sonyps4.ru

Вольтметр arduino с выводом данных на компьютер. Bluetooth вольтметр на базе arduino

Широкий интерес для любителей самодельных электронно-программируемых устройств представляют многофункциональные сборки Arduino, позволяющие воплощать в жизнь интересные задумки.

Основное преимущество готовых схем Arduino заключается в уникальном блочно-модульном принципе: каждая плата может быть добавлена дополнительными интерфейсами, бесконечно расширяя возможности для создания различных проектов.

Модули Arduino построены на универсальном микроконтроллере с собственным загрузчиком, что позволяет легко прошивать его необходимым программным кодом, без использования дополнительных устройств. Программирование осуществляется на стандартном языке С++.

Одним из простейших примеров использования Arduino может стать реализация на базе этой сборки вольтметра постоянного напряжения повышенной точности с диапазоном измерения от 0 до 30 В.

Аналоговые входы Arduino предназначены для постоянного напряжения не более пяти вольт, поэтому, использование их при превышающих это значение напряжениях возможно с делителем напряжения.


Схема подключения Areduino через делитель напряжения

Делитель напряжения состоит из двух последовательно соединенных сопротивлений. Расчет его производится по формуле:

Внешний USB-разъем в автомагнитоле

С некоторыми дополнениями.

Мало известная фишка Ардуино и многих других AVR чипов это возможность измерить внутренний источник опорного напряжения 1.1 В. Эта функция может быть использована для повышения точности функции Arduino — analogRead при использовании стандартного опорного напряжения 5 В (на платформах с напряжением питания 5 В) или 3.3 В (на платформах с напряжением питания 3.3 В). Она также может быть использована для измерения Vcc , поданного на чип , обеспечивая средство контроля напряжения батареи без использования драгоценных аналоговый выводов .

Мотивация

Есть, по крайней мере, две причины для измерения напряжения, питающего наш Arduino (Vcc). Одним из них является наш проект, питающийся от батареи, если мы хотим следить за уровнем напряжения батареи. Кроме того, когда питание от батареи (Vcc) не может быть 5,0 вольт(например питание от 3-х элементов 1.5 В), а мы хотим сделать аналоговые измерения более точными - мы должны использовать либо внутренний источник опорного напряжения 1,1 В либо внешний источник опорного напряжения. Почему?

Обычно предполагают при использовании analogRead () то, что аналоговое напряжение питания контроллера составляет 5.0 вольт, когда в действительности это может быть совсем не так(например питание от 3-х элементов 1.5 В). Официальная документация Arduino даже может привести нас к этому неправильному предположению. Дело в том, что питание не обязательно 5,0 вольт, независимо от текущего уровня это питание подано на Vcc чипа. Если наше питание не стабилизировано или если мы работаем от аккумулятора, это напряжение может меняться совсем немного. Вот пример кода, иллюстрирующий эту проблему:

Double Vcc = 5.0; // не обязательно правда int value = analogRead(0); / читаем показания с А0 double volt = (value / 1023.0) * Vcc; // верно только если Vcc = 5.0 вольт Для того чтобы измерить напряжение точно, необходимо точное опорное напряжение. Большинство чипов AVR обеспечивает три источника опорного напряжения:

  • 1,1 в от внутреннего источника, в документации он проходит как bandgap reference (некоторые из них 2,56 В, например ATMega 2560). Выбор осуществляется функцией analogReference() с параметром INTERNAL : analogReference(INTERNAL) ;
  • внешний источник опорного наптяжения, на ардуинке подписан AREF. Выбор: analogReference(EXTERNAL);
  • Vcc - источник питания самого контроллера. Выбор: analogReference(DEFAULT).

В Arduino нельзя просто взять и подключить Vcc к аналоговому пину напрямую - по умолчанию AREF связан с Vcc и вы всегда будете получать максимальное значение 1023, от какого бы напряжения вы не питались. Спасает подключение к AREF источника напряжения с заранее известным, стабильным напряжением, но это - лишний элемент в схеме.

Еще можно соединить Vcc с AREF через диод : падение напряжение на диоде заранее известно, поэтому вычислить Vcc не составит труда. Однако, при такой схеме через диод постоянно протекает ток , сокращая жизнь батареи, что тоже не очень удачно.

Источник внешнего опорного напряжения является наиболее точным, но требует дополнительных аппаратных средств. Внутренний ИОН стабильным, но не точен + / - 10% отклонение. Vcc является абсолютно ненадежен в большинстве случаев. Выбор внутреннего источника опорного напряжения является недорогим и стабильным, но большую часть времени, мы хотели бы измеряет большее напряжение чем 1.1 В, так что использование Vcc является наиболее практичным, но потенциально наименее точным. В некоторых случаях оно может быть очень ненадежным!

Как это сделать

Многие чипы AVR включая серию ATmega и ATtiny обеспечивают средства для измерения внутреннего опорного напряжения. Зачем это нужно? Причина проста - путем измерения внутреннего напряжения, мы можем определить значение Vcc. Вот как:

  1. Установить источник опорного напряжения по умолчанию: analogReference(DEFAULT); . Используем как источник - Vcc.
  2. Снять показания АЦП для внутреннего источника 1.1 В.
  3. Расчитать значение Vcc основываясь на измерении 1.1 В по формуле:

Vcc * (Показания АЦП) / 1023 = 1.1 В

Из чего следует:

Vcc = 1,1 В * 1023 / (Показания АЦП)

Собираем все вместе и получаем код:

long readVcc() { // Read 1.1V reference against AVcc // set the reference to Vcc and the measurement to the internal 1.1V reference #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) ADMUX = _BV(MUX5) | _BV(MUX0); #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__) ADMUX = _BV(MUX3) | _BV(MUX2); #else ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); #endif delay(75); // Wait for Vref to settle ADCSRA |= _BV(ADSC); // Start conversion while (bit_is_set(ADCSRA,ADSC)); // measuring uint8_t low = ADCL; // must read ADCL first - it then locks ADCH uint8_t high = ADCH; // unlocks both long result = (high<<8) | low; result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000 return result; // Vcc in millivolts }

Использование

Проверка напряжения Vcc или батареи

Вы можете назвать эту функцию – readVcc(), если Вы хотите мониторить Vcc. Примером может служить для проверка уровня заряда батареи. Вы также можете использовать её для определения подключены ли Вы к источнику питания или работаете от батареи.

Измерение Vcc для опорного напряжения

Вы также можете использовать её, чтобы получить правильное значение Vcc для использования с analogRead (), когда вы используете опорное напряжение (Vcc). Пока Вы не используете стабилизированный источник питания, Вы не можете быть уверенны, что Vcc = 5.0 вольт. Эта функция позволяет получить правильное значение. Хотя есть один нюанс….

В одной из статей я сделал заявление, что эта функция может использоваться, чтобы улучшить точность аналоговых измерений в тех случаях, когда Vcc было не совсем 5.0 вольт. К сожалению, эта процедура не будет давать точный результат. Почему? Это зависит от точности внутреннего источника опорного напряжения. Спецификация дает номинальное напряжение 1.1 вольт, но говорится, что оно может отличаться до 10%. Такие измерения могут быть менее точными, чем наш источник питания Arduino!

Повышаем точность

Пока большие допуски внутреннего источника питания 1.1 В. значительно ограничивают точность измерений при использовании в серийном производстве, для индивидуальных проэктов мы можем добиться большей точности. Сделать это просто, просто измерив Vcc с помощью вольтметра и нашей функции readVcc(). Далее заменяем константу 1125300L новой переменной:

scale_constant = internal1.1Ref * 1023 * 1000

internal1.1Ref = 1.1 * Vcc1 (показания_вольтметра) / Vcc2 (показания_функции_readVcc())

Это калиброванное значение будет хорошим показателем для измерений AVR чипом, но может зависеть от изменений температуры. Не стесняйтесь экспериментировать с вашим собственным измерениям.

Вывод

С этой маленькой функцией можно сделать многее. Вы можете использовать стабильное опорное напряжение близкое к 5.0 В не имея на самом деле 5.0 В на Vcc. Вы можете измерять напряжение вашей батареи или даже увидеть на каком вы питание от батареи или от стационарного источника питания.

И наконец, код будет поддерживать все Arduino, включая новый Leonardo, а также чипы ATtinyX4 и ATtinyX5 серий.

В этой статье показано как связать Arduino и ПК и передавать на ПК данные с АЦП. Программа для Windows написана с использованием Visual C++ 2008 Express. Программа вольтметра очень проста и имеет обширное поле для улучшений. Основной её целью было показать работу с COM-портом и обмен данными между компьютером и Arduino.

Связь между Arduino и ПК:

  • Снятие показаний с АЦП начинается, когда компьютер посылает Arduino команды 0xAC и 0x1y. у – номер канала АЦП (0-2);
  • Снятие показаний прекращается после получения Arduino команд 0xAC и 0×00;
  • Во время снятия показаний Arduino раз в 50 мс посылает компьютеру команды 0xAB 0xaa 0xbb, где aa и bb максимальные и минимальные результаты измерения.

Программа для Arduino

Подробнее о последовательной связи Вы можете прочесть на arduino.cc. Программа достаточно проста, большую её часть занимает работа с параллельным портом. После окончания снятия данных с АЦП мы получаем 10 битное значение напряжения (0×0000 – 0×0400) в виде 16-битных переменных (INT). Последовательный порт (RS-232) позволяет передавать данные в пакетах по 8 бит. Необходимо разделить 16-битные переменные на 2 части по 8 бит.

Serial.print(voltage>>8,BYTE);

Serial.print(voltage%256,BYTE);

Мы смещаем байты переменной на 8 бит вправо и потом делим на 256 и результат отправляем на компьютер.

Полный исходник ПО для Arduino вы можете скачать

Visual C++

Я предполагаю, что у Вас уже есть базовые знания в области программирования на C + + для Windows, если нет, то используйте Google. Интернет полон уроков для начинающих.

Первое, что нужно сделать, это добавить последовательный порт из панели инструментов в нижнюю форму. Это позволит изменить некоторые важные параметры последовательного порта: имя порта, скорость передачи данных, битность. Это полезно для добавления элементов управления в окно приложения, для изменения этих настроек в любое время, без перекомпиляции программы. Я использовал только возможность выбора порта.

После поиска доступных последовательных портов первый порт выбирается по умолчанию. Как это сделано:

array< String ^>^ serialPorts = nullptr;

serialPorts = serialPort1->GetPortNames();

this->comboBox1->Items->AddRange(serialPorts);

this->comboBox1->SelectedIndex=0;

Последовательный порт на ПК может быть использован только одним приложением одновременно, так что порт должен быть открыт перед использованием и не закрываться. Простые команды для этого:

serialPort1->Open();

serialPort1->Close();

Для правильного чтения данных из последовательного порта необходимо использовать события (в нашем случае прерывание). Выберите тип события:

Раскрывающийся список при двойном нажатии "DataReceived".

Код события генерируется автоматически:

Если первый байт прибывший по последовательному порту 0xAB, если это означает, что остальные байты несут данные о напряжении.

private: System::Void serialPort1_DataReceived(System::Object^ sender, System::IO::Ports::SerialDataReceivedEventArgs^ e) {

unsigned char data0, data1;

if (serialPort1->ReadByte()==0xAB) {

data0=serialPort1->ReadByte();

data1=serialPort1->ReadByte();

voltage=Math::Round((float(data0*256+data1)/1024*5.00),2);

data_count++;

serialPort1->ReadByte();

Запись и чтение данных последовательного порта

Для меня небольшой проблемой было послать шестнадцатиричные RAW-данные через последовательный порт. Была использованна команда Write(); но с тремя аргументами: массив, номер стартового байта, кол-во байтов для записи.

private: System::Void button2_Click_1(System::Object^ sender, System::EventArgs^ e) {

unsigned char channel=0;

channel=this->listBox1->SelectedIndex;

array^start ={0xAC,(0x10+channel)};

array^stop ={0xAC,0x00};

serialPort1->Write(start,0,2);

this->button2->Text="Stop";

} else {

serialPort1->Write(stop,0,2);

this->button2->Text="Start";

На этом все!

Оригинал статьи на английском языке (перевод: Александр Касьянов для сайта cxem.net)



Загрузка...