная частота выбирается достаточно низкой (порядка 100 кГц), что позволяет получить высокий коэффициент устойчивого усиления в каскадах УПЧ и таким образом повысить чувствительность приемника при высокой избирательности по соседнему каналу.

Вопросы для самоконтроля

1.1. Понятие принципа работы системы радиосвязи.

1.2. Назовите основные структурные схемы организации радиосвязи.

1.3. Перечислите основные функциональные узлы радиопередатчика.

1.4. Назовите основные технические показатели радиопередатчиков.

1.5. Приведите классификацию радиоприемных устройств.

1.6. Назовите основные показатели радиоприемных устройств.

1.7. Приведите структурную схему радиоприемника прямого усиления.

1.8. Объясните особенности работы супергетеродинного радиоприемника.

1.9. Из каких соображений выбирается значение промежуточной частоты в супергетеродинном радиоприемнике?

Список рекомендуемой литературы

1. Изюмов Н.М., Линзе Д.П. Основы радиотехники. – М.: Радио и связь, 1983. – 376 с.

2. Катунин Г.П., Мамчев Г.В., Попантонопуло В.Н., Шувалов В.П. Телекоммуникационные системы и сети. Том II. – Новосибирск: Цэрис, 2000. – 624 с.

3. Машкова Т.Т., Степанов С.Н. Основы радиотехники. – М.: Радио и связь, 1992. – 232 с.

4. Радиоприемные устройства / Под ред. Н.Н.Фомина. – М.: Радио и связь, 1996. – 512 с.

Принципы ведения радиосвязи. Канал и линия радиосвязи

Слово “радио” происходит от латинского radiare - излучать или испускать лучи и является общим термином, используемым к любым практическим применениям радиоволн. При этом под радиоволнами понимаются электромагнитные волны, распространяющиеся через открытое пространство (среду распространения радиоволн) без искусственных направляющих сред, таких, как провода или трубы - волноводов. При использовании электромагнитных волн в качестве материального носителя для передачи информации на расстояние приходим к радиосвязи как к одному из способов электросвязи, применяющей для обмена информацией электрические системы передачи. Таким образом, радиосвязь - это электросвязь, осуществляемая посредством радиоволн.

В широком смысле радиосвязь представлена несколькими родами связи, использующими для передачи сообщений различные механизмы распространения радиоволн: вдоль земной поверхности, с применением отражения в разных слоях атмосферы или посредством космических ретрансляторов. Каждый род радиосвязи характеризуется своими принципами, определяемыми, главным образом, особенностями диапазонов используемых для передачи сообщений радиоволн. В дальнейшем, говоря о радиосвязи, будет иметься в виду такой ее род, который дает возможность непосредственной связи между пространственно разнесенными точками на земной поверхности без использования промежуточных пунктов связи, осуществляющих переприем (ретрансляцию) сигналов. При этом ретрансляция, в принципе, может быть применима для повышения дальности связи или в других случаях, например, для повышения эффективности связи в сложных условиях помеховой обстановки. Другой отличительной особенностью того рода радиосвязи, который будет рассмотрен ниже, является возможность передачи и приема сообщений в движении.

Все поступающие от источника для передачи посредством радиоволн сообщения преобразуются в передающем оконечном устройстве в первичный электрический сигнал u (t), представляющий собой изменяющееся во времени напряжение (ток), отображающее сообщения. В зависимости от характера сообщений и вида преобразования первичный электрический сигнал может быть дискретным или непрерывным. В качестве передающего оконечного устройства могут выступать микрофон гарнитуры микрофонно-телефонной (МТГ) или телефонной трубки, телеграфный ключ, телеграфный аппарат и другие технические средства.

Характерной особенностью первичных электрических сигналов является их сравнительно медленное изменение во времени, т. е. низкая частота колебаний. Спектры большинства первичных электрических сигналов ограничены максимальной частотой, не превышающей нескольких килогерц. Такие низкочастотные сигналы не могут эффективно излучаться в среду распространения радиоволн, так как для этого необходимы излучатели, имеющие геометрические размеры, соизмеримые с длиной волны сигнала. Поэтому далее в радиопередатчике первичный электрический сигнал преобразуется в удобный для передачи радиосигнал uс(t). Процесс преобразования называется модуляцией для непрерывных первичных сигналов или манипуляцией для дискретных. В процессе модуляции (манипуляции) первичный электрический сигнал выступает в роли модулирующего сигнала, изменяющего один из параметров (амплитуду, частоту, фазу) высокочастотного гармонического колебания несущей частоты.

В общем случае процессу модуляции первичного электрического сигнала предшествует операция его кодирования, в результате которой последовательность элементов сообщения по определенному правилу заменяется последовательностью кодовых символов.

Радиосигналы по аналогии с первичными электрическими сигналами, которые они отображают, могут быть непрерывными (аналоговыми) или дискретными. В некоторых случаях дискретные сигналы называют цифровыми, поскольку их можно представить в цифровой форме - в виде чисел с конечным числом разрядов. В радиосвязи наибольшее применение нашли цифровые сигналы, имеющие только два дискретных значения. Дискретные сигналы могут использоваться для передачи не только дискретных, но и непрерывных сообщений, и обратно, непрерывные сигналы - для передачи дискретных сообщений.

Радиосигнал с выхода радиопередатчика при помощи соединительной линии, которая называется фидером, подводится к передающей антенне и в виде радиоволн излучается ею в открытое пространство. Скорость распространения радиоволн зависит от свойств среды, при этом максимальная скорость имеет место в свободном пространстве (вакууме), и она совпадает со скоростью света в вакууме, равной 3×108 м/с. В других средах скорость радиоволн меньше и определяется относительными диэлектрической и магнитной проницаемостями среды.

В точке приема радиоволны преобразуются приемной антенной в высокочастотный сигнал, который далее по фидеру подается в радиоприемник, где происходит восстановление переданного первичного электрического сигнала u (t). Для этого выполняются операции, обратные тем, которые были осуществлены в радиопередатчике - демодуляция (детектирование) и декодирование сигнала. В приемном оконечном устройстве (например, телефонах МТГ, телеграфном аппарате, громкоговорителе) первичные сигналы преобразуются в сообщения и подаются их получателю.

Задача преобразования принимаемых сигналов в сообщения более сложная, чем преобразование сообщений в радиосигнал, так как преобразованию подвергается не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение. Наличие помех при передаче сообщений связано с тем, что среда распространения радиоволн является общей для многих источников электромагнитного излучения, т. е. имеет свободный доступ.

Совокупность технических устройств и среды распространения радиоволн, обеспечивающая передачу сообщений от источника к получателю с помощью радиоволн, называется линией радиосвязи (радиолинией). При этом источники и получатели, использующие линии радиосвязи для передачи и приема сообщений, являются абонентами радиосвязи. Абоненты могут передавать сообщения самостоятельно или с помощью радистов (радиотелеграфистов). Абонентов радиосвязи и радистов, осуществляющих непосредственную передачу сообщений по радиолинии, принято называть корреспондентами.

Структурная схема линии радиосвязи, предназначенной для передачи сообщений между абонентами (корреспондентами) А и Б, показана на рис. 2.1. В ней радиопередатчик (передатчик) и передающую антенну принято объединять в радиопередающее устройство, а радиоприемник (приемник) и приемную антенну - в радиоприемное устройство. Кроме того, передающую антенну и фидер, соединяющий ее с передатчиком, называют передающим антенно-фидерным устройством (АФУ) или трактом, а приемную антенну и фидер, связывающий ее с приемником, - приемным АФУ или трактом.

В общем смысле линию радиосвязи можно считать одним из видов канала электросвязи (канала связи), под которым понимается путь прохождения сигналов электросвязи, обеспечивающий при подключении к его окончаниям абонентских оконечных устройств передачу сообщений от источника к получателю (получателям). Каналам электросвязи в зависимости от вида сети связи присваиваются названия, например, телефонный канал, телеграфный канал, канал передачи данных, канал звукового вещания.

Линия радиосвязи может быть одноканальной или многоканальной. В последнем случае ей принадлежит несколько одновременно действующих каналов связи, по которым передаются сигналы, отображающие различные (иногда одинаковые) сообщения. В отличие от одноканальной в состав многоканальной радиолинии могут входить несколько передающих и приемных оконечных устройств, осуществляющих преобразование сообщений от разных источников в первичные электрические сигналы и обратно. Кроме того, в многоканальной линии радиосвязи должны быть предусмотрены устройства, выполняющие функции объединения и разделения сигналов разных абонентов.

Линии радиосвязи могут быть прямыми, соединяющими абонентов непосредственно, без использования промежуточных пунктов (ретрансляторов радиосигналов), или составными, проходящими через такие пункты (в этом случае в состав радиолинии включаются технические устройства ретранслятора, обеспечивающие прием, преобразование, усиление и последующую передачу радиосигналов, принимаемых от обоих корреспондентов).

Часть линии радиосвязи, которая создает путь прохождения радиосигналов, принято называть каналом радиосвязи (радиоканалом). Границы канала радио-
связи в зависимости от решаемых задач или исследуемых вопросов могут быть выбраны произвольно, лишь бы по каналу проходили радиосигналы, отображающие сообщения. В одних случаях под каналом радиосвязи понимают совокупность технических устройств, обеспечивающих образование радиосигнала и его излучение в радиопередатчике, а также прием радиосигнала и обратное его преобразование в радиоприемнике, и среды распространения радиоволн. В других случаях, например, при рассмотрении свойств каналов электросвязи, каналом радиосвязи называют только среду распространения радиоволн.

Канал радиосвязи, аналогично радиолинии, является частным случаем канала передачи, под которым понимается комплекс технических средств и среды распространения, обеспечивающий передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью между узлами и станциями сети. Радиоканал представляет собой канал передачи, в котором сигналы электросвязи передаются посредством радиоволн. В зависимости от методов передачи сигналов электросвязи канал передачи может быть аналоговым или цифровым (дискретным). Вид канала радиосвязи, кроме того, определяется типом радиоволн, используемых для передачи сообщений.

Канал передачи, параметры которого соответствуют принятым нормам, называется типовым каналом передачи. Типовые каналы передачи в радиосвязи будут рассмотрены в главе 7.

Показанная на рис. 2.1 линия радиосвязи реализует двустороннюю радиосвязь, так как ее состав позволяет обоим корреспондентам и передавать, и принимать сообщения. При односторонней радиосвязи один из корреспондентов осуществляет только передачу сообщений, и другой (или другие) - только прием.

Двусторонняя радиосвязь может быть симплексной или дуплексной. В первом случае передача и прием информации между корреспондентами производятся поочередно, при этом радиообмен возможен на одной частоте или на разнесенных частотах приема и передачи. В этом случае радиосвязь является симплексной одночастотной (или просто симплексной), а во втором - симплексной двухчастотной. При ведении дуплексной радиосвязи передача и прием информации осуществляются одновременно. Причем, если передатчики корреспондентов включены постоянно, независимо от того, происходит передача информации или нет, радиосвязь принято называть дуплексной, а если передатчики включаются только на время передачи информации, а когда передачи нет, выключаются - полудуплексной.

Для передачи сообщений по радиоканалам используется часть спектра электромагнитных колебаний, находящаяся в пределах от 3 кГц до 3000 ГГц. Эта часть спектра называется радиочастотным спектром (радиоспектром), а частоты радиоспектра - радиочастотами. Согласно международному документу - Регламенту радиосвязи, радиоспектр содержит 9 полос (диапазонов), начиная с четвертой. Деление спектра на диапазоны произведено так, что отношение верхней граничной частоты диапазона к его нижней граничной частоте равно 10. При этом верхняя граничная частота любого диапазона включается в него, а нижняя - исключается. В пределах одного диапазона свойства распространения радиоволн практически одинаковы. В табл. 2.1 приведены соответствующие Регламенту радиосвязи наименования, буквенные обозначения (международные и русские) и границы частотных полос, составляющих радиоспектр.

Волны в диапазоне от 10 м до 1 см часто объединяют названием - ультракороткие волны (УКВ), а под сверхвысокими частотами понимают ДМВ, СМВ и ММВ. Первое объясняется тем, что каждый из диапазонов с номерами от 8 и выше, имея особенности распространения, обладает некоторыми общими для всех диапазонов УКВ свойствами; а второе - тем, что в технических устройствах СВЧ для получения и выделения колебаний высоких частот в резонансных цепях вместо традиционных для более низких частот конденсаторов и катушек индуктивности используются другие конструкции: короткие отрезки проводных линий, металлические полоски, волноводы и коробчатые объемные резонаторы. Кроме того, радиоволны диапазонов от 9 и выше часто называют микроволнами.

Радиоволнам присущи общие для электромагнитных волн законы и явления, важнейшими из которых являются:

прямолинейное распространение радиоволн - распространение радиоволн в однородной (или слабо неоднородной) среде непосредственно от источника к месту приема по прямолинейным или близким к ним траекториям;

отражение радиоволн - изменение направления распространения радиоволн вследствие отражения от поверхности раздела двух сред или от неоднородностей среды;

дифракция радиоволн - изменение структуры поля волны под влиянием препятствий, представляющих собой пространственные неоднородности среды распространения, в частности, приводящие к огибанию радиоволной этих препятствий;

рефракция радиоволн - изменение направления распространения радиоволн вследствие изменения скорости их распространения при прохождении через неоднородную среду;

поглощение радиоволн - уменьшение энергии радиоволны вследствие частичного перехода ее в тепловую энергию в результате взаимодействия со средой;

рассеяние радиоволн - преобразование распространяющихся в одном направлении радиоволн в радиоволны, распространяющиеся в различных направлениях;

многолучевое распространение - распространение радиоволн от передающей к приемной антенне по нескольким траекториям;

интерференционные замирания радиоволн - квазипериодические изменения уровня поля вследствие прихода в место приема множества радиоволн с меняющимися во времени друг относительно друга фазами.

Таблица 2.1

Классификация диапазонов радиочастот и радиоволн

Номер полосы

Границы частот

Наименование частот

Границы
длин волн

Наименование волн

Очень низкие

Мириаметровые, или сверхдлинные (МИМВ, СДВ)

Километровые, или длинные

300…3000 кГц

Гектометровые, или средние

Декаметровые, или короткие

(ДКМВ, КВ)

Очень высокие

Метровые

300…3000 МГц

Ультравысокие

Дециметровые

Сверхвысокие

Сантиметровые

Миллиметровые

300…3000 ГГц

Гипервысокие

Децимилли-

метровые

В радиосвязи передача радиосигналов может производиться двумя путями: вдоль земной поверхности и с излучением в ионосферу и от нее обратно к поверхности Земли.

Исходя их этого, различают земные и ионосферные радиоволны.

Радиоволны, распространяющиеся в непосредственной близости (в масштабе длины волны) земной поверхности, называются земными радиоволнами. Земные радиоволны включают прямые волны (распространяющиеся прямолинейно), волны, отраженные от земли, и поверхностные радиоволны (распространяющиеся вдоль поверхности раздела сред). Ионосферными называются радиоволны, распространяющиеся в свободном пространстве путем отражения от ионосферы или рассеяния в ней. Радиосвязь, использующую ионосферные волны, также определяют как ионосферную.

Ионосферу образует ионизированная область атмосферы, расположенная на высотах от 60…80 до 1000…1200 км над Землей. Основным источником ионизации атмосферы, под действием которой нейтральные молекулы и атомы газов, входящие в состав ионосферы, расщепляются на положительно заряженные ионы и свободные электроны, является ультрафиолетовое и рентгеновское излучение Солнца, а также корпускулярные потоки, в основном солнечного происхождения. Кроме того, ионизация атмосферы происходит под действием космических лучей дальних звезд и космической пыли, непрерывно попадающих в атмосферу Земли.

Степень ионизации, характеризуемая электронной плотностью, неодинакова по высоте вследствие неоднородности атмосферы. Поэтому ионосфера приобретает сложную многослойную структуру, в ней образуются ионизированные облака, электронная концентрация которых зависит как от высоты облака, так и от степени солнечной активности, толщины атмосферы и некоторых других причин. Распределение интенсивности ионизации по высоте в реальной атмосфере имеет несколько максимумов. Различают три области D, E, F (в порядке возрастания высоты над поверхностью Земли), в пределах которых существуют три ионизированных слоя того же названия. В дневные часы ионизированный слой F распадается на два слоя F1 и F2. Степень ионизации зависит от времени года, суток и географического месторасположения, причем для разных слоев эти зависимости различны. Средние высоты слоев и степень их ионизации (плотность электронов) показаны в табл. 2.2.

Для каждого слоя характерна своя критическая частота fкр, определяемая как наивысшая частота радиосигнала, при которой происходит отражение вертикально направленной радиоволны от этого слоя. При частоте выше критической радиоволна не отражается, а проходит через ионизированный слой ионосферы.

Одновременно с появлением новых электронов в ионосфере часть имеющихся в ней электронов исчезает, присоединяясь к положительным ионам и нейтральным молекулам. Процесс воссоединения заряженных частиц и образования молекул в атмосфере называется рекомбинацией.

Ионизацию, кроме Солнца, создают метеоры, вторгающиеся в земную атмосферу со скоростями несколько десятков километров в секунду. Метеорное вещество при попадании в плотные слои атмосферы нагревается и испаряется, причем частицы вещества, будучи ионизированными, ионизируют окружающий воздух. За счет этого средний уровень ионизации атмосферы возрастает. Кроме того, за метеором образуется столб ионизированного воздуха, имеющий форму цилиндра, который создает местную ионизацию. След метеора быстро расширяется и рассеивается, существуя в атмосфере от одной до нескольких секунд. Такие ионизированные следы метеоров образуются на высоте 80…120 км над земной поверхностью приблизительно между слоем D и слоем E. Радиосвязь, основанная на использовании отражения радиоволн от ионизированных слоев метеоров, называется метеорной радиосвязью. В линиях метеорной радиосвязи применяется прерывистый режим работы с предварительным накоплением информации и ее последующей передачей в период возникновения метеорных следов.

4. Разработка функциональной схемы радиолинии

4.1 Спектр сигнала КИМ-ЧМ-ФМ

Сигнал КИМ-ЧМ-ФМ является одним из наиболее часто применяемых сигналов при организации цифровой связи по радиоканалам большой длительности. Символы сигнала КИМ заполняются прямоугольными колебаниями (меандром) разной частоты для нулей и единиц. Сигналом КИМ-ЧМ модулируется по фазе несущее колебание.

Аналитическая запись сигнала КИМ-ЧМ-ФМ имеет вид:

Колебания прямоугольной формы (меандр) с частотами w 1 и w 2 , используемыми на второй ступени модуляции сигнала; П с (t) – последовательность положительных и отрицательных прямоугольных импульсов, т.е. сигнал КИМ.

Общий вид спектра сигнала изображён на рис.5.


Интенсивность непрерывной части спектра на частотах w 0 ±w 1 и w 0 ±w 2 , т.е. величина А равна:

где j - девиация фазы на последней ступени модуляции; Р(1) – вероятность появления единиц в сигнале КИМ; t 0 – длительность элементарного символа.

Спектр сигнала изображён для случая, когда Р(1)=Р(0). В том случае, когда Р(1)¹Р(0), форма спектра на частотах w 0 ±w 1 и w 0 ±w 2 .

4.2. Описание функциональной схемы передатчика.

В нашей разрабатываемой совмещённой командной радиолинии есть одна особенность: на борту летательного аппарата будет находиться не только приёмник, но и передатчик, который будет передавать информацию иного рода, чем мы ему посылаем: это может быть телеметрическая информация, фотографии (цифровые) местности и т.п.

Рис. 6. Структурная схема передающей части

В простейшем случае работу передатчика можно объяснить следующим образом. На вход коммутатора Ком1 поступают N передаваемых сообщений U1(t), U2(t). С помощью АЦП они преобразуются в цифровой код. Преобразователь кода ПК служит для преобразования кода в последовательный. Схема синхронизации (СС) управляет работой передающей части и вырабатывает следующие сигналы:

1. Сигналы управления коммутатором Ком 1. Эти сигналы имеют частоту повторения, определяемую верхней частотой спектра передаваемых сообщений;

2. Сигналы управления АЦП;

3. Сигналы управления преобразователем кода ПК;

4. Сигнал кадровой синхронизации. Как правило, в качестве сигнала синхронизации используется m-последовательность, длина которой больше или равна ½ длины информационной части.

С помощью сумматора (+) формируется сигнал на видеочастоте (рис.7.).

На рисунке: Т сс – длительность слова синхронизации, Т кс – длительность командного слова, t 0 – длительность элементарного символа КИМ.

В групповом сигнале символы следуют с тактовой частотой f т, которая определяется задающим тактовым генератором системы синхронизации. С помощью коммутатора КОМ 2 символ "1" заполняется меандром с частотой f1, а символ "0" – меандром с частотой f2. В результате получается сигнал КИМ-ЧМ, который затем подаётся на фазовый модулятор (ФМ). Сигнал на поднесущей модулирует по фазе колебание на несущей частоте w 0 . Усилитель мощности усиливает полученный сигнал КИМ-ЧМ-ФМ для обеспечения необходимого коэффициента усиления всего передатчика. Антенно-фидерный тракт осуществляет согласование антенны с передатчиком.

4.3 Описание функциональной схемы приёмника

Структурная схема приёмной части радиолинии изображена на рис.8 .

Рис. 8. Структурная схема приемной части

В высокочастотной части приёмной стороны происходит перенос несущей частоты на промежуточную. Формирователь опорного напряжения


Рис. 9. Формирователь опорного напряжения

ФОН выполняется на основе ФАПЧ (рис.9.) или следящего фильтра.

На выходе управляемого генератора (УГ) устанавливается сигнал, частота и фаза которого совпадают с частотой и фазой принимаемого сигнала. Если в качестве опорного напряжения использовать сигнал U оп =cosw 0 t, то на выходе фазового детектора будет сигнал КИМ-ЧМ. Далее этот сигнал поступает на полосовые фильтры. Полосовые фильтры ПФ1 и ПФ2 настроены на поднесущие частоты f1 и f2.

На выходе схемы разности формируется групповой сигнал, искажённый шумами. С помощью решающего устройства РУ происходит определение символа. Решающее правило имеет вид:

Если U x >0, то U x =1,

Если U x <0, то U x =0.

С нулевым порогом сравниваются отсчёты сигнала, снимаемые с выхода схемы разности. РУ можно выполнить в виде интегратора и порогового устройства. Обеспечение разделения элементарных символов, соответствующих различным позициям кодового слова, производится с помощью посимвольной системы синхронизации.

На выходе вычитающего устройства стоит система пословной синхронизации.

Сигналы с выхода формирователя поступают на распределитель каналов. После этого каждый сигнал из КИМ сигнала с помощью ЦАП преобразовывают в аналоговую форму.

Система тактовой синхронизации необходима для того, чтобы опрашивать решающее устройство в моменты времени, соответствующие середине символа. Момент опроса может регулироваться выбором величины линии задержки. Работает система тактовой синхронизации следующим образом. Видеосигнал со схемы разности поступает на дифференцирующую цепочку ДЦ. Продифференцированный сигнал поступает на формирователь Ф, с помощью которого из импульсов, соответствующих передним и задним фронтам, формируются импульсы длительностью t 0 /2. Дифференцирование и последующее формирование необходимо для получения в спектре сигнала составляющей на частоте f т. Эта спектральная составляющая выделяется узкополосным резонансным фильтром УРФ. С помощью линии задержки ЛЗ происходит выбор оптимального момента стробирования.

С выхода РУ снимается поток решений о символах, представляющий собой поток элементарных символов. С помощью системы кадровой синхронизации происходит формирование колебаний с частотой следования кадров. Согласованный фильтр СФ согласован с m-последовательностью, которая используется для кадровой синхронизации. Выходные импульсы СФ, сформированные по амплитуде и длительности формирователем, сравниваются в цифровом фазовом детекторе с колебаниями местного генератора. Управляющий сигнал, изменяющий частоту местного генератора, снимается с ФНЧ. Меандр с выхода местного генератора управляет работой распределителя каналов РК, т.е. управляет распределением принимаемой информации по потребителям.


6300 Гц @6.3 кГц Вид группового сигнала: В первом приближении ширина спектра КИМ-ФМ-ФМ определяется шириной главного лепестка: Df = 2 * (1 / t) = 2 * 1 /159 *10-6с = 12579Гц = 12.6 кГц 3. Расчет энергетического потенциала радиолинии Энергетическим потенциалом радиолинии называется отношение средней мощности сигнала к спектральной плотности шума, пересчитанное ко входу приемника. ...




... : 2.4 Расчет энергетического потенциала Энергетическим потенциалом радиолинии называется отношение средней мощности сигнала к спектральной плотности шума, пересчитанное ко входу приемника. В задании курсового проектирования задана линия с расстоянием между приемником и передатчиком 200 км. Зададимся, что это линия Земля - управляемый объект. Линия связи подобного типа предназначена для...

Применяется посимвольный прием. Рисунок 1. Функциональная схема радиолинии КИМ-ФМ Необходимо знать - скорость передачи информации R (двоичных единиц в секунду), энергетический потен­циал радиолинии, закон изменения несущей частоты из-за нестабильности передатчика и движения передающего и принимающего пунктов. Предполагается также, что символы в КИМ сигнале могут считаться независимыми, а...

Российские летательные аппараты, совершившие посадку на Венеру в 1982 г., послали на Землю цветные фотографии с изображением острых скал. Благодаря парниковому эффекту, на Венере стоит ужасная жара. Атмосфера, представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. В результате скапливается большое количество тепловой энергии. Цифровая радиолиния с...

Рассмотрим структуру радиосвязи (рис. 2.15).

Микрофон (М) преобразует звуковые колебания речи в электрические колебания тока звуковой (низкой) частоты. Одним из основных блоков радиопередатчика является задающий генератор (ЗГ) (или генератор высокой частоты), преобразующий энергию постоянного тока (специального источника питания) в энергию колебания токов высокой частоты (ВЧ). Усиленный в усилителе низкой частоты (УНЧ) ток звуковой частоты поступает на модулятор (Мод), воздействуя на один из параметров (амплитуду, частоту или фазу) тока высокой частоты. Вырабатываемого задающим генератором. В результате в антенну передатчика подаются токи высокой частоты (радиочастоты), изменяющиеся по амплитуде, частоте или фазе в соответствии с передаваемыми звуковыми колебаниями (передаваемыми первоначальным сообщением). Процесс воздействия на один из параметров ВЧ-сигнала по закону изменения передаваемого первоначального сообщения называется модуляцией , соответственно амплитудной, частотной или фазовой.

Рисунок 2.15 – Структурная схема радиосвязи

Токи высокой частоты, проходя по антенне передатчика, образуют вокруг нее электромагнитное поле. Электромагнитные волны (радиоволны) отделяются от антенны и распространяются в пространстве со скоростью 300000 км/с.

В приемной антенне радиоволнами (электромагнитным полем) наводится ЭДС радиочастоты, создающая модулированный ток ВЧ, который в точности повторяет все изменения тока в передающей антенне. Токи высокой частоты от приемной антенны по фидерной линии передаются на избирательный усилитель высокой частоты (УВЧ). Избирательность обеспечивается резонансным контуром, чаще всего состоящим из параллельно включенных катушки индуктивности и конденсатора, образующих параллельный колебательный контур, имеющий резонанс тока на частоте электромагнитных колебаний, передаваемых передатчиком. К передатчикам радиостанций, работающих на других частотах, данный радиоприемник практически не чувствителен.

Усиленный сигнал подается на детектор (Дет), преобразующий принятые сигналы ВЧ в токи звуковых колебаний, изменяющиеся подобно токам звуковой частоты, создаваемым микрофоном на передающем пункте. Такое преобразование называется детектированием (демодуляцией). Полученный после детектирования ток звуковой или низкой частоты (НЧ) обычно еще усиливается в УНЧ и передается на громкоговоритель (динамик или наушники), который преобразует этот ток НЧ в звуковые колебания.

Радиосвязь бывает одно- и двухсторонней. При односторонней радиосвязи одна из радиостанций осуществляет только передачу, а другая (или другие) – только прием. При двухсторонней радиосвязи радиостанции осуществляют одновременно передачу и прием.

Симплексная радиосвязь – это двухсторонняя радиосвязь, при которой каждый абонент ведет только передачу или только прием поочередно, выключая свой передатчик на время приема (рис. 2.16). Для симплексной связи достаточно одной радиочастоты (одночастотная симплексная радиосвязь). Каждая радиостанция имеет одну антенну, которая при приеме и передаче переключается соответственно на вход радиоприемника или на вход радиопередатчика.

Рисунок 2.16 – Структурная схема симплексной радиосвязи

Симплексная радиосвязь обычно используется при наличии относительно небольших информационных потоков. Для радиосетей с большой нагрузкой характерна дуплексная связь.

Дуплексная радиосвязь – это двухсторонняя радиосвязь, при которой прием и передача ведутся одновременно. Для дуплексной радиосвязи требуются две разные несущие частоты, а передатчики и приемники должны иметь свои антенны (рис. 2.17). Кроме того, на входе каждого приемника устанавливают специальный фильтр (дуплексер ), не пропускающий колебаний радиочастоты собственного передатчика. Достоинствами дуплексной радиосвязи являются ее высокая оперативность и пропускная способность радиосети.

Рисунок 2.17 – Структурная схема дуплексной радиосвязи

Радиосвязь имеет следующие преимущества перед проводной связью:

Ø быстрое развертывание на любой местности и в любых условиях;

Ø высокая оперативность и живучесть радиосвязи;

Ø возможность передачи различных сообщений любому количеству абонентов циркулярно, избирательно или группе абонентов;

Ø возможность связи с подвижными объектами.

Радиопередающие устройства

В функциональном смысле под радиопередающим устройством понимается комплекс оборудования, предназначенный для формирования и излучения радиочастотного сигнала (радиосигнала). В качестве функциональных узлов в состав радиопередатчика входят генератор несущей и модулятор. Кроме того, радиопередающие устройства (особенно мощные) содержат много другого оборудования: источники питания, средства охлаждения, автоматического и дистанционного управления, сигнализации, защиты и блокировки и пр.

Основные показатели радиопередающих устройств условно могут быть разделены на 2 группы: энергетические и показатели электромагнитной совместимости.

Важнейшими энергетическими показателями радиопередающего устройства являются номинальная мощность и промышленный коэффициент полезного действия. Под номинальной мощностью (Р) понимают среднее за период радиочастотного колебания значение энергии, подводимой к антенне. Промышленный коэффициент полезного действия (КПД) представляет собой отношение номинальной мощности Р к общей Р общ, потребляемой от сети переменного тока радиопередающим устройством: η = Р/Р общ · 100% .

Основными показателями электромагнитной совместимости являются диапазон рабочих частот, нестабильность частоты колебаний и внеполосные излучения.

Диапазоном рабочих частот называют полосу частот, в которой радиопередающее устройство обеспечивает работу в соответствии с требованиями стандарта.

Под нестабильностью частоты радиопередатчика понимают отклонение частоты колебаний на его выходе за определенный промежуток времени относительно установленной частоты. Малая нестабильность (высокая стабильность) частоты позволяет ослабить помехи радиоприему.

Внеполосными называют такие излучения , которые расположены вне полосы, отведенной для передачи полезных сообщений. Внеполосные излучения являются источником дополнительных помех радиоприему. При подавлении внеполосных излучений качество передачи сигнала не ухудшается.

По назначению радиопередающие устройства делятся на связные. Радиовещательные и телевизионные. По диапазону рабочих частот радиопередающие устройства подразделяются в соответствии с классификацией видов радиоволн. В зависимости от номинальной мощности радиопередающие устройства делятся на маломощные (до 100 Вт), средней мощности (от 100 до 10000 Вт), мощные (от 10 до 500 кВт) и сверхмощные (свыше 500 кВт).

Специфика эксплуатации позволяет выделить стационарные и подвижные радиопередающие устройства (автомобильные, самолетные, носимые и т.д.).

Радиоприемные устройства

Радиоприем – это выделение сигналов из радиоизлучения. В том месте, где ведется радиоприем, одновременно существуют радиоизлучения от множества естественных и искусственных источников. Мощность полезного радиосигнала составляет очень малую долю мощности общего радиоизлучения в месте радиоприема. Задача радиоприемного устройства сводится к выделению полезного радиосигнала из множества других сигналов и возможных помех, а также к воспроизведению (восстановлению) передаваемого сообщения.

Основными (в смысле универсальности) показателями радиоприемных устройств являются: диапазон рабочих частот, чувствительность, избирательность, помехоустойчивость.

Диапазон рабочих частот определяется диапазоном возможных частот настройки. Другими словами, это область частот настройки, в пределах которой радиоприемное устройство может плавно или скачкообразно перестраиваться с одной частоты на другую.

Чувствительность является мерой способности радиоприемного устройства обеспечивать прием слабых радиосигналов. Количественно оценивается минимальным значением электродвижущей силы (ЭДС) сигнала на входе радиоприемного устройства, при котором имеет место требуемое отношение сигнал-шум на выходе при отсутствии внешних помех.

Избирательностью называется свойство радиоприемного устройства, позволяющее отличать полезный радиосигнал от радиопомехи по определенным признакам, свойственным радиосигналу. Иначе: это способность радиоприемного устройства выделять нужный радиосигнал из спектра электромагнитных колебаний в месте приема, снижая мешающие радиосигналы. Различают пространственную и частотную избирательности. Пространственная избирательность достигается за счет использования антенны, обеспечивающей прием нужных сигналов с одного направления и ослабления радиосигналов с других направлений от посторонних источников. Частотная избирательность количественно характеризует способность радиоприемного устройства выделять из всех радиочастотных сигналов и радиопомех, действующих на входе, сигнал, соответствующий частоте настройки радиоприемника.

Помехоустойчивостью радиоприемного устройства называется его способность противодействовать мешающему действию помех. Количественно помехоустойчивость оценивается тем максимальным значением уровня помехи в антенне, при котором еще обеспечивается прием радиосигналов.

Радиоприемные устройства можно классифицировать по различным признакам. По назначению можно выделить радиовещательные (обычно называемые радиоприемниками или приемниками), телевизионные (телевизоры), профессиональные, специальные радиоприемные устройства. К профессиональным относятся магистральные радиоприемные устройства декаметрового диапазона, радиорелейных и спутниковых линий связи. Среди радиоприемных устройств специального назначения следует назвать, например, радиолокационные, радионавигационные, самолетные и т.д.

Антенны и фидеры

Антенна представляет собой элемент сопряжения между передающим или приемным оборудованием и средой распространения радиоволн. Антенны, имеющие вид проводов или поверхностей, обеспечивают излучение электромагнитных колебаний при передаче, а при приеме они «собирают» падающую энергию. Антенны, состоящие из проводов небольшого поперечного сечения по сравнению с длиной волны и продольными разрезами, называют проволочными . Антенны, излучающие через свой раскрыв – апертуру, называют апертурными . Иногда их называют дифракционными, рефлекторными, зеркальными. Электрические токи таких антенн протекают по проводящим поверхностям, имеющим размеры, соизмеримые с длиной волны или много большие ее.

Электрическая цепь и вспомогательные устройства, с помощью которых энергия радиочастотного сигнала проводится от радиопередатчика к антенне или от антенны к радиоприемнику, называется фидером . К фидерам предъявляются следующие требования: потери энергии высокочастотных сигналов в нем должны быть минимальными; они не должны иметь антенного эффекта, т.е. не должны излучать или принимать электромагнитные волны; обладать достаточной электрической прочностью, т.е. передавать требуемую мощность без опасности электрического пробоя изоляции.

Передающие антенны, используемые в километровом и гектометровом диапазонах радиоволн, соединяются с радиопередатчиком с помощью многопроводных коаксиальных фидеров. В декаметровом диапазоне фидеры обычно выполняются в виде проволочных двух- или четырехпроводных линий. К антеннам метровых радиоволн энергия, как правило, проводится с помощью коаксиального кабеля. На более коротких волнах, в частности в сантиметровом диапазоне, фидер выполняется в виде полой металлической трубы – волновода прямоугольного, эллиптического или круглого сечения.

Классификация и способы распространения радиоволн приведены в таблицах ниже.



Любой вид связи предназначен для передачи информации на расстояние. Информация - это совокупность сведений о событиях в окружающем мире. Формой представления информации является сообщение, которое может представлять собой речь, текст, последовательность чисел и т.д.

Чтобы передать сообщение от источника информации получателю, необходимо использовать любой физический процесс, способный распространяться с некоторой скоростью от источника к получателю информации, например: звуковые колебания, электрический ток в проводниках, свет, электромагнитное поле и др.. физическая величина, определяющая данный процесс, изменяющаяся во времени и отображающая передаваемое сообщение (сила тока, интенсивность электромагнитного поля, яркость света и т.д.называется сигналом. Сигналы не являются передаваемым сообщением, а лишь отображают его. Часто сигнал, полученный в результате преобразования сообщения, называют первичным электрическим сигналом.

В зависимости от характера сообщения.первичные электрические сигналы могут быть непрерывными или дискретными

Непрерывные сигналы принимают любые значения по состояниям в некотором интервале. Такие сигналы описываются на некотором достаточно большом интервале времени непрерывными функциями времени. Типичным примером непрерывного сигнала является речевой сигнал, его амплитуда непрерывно меняется во времени в пределах ±Umax. При передаче такого телефонного сигнала необходимо в первую очередь учитывать его спектр частот.

Известно, что спектр звуков, воспринимаемых человеческим ухом, занимает полосу частот в пределах от 16 до 20000 Гц. Однако передача такого широкого спектра частот по каналам связи сопряжена с определёнными трудностями, связанными с увеличением полосы частот, занимаемой каналом связи, а, следовательно, и с уменьшением количества каналов связи, обеспечиваемых в определённом диапазоне частот. Поэтому при телефонной связи спектр речевого сигнала ограничивают полосой частот от 300 до 3400 Гц, в которой расположены основные частотные составляющие и основная энергия звуков человеческой речи (рис. 2.1).

При этом такое ограничение спектра частот телефонного сигнала не ведёт к заметному искажению сигнала. Ширина спектра 0,3¸3,4 КГц получила название стандартного телефонного канала.

Дискретные сигналы принимают конечное число вполне определённых значений по состоянию. Наиболее общим примером дискретных сигналов могут служить телеграфные сигналы, отображающие текст сообщения с помощью определённого алфавита (кода). При этом каждая буква или цифра кода выражается вполне определённым дискретным состоянием сигнала. На рис.2.2. показаны дискретные состояния, которые принимает сигнал при передаче буквы «Ж» с помощью кода Морзе.


Передача телеграфных сигналов может осуществляться с различной скоростью телеграфирования. Скорость телеграфирования определяется количеством элементарных импульсов, передаваемых в единицу времени (1с) и измеряется в Бодах (Б).

1 Б = 1 имп / 1 с

Для большинства буквопечатающих телеграфных аппаратов скорость телеграфирования составляет 50 Бод.

Первичный электрический сигнал независимо от его вида носит низкочастотный характер. Он может быть непосредственно переданным по проводным линиям связи, но не может эффективно излучаться в среду распространения радиоволн, так как практически невозможно создать антенны, геометрические размеры которых были бы соизмеримы с длинной волн сигнала.

Например, при F=1кГц длина волны l=300(км), а длина антенны L=l/4 = 75(км), что практически не осуществимо.

Следовательно, для передачи по радио первичный электрический сигнал должен быть преобразован в высокочастотный сигнал, способный эффективно излучаться в окружающее пространство.

Такой сигнал принято называть радиосигналом. Преобразование первичных низкочастотных электрических сигналов в радиосигналы осуществляется в радиопередатчиках, являющихся основной частью радиопередающих устройств. Процесс преобразования непрерывных первичных сигналов в радиосигналы носит название модуляции, а дискретных - манипуляции.

Радиосигнал, сформированный и излучённый в окружающую среду в виде радиоволн, распространяясь с определённой скоростью, достигает места расположения получателя информации. При прохождении радиосигнала в среде распространения на него воздействуют другие сигналы, определяемые как свойствами самой среды распространения, так и другими источниками электрических сигналов. В точке получения переданной информации необходимо произвести обратное преобразование радиосигнала в сообщение. Преобразование радиосигналов, пришедших в точку приёма, в исходное сообщение осуществляется радиоприёмным устройством. Задача преобразования принимаемого радиосигнала в сообщение более сложная, чем преобразование сообщения в радиосигнал, так как преобразованию подвергаются не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение.

Источник информации, радиопередающее устройство, среда распространения радиоволн, радиоприёмное устройство и получатель информации образуют линию радиосвязи (рис. 2.3).

Структурная схема линии радиосвязи, изображённая на рис.2.3., обеспечивает передачу сообщения только в одном направлении - от источника информации к получателю, т.е. одностороннюю радиосвязь. Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее радиоприемное устройство. В этом случае источник информации и получатель информации периодически меняются функциями, выполняемыми в линии радиосвязи, поэтому их принято объединять одним понятием корреспондент.

Для двусторонней радиосвязи режим работы радиолинии может быть симплексным или дуплексным.

Линия радиосвязи, в которой передача и приём сообщений осуществляются поочерёдно, называется симплексной, если же линия радиосвязи обеспечивает одновременную передачу и приём информации, то такая радиолиния называется дуплексной. Линия радиосвязи, которая позволяет одновременно передавать несколько сигналов, отображающих независимые сообщения, называется многоканальной (двухканальной, трёхканальной и т.д.), если же линия радиосвязи предназначена для передачи только одного сигнала, соответствующего одному сообщению, то она называется одноканальной. Таким образом, под каналом радиосвязи понимают часть линии, обеспечивающую передачу и приём сигнала.

В общем случае под каналом радиосвязи понимают часть радиопередающего устройства, среду распространения радиоволн и часть радиоприёмного устройства. Какие части радиопередающего и радиоприёмного устройства входят в понятие радиоканала, оговаривается отдельно. Наиболее часто канал радиосвязи (радиоканал) ограничивается только средой распространения радиоволн. Это объясняется тем, что наиболее характерные особенности радиоканала, отличающие его от других каналов связи, определяются именно средой распространения. В дальнейшем, если не будет специально оговорено, под радиоканалом будем понимать среду распространения радиоволн.

Таким образом, любое радиопередающее устройство должно обеспечивать выполнение следующих трех функций:

1. Преобразование сообщения в первичный электрический сигнал, которое осуществляется оконечной передающей аппаратурой (микрофон, телеграфный ключ, телеграфный аппарат, передающая телевизионная трубка и т.д.).

2. Преобразование первичного электрического сигнала путём модуляции (манипуляции) высокочастотного колебания в радиосигнал, способный эффективно излучаться и распространяться в виде радиоволн на заданное расстояние. Эту функцию выполняет собственно радиопередатчик.

3. Излучение сформированных радиопередатчиком радиосигналов в виде электромагнитных волн, осуществляемое передающим антенно-фидерным устройством (АФУ).

На приёмном конце линии радиосвязи с помощью радиоприёмного устройства производиться обратное преобразование радиосигналов в сообщение. Радиоприёмное устройство также выполняет следующие три основные функции:

1. Приёмное антенно-фидерное устройство (АФУ) улавливает энергию электромагнитных волн и преобразует её в радиосигнал.

2. Выделение принимаемого радиосигнала из множества сигналов, наводимых в антенне, и преобразование его в первичный низкочастотной сигнал необходимой мощности, осуществляемые радиоприёмником.

3. Преобразование первичного сигнала в сообщение, выполняемое приёмной оконечной аппаратурой (головные телефоны, динамик, приёмный телеграфный аппарат, телевизионная трубка и т.д.). Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее и радиоприёмное устройства, которые организационно, а часто и конструктивно, вместе с устройствами управления объединяются в единый комплекс-радиостанцию.


На рис.2.4 представлена обобщенная структурная схема линии радиосвязи между корреспондентами А и Б.

Основные свойства радиоканала, отличающие его от других каналов связи, определяются, главным образом, свойствами среды распространения. Поэтому, при рассмотрении данного вопроса понятие радиоканала ограничим средой распространения радиоволн.

В радиосвязи в качестве среды распространения используется пространство, окружающее земную поверхность. Такая среда не обладает направленными свойствами, как это имеет место, например в проводных и кабельных линиях связи. В линиях радиосвязи излучённые передающей антенной, распространяются практически во все стороны от излучателя и только незначительная часть их энергии излучается в сторону радиоприёмного устройства корреспондента. Происходит рассеивание энергии радиоволн в среде распространения. Кроме того, за счет поглощения энергии радиоволн в земной поверхности и ионосфере, а также за счет преломления радиоволн происходит дополнительное уменьшение энергии радиоволн, приходящих в точку приёма. В тех случаях, когда энергия радиоволн, пришедших в точку приёма оказывается недостаточной для преобразования её в первичный сигнал, радиосвязь оказывается невозможной.

Первое свойство радиоканала и заключается в том, что в процессе распространения радиоволн из-за их рассеивания и поглощения в земной поверхности и ионосфере происходит резкое уменьшение мощности радиосигналов на входе радиоприёмников. Поэтому радиоканал в отличии от других каналов связи рассматривается, как канал с большим затуханием.

Большое затухание радиоканала приводит к тому, что уровень радиосигнала на входе радиоприёмного устройства оказывается соизмеримым с уровнем флуктуационных токов (собственных шумов) радиоприёмника, что затрудняет, а в некоторых случаях делает и невозможным, распознавание принимаемых сигналов и отделение их от шумов.

«Уменьшить» затухание радиоканала можно за счет выбора оптимальных рабочих частот для данного времени требуемой дальности радиосвязи, а также за счет более направленных и эффективных передающих и приёмных антенных устройств.

Вторым свойством радиоканала является изменение затухания во времени в
весьма широких пределах, поэтому радиоканал принято считать каналом связи с
переменными параметрами.

Изменение затухания радиоканала может происходить по различным причинам. На величину затухания в радиоканале влияют изменения взаимного расположения радиостанций на местности и расстояний между ними, что особенно заметно при осуществлении радиосвязи земными волнами. Поскольку напряжённость электромагнитного поля убывает практически пропорционально квадрату длины пути, проходимому волной в процессе распространения, то любое изменение расстояния между работающими радиостанциями приводит к изменению мощности радиосигнала в точке приёма. Очевидно, что эти изменения особенно сильно влияют на обеспечение радиосвязи между подвижными объектами. Но даже в случаях, когда расстояние между работающими радиостанциями остаётся постоянным, а изменяется только их взаимное расположение на местности, могут происходить достаточно резкие изменения затухания в радиоканале, вызываемые изменениями параметров почвы, а, следовательно, и её поглощающих свойств. Параметры сухой почвы отличаются от параметров влажной почвы и от параметров водной поверхности, а также зависят от вида самой почвы - песок, глина и т.д.

В диапазоне метровых волн, на поглощающие свойства среды распространения сильное влияние оказывают рельеф местности и местные предметы - холмы, горы, растительный покров, строения и т.д. Всё это приводит к изменению величины затухания радиоканала, которое может достигать сотен децибел.

Третьим свойством радиоканала является его общедоступность, т.е. возможность использования одной и той же среды распространения любыми радиотехническими устройствами. Общедоступность среды распространения обеспечивает возможность одновременного функционирования большого количества линий радиосвязи.

Таким образом, на входе приёмного устройства всегда кроме принимаемого радиосигнала будут присутствовать помехи, которые искажают его, а. следовательно, и первичный сигнал, непосредственно отображающих переданное сообщение. Степень искажения первичною сигнала определяет правильность принятого сообщения, т.е. его достоверность.

Итак, для повышения надежности радиосвязи и обеспечения высокой достоверности принятого сообщения необходимо принимать следующие меры:

Осуществлять радиосвязь на оптимально выбранных по радио прогнозам частотах, свободных от помех;

Использовать такие виды радиосигналов, которые обеспечивают требуемую надёжность радиосвязи при возможно меньших значениях степени превышения сигнала над помехой;

Применять эффективные и направленные передающие и приёмные антенны;

Уменьшать полосу пропускания радиоприёмника до возможно меньших значений, определяемых спектром принимаемого радиосигнала.



Загрузка...