sonyps4.ru

Применение вейвлет преобразований. К.А.Алексеев

На практике DTWS должно применяться к сигналам конечной длины. Таким образом, его необходимо модифицировать, чтобы из сигнала какой-то длины получать последовательность коэффициентов той же длины. Получившееся преобразование называется дискретное вейвлет-преобразование (DWT).

Вначале опишем DWT в матричном виде, а затем – на основе банков фильтров, что наиболее часто используется при обработке сигналов.

В обоих случаях мы предполагаем, что базисные функции и
компактно определены. Это автоматически гарантирует финитность последовательностейи. Далее предположим, что сигнал, подвергаемый преобразованию, имеет длину
.

      1. Матричное описание dwt

Обозначим через вектор последовательность конечной длиныдля некоторого. Этот вектор преобразуется в вектор
, содержащий последовательности
и
, каждая из которых половинной длины. Преобразование может быть записано в виде матричного умножения
, где матрица
- квадратная и состоит из нулей и элементов, умноженных на
. В силу свойств, полученных в разделе 2.3, матрица
является ортонормированной, и обратная ей матрица равна транспонированной. В качестве иллюстрации рассмотрим следующий пример. Возьмем фильтр длиной
, последовательность длиной
, а в качестве начального значения -
. Последовательностьполучим изпо формуле (2.35), где
. Тогда операция матрично-векторного умножения будет представлена в виде

. (2.52)

Обратное преобразование есть умножение
на обратную матрицу
:

. (2.53)

Таким образом, выражение (2.51) - это один шаг DWT. Полное DWT заключается в итеративном умножении верхней половины вектора
на квадратную матрицу
, размер которой
. Эта процедура может повторятьсяd раз, пока длина вектора не станет равна 1.

В четвертой и восьмой строках матрицы (2.51) последовательность циркулярно сдвинута: коэффициенты, выходящие за пределы матрицы справа, помещены в ту же строку слева. Это означает, чтоDWT есть точно один период длины N DTWS сигнала , получаемого путем бесконечного периодического продолжения. Так чтоDWT, будучи определенным таким образом, использует периодичность сигнала, как и в случае с DFT.

Матричное описание DWT кратко и ясно. Однако при обработке сигналов DWT чаще всего описывается посредством блок-диаграммы, аналогичной диаграмме системы анализа-синтеза (см. рис.1.1).

      1. Описание dwt посредством блоков фильтров

Рассматривая в главе 1 субполосные преобразования, мы интерпретировали равенства, аналогичные (2.45) и (2.46), как фильтрацию с последующим прореживанием в два раза. Так как в данном случае имеется два фильтра и, то банк фильтров – двухполосный и может быть изображен, как показано на рис.2.5.

Фильтры F и E означают фильтрацию фильтрами и
, соответственно. В нижней ветви схемы выполняется низкочастотная фильтрация. В результате получается некоторая аппроксимация сигнала, лишенная деталей низкочастотная (НЧ) субполоса. В верхней части схемы выделяется высокочастотная (ВЧ) субполоса. Отметим, что при обработке сигналов константа
всегда выносится из банка фильтров и сигнал домножается на 2 (см. рис.3.2, глава 3).

Итак, схема рис.2.5 делит сигнал уровня
на два сигнала уровня
. Далее, вейвлет-преобразование получается путем рекурсивного применения данной схемы к НЧ части. При осуществлении вейвлет-преобразования изображения каждая итерация алгоритма выполняется вначале к строкам, затем – к столбцам изображения (строится так называемая пирамида Маллата). В видеокодеках ADV6xx применена модифицированная пирамида Маллата, когда на каждой итерации не обязательно выполняется преобразование и по строкам, и по столбцам. Это сделано для более полного учета зрительного восприятия человека.

Получившееся преобразование аналогично (2.51). Однако существуют некоторые различия. При фильтрации сигнала конечной длины мы сталкиваемся с проблемой его продолжения на границе. Матричное выполнение DWT эквивалентно периодическому продолжению сигнала на границе. Этот тип продолжения является обязательным для ортогональных фильтров. В случае применения биортогональных фильтров появляются некоторые другие возможности в силу симметричности их характеристик. Подробнее этот вопрос будет рассматриваться в главе 3.

Схему, выполняющую DWT, можно представить еще и как показано на рис.2.6. Здесь рекурсивная фильтрация и прореживание заменены одной операцией фильтрации и одной операцией прореживания на каждую субполосу. Определение итерационных фильтров илегче всего дать в частотной области.

Дискретные вейвлет-преобразования.

6.3.3.1. Общие сведения о вейвлет-преобразованиях.

Вейвлетное преобразование сигналов является обобщением спектрального анализа, типичный представитель которого – классическое преобразование Фурье.

Вейвлет-преобразования (WT) подразделяют на дискретное (DWT) и непрерывное (CWT). DWT используется для преобразований и кодирования сигналов, CWT – для анализа сигналов.

В вейвлет-анализе роль базисных функций играют функции особого рода, называемые вейвлетами. Термин «вейвлет» (wavelet) в переводе с английского означает «маленькая (короткая) волна». Вейвлеты – это обобщенное название семейств дтематических функций определенной формы, которые локальны во времени и по частоте, и в которых все функции получаются из одной базовой (порождающей) функции посредством ее сдвигов и растяжений по оси времени.

Вейвлет-преобразования рассматривают анализируемые временные функции в терминах колебаний, локализованных по времени и частоте.

Отличительной особенностью вейвлет-анализа является то, что в нем можно использовать семейства функций, реализующих различные варианты соотношения неопределенности. Соответственно, исследователь имеет возможность гибкого выбора между ними и применения тех вейвлетных функций, которые наиболее эффективно решают поставленные задачи.

Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени, когда результаты анализа должны содержать не только частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения о локальных координатах, на которых проявляют себя те или иные группы частотных составляющих или на которых происходят быстрые изменения частотных составляющих сигнала.

На рисунке 3.1 анализируемый сигнал состоит из двух модулированных деесианов. Преобразование вейвлетом Морлета четко показывает их пространственную и частотную локализацию, в то время как спектр Фурье дает только частотную локализацию.

Одна из главных и особенно плодотворных идей вейвлетного представления сигналов заключается в разделении функций приближения к сигналу на две группы: аппроксимирующую – грубую, с достаточно медленной временной динамикой изменений, и детализирующую – с локальной и быстрой динамикой изменений на фоне плавной динамики, с последующим их дроблением и детализацией на других уровнях декомпозиции сигналов. Это возможно как во временной, так и в частотной областях представления сигналов вейвлетами.

Рисунок

Рисунок 3.1 – вейвлет-преобразование сигнала

6.3.3.2. Базисные функции вейвлет-преобразований.

Вейвлеты имеют вид коротких волновых пакетов с нулевым средним дееюнем, локализованных по оси аргументов, инвариантных к сдвигу и линейных к операции масштабирования. По локализации во временном и частотном представлении вейвлеты занимают промежуточное положение между гармоническими функциями, локализованными по частоте, и функцией Дирака, локализованной во времени.

Базисная функция вейвлет представляет собой некоторое «короткое» колебание. Причем понятие частоты спектрального анализа заменено масштабом, и для перекрытия «короткими волнами» всей временной оси введен сдвиг функций во времени. Базис вейвлетов – это временные функции типа:

, (3.1)

где b – сдвиг;

а – масштаб.

Функция должна иметь нулевую площадь. Фурье-преобразование таких функций равно нулю на нулевой частоте и имеет вид полосового фильтра. Различные значениях масштабного параметра "a" это соответствуют набору полосовых фильтров. Семейства вейвлетов во временной или частотной области используются для представления сигналов и функций в виде суперпозиций вейвлетов на разных масштабных уровнях декомпозиции (разложения) сигналов.

Следующая функция

не зависит от параметров и . Вектор, заданный функцией , имеет постоянную длину в пространстве:

.

На практике, в качестве базовой функции часто используют функцию

называемую мексиканской шляпой.

6.3.3.3. Непрерывное вейвлет-преобразование.

Пусть имеется функция и некоторая функция - базисная функция. Непрерывное вейвлет-преобразование описывается выражением вида:

. (3.2)

Если базисная функция описывается выражением:

,

то в результате имеется обычное преобразование Фурье (в этом случае параметр не используется).

Для перекрытия функцией вейвлета всей временной оси пространства используется операция сдвига (смещения по временной оси): , где значение b для НВП является величиной непрерывной. Для перекрытия всего частотного диапазона используется операция временного масштабирования вейвлета с непрерывным изменением независимой переменной: . Таким образом, путем сдвига по независимой переменной (t-b) вейвлет имеет возможность перемещаться по всей числовой оси произвольного сигнала, а путем изменения масштабной переменной "а" (в фиксированной точке (t-b) оси) «просматривать» частотный спектр сигнала по определенному интервалу окрестностей этой точки.

Таким образом, непрерывное вейвлет-преобразование представляет собой разложение сигнала по всем возможным сдвигам и сжатиям/растяжениям некоторой локализованной финитной функции – вейвлета. При этом переменная "a" определяет масштаб вейвлета и эквивалентна частоте в преобразованиях Фурье, а переменная "b" – сдвиг вейвлета по сигналу от начальной точки в области его определения, шкала которого повторяет временную шкалу анализируемого сигнала.

Понятие масштаба ВП имеет аналогию с масштабом географических карт. Большие значения масштаба соответствуют глобальному представлению сигнала, а низкие значения масштаба позволяют различить детали. В терминах частоты низкие частоты соответствуют глобальной информации о сигнале, а высокие частоты – детальной информации и особенностям, которые имеют малую протяженность, т.е. масштаб вейвлета, как единица шкалы частотно-временного представления сигналов, обратен частоте. Масштабирование, как математическая операция, расширяет или сжимает сигнал. Большие значения масштабов соответствуют расширениям сигнала, а малые значения – сжатым версиям. В определении вейвлета коэффициент масштаба а стоит в знаменателе. Соответственно, а > 1 расширяет сигнал, а < 1 сжимает его.

6.3.3.4. Дискретное вейвлет-преобразование.



В принципе, при обработке данных на ПК может выполняться дискретизированная версия непрерывного вейвлет-преобразования с заданием дискретных значений параметров (a, b) вейвлетов с произвольным шагом a и b. В результате получается избыточное количество коэффициентов, намного превосходящее число отсчетов исходного сигнала, которое не требуется для реконструкции сигналов.

Дискретное вейвлет-преобразование (ДВП) обеспечивает достаточно информации, как для анализа сигнала, так и для его синтеза, являясь вместе с тем экономным по числу операций и по требуемой памяти. ДВП оперирует с дискретными значениями параметров а и b , которые задаются, как правило, в виде степенных функций:

,

,

где ;

Целые числа;

Параметр масштаба;

Параметр сдвига.

Базис пространства в дискретном представлении:

Вейвлет-коэффициенты прямого преобразования:

. (3.5)

Значение "a" может быть произвольным, но обычно принимается равным 2, при этом преобразование называется диадным вейвлет-преобразованием . Для диадного преобразования разработан быстрый алгоритм вычислений, аналогичный быстрому преобразованию Фурье, что предопределило его широкое использование при анализе массивов цифровых данных.

Обратное дискретное преобразование для непрерывных сигналов при нормированном ортогональном вейвлетном базисе пространства:

. (3.6)

Число использованных вейвлетов по масштабному коэффициенту m задает уровень декомпозиции сигнала, при этом за нулевой уровень (m = 0) обычно принимается уровень максимального временного разрешения сигнала, т.е. сам сигнал, а последующие уровни (m < 0) образуют ниспадающее вейвлет-дерево . В программном обеспечении вычислений для исключения использования отрицательной нумерации по m знак "минус" обычно переносится непосредственно в следующее представление базисных функций:

6.3.3.5. Частотно-временная локализация вейвлет-анализа.

Реальные сигналы, как правило, конечны. Частотный спектр сигналов обратно пропорционален их длительности. Соответственно, достаточно точный низкочастотный анализ сигнала должен производиться на больших интервалах его задания, а высокочастотный – на малых. Если частотный состав сигнала претерпевает существенные изменения на интервале его задания, то преобразование Фурье дает только усредненные данные частотного состава сигнала с постоянным частотным разрешением. Определенная частотно-временная локализация анализа создается дееюниием оконного преобразования Фурье, что дает семейства частотных спектров, локализованных во времени, но в пределах постоянной ширины окна оконной функции, а, следовательно, также с постоянным значением и частотного, и временного разрешения.

В отличие от оконного преобразования Фурье, вейвлет-преобразование, при аналогичных дискретных значениях сдвигов b, дает семейства спектров масштабных коэффициентов а сжатия-растяжения:

. (3.8)

Если считать, что каждый вейвлет имеет определенную «ширину» своего временного окна, которому соответствует определенная «средняя» частота спектрального образа вейвлета, обратная его масштабному коэффициенту а , то семейства масштабных коэффициентов вейвлет-преобразования можно считать аналогичными семействам частотных спектров оконного преобразования Фурье, но с одним принципиальным отличием. Масштабные коэффициенты изменяют «ширину» вейвлетов и, соответственно, «среднюю» частоту их фурье-образов, а, следовательно, каждой частоте соответствует своя длительность временного окна анализа, и наоборот. Так малые значения параметра а , характеризующие быстрые составляющие в сигналах, соответствуют высоким частотам, а большие значения – низким частотам. За счёт изменения масштаба вейвлеты способны выявлять различия на разных частотах, а за счёт сдвига (параметр b ) проанализировать свойства сигнала в разных точках на всём исследуемом временном интервале. Многоразмерное временное окно вейвлет-преобразования адаптировано для оптимального выявления и низкочастотных, и высокочастотных характеристики сигналов.

Таким образом, на высоких частотах лучше разрешение по времени, а на низких – по частоте. Для высокочастотной компоненты сигнала мы можем точнее указать ее временную позицию, а для низкочастотной – ее значение частоты.

Высокочастотная (мелкомасштабная) информация вычисляется на основе длых интервалов сигналов, а низкочастотная – на основе больших. Поскольку анализируемые сигналы всегда конечны, то при вычислении коэффициентов на границах задания сигнала область достоверности выходит за пределы сигнала, и для уменьшения погрешности вычислений сигнал дополняется заданием начальных и конечных условий.

6.3.3.6. Достоинства и недостатки вейвлет-анализа.

К достоинствам вейвлет-анализа можно отнести:

Вейвлетные преобразования обладают всеми достоинствами преобразований Фурье;

Вейвлетные базисы могут быть хорошо локализованными как по частоте, так и по времени;

При выделении в сигналах хорошо локализованных разномасштабных процессов можно рассматривать только те масштабные уровни разложения, которые представляют интерес;

Вейвлетные базисы, в отличие от преобразования Фурье, имеют много разнообразных базовых функций, свойства которых ориентированы на решение различных задач.

Недостатком вейвлетных преобразований является их относительная сложность.

6.3.3.7. Свойства вейвлет-анализа.

Получение объективной информации о сигнале базируется на свойствах вейвлет-преобразования, общих для вейвлетов всех типов. Рассмотрим основные из этих свойств. Для обозначения операции вейвлет-преобразования произвольных функций х(t) будем применять индекс TW.

Линейность .

TW[α·x 1 (t)+β·x 2 (t)] = α·TW+β·TW.

Инвариантность относительно сдвига . Сдвиг сигнала во времени на t 0 приводит к сдвигу вейвлет-спектра также на t 0:

TW = X(a, b-t o).

Инвариантность относительно масштабирования . Растяжение (сжатие) сигнала приводит к сжатию (растяжению) вейвлет-спектра сигнала:

TW = (1/а о)·X(a/а о,b/а o).

Дифференцирование .

D n {TW}/dt n = TW.

TW = (-1) n x(t) dt.

Безразлично, дифференцировать функцию или анализирующий вейвлет. Если деелизирующий вейвлет задан формулой, то это может быть очень полезным для деелиза сигналов. Проанализировать особенности высокого порядка или мелкомасштабные вариации сигнала x(t) с игнорированием крупномасштабных полиномиальных составляющих (тренда и регионального фона) можно дифференцированием нужного числа раз либо вейвлета, либо самого сигнала. Это свойство особенно полезно, когда сигнал задан дискретным рядом.

Аналог теоремы Парсеваля для ортогональных и биортогональных вейвлетов.

X 1 (t)·x 2 *(t) = X ψ -1 a -2 X(a,b) X*(a,b) da db.

Отсюда следует, что энергия сигнала может вычисляться через коэффициенты вейвлет-преобразования.

Основы цифровой обработки сигналов: учебное пособие / Ю.А. Брюханов, А.А. Приоров, В.И. Джиган, В.В. Хрящев; Яросл. Гос. ун-т им. П.Г. Демидова. – Ярославль: ЯрГУ, 2013. – 344 с. (с. 270)

12.3 Алгоритм дискретного вейвлет-преобразования

С целью построения алгоритма дискретного вейвлет-преобразования введем некоторые линейные преобразования. Прежде всего, обозначим для всех сумму чисел по модулю s следующим образом: , а также положим, что есть некоторый вектор, в котором s четно. Тогда вводимые преобразования положим имеющим вид:

,

для всех . Очевидно, данные выражения являют собой аналоги высокочастотного и низкочастотного фильтров (12.1), (12.2) с учетом периодического дополнения данных при помощи суммирования по модулю. Ясно, что преобразования , осуществляют разделение исходного вектора длиной s на два вектора половинной длины.

Итак, алгоритм вейвлет-преобразования сводится к реализации итеративной процедуры - и -преобразований, применяемых к вектору . Результатом таких преобразований служат векторы , коэффициентов аппроксимации и детализации.

Иначе говоря, рекурсивно данный алгоритм выглядит следующим образом:

, (12.12)
. (12.13)

Отметим, введенные обозначения для коэффициентов разложения являются весьма схожими с обозначениями коэффициентов , тогда как рекурсии (12.12), (12.13) - с каскадным алгоритмом. Дело в том, что построение алгоритма дискретного преобразования полностью основывается на теории дискретного преобразования в базисе вейвлет-функций (см. предыдущий параграф). Основным отличием здесь является то обстоятельство, что в статистических приложениях коэффициенты лишь приближенно соответствуют коэффициентам разложения .

Отметим, рекурсии (12.12), (12.13) могут см успехом применяться к расчету коэффициентов аппроксимации и детализации также для случаев : дело в том, что дополненные последовательности являются периодическими, причем

,

.

Алгоритм обратного дискетного преобразования сводится к реализации выражения (12.11) также при условии периодизации данных. Алгоритм начинается с восстановления векторов

,

и продолжается до восстановления вектора , пока не станет . Рекурсивное выражение для восстановления данных в этом случае имеет вид:

12.4 Статистический дискретный вейвлет-анализ

Разбиение данных

Итак, расчет вейвлет-оценок основывается на дискретном вейвлет-преобразовании, описанном выше. Как было показано, такой анализ подразумевает работу с данными, длина которых равна , где К - некоторое целое. Однако на практике длина исследуемых данных весьма часто оказывается не равной степени числа 2, в связи с чем возникает необходимость натяжения таких данных на эквидистантную сетку с числом узлов . Сказанное при этом является справедливым как для задач оценивания плотности распределения, так и для задач регрессионного сглаживания данных.

Процедуры деления данных на интервалы для оценивания плотности и регрессионного анализа введены в параграфах 10.2, 10.8 соответственно. В данном месте обсуждается эффект, вносимый подобным разбиением на качество синтезируемых оценок. Примеры, используемые для обсуждения эффекта, взяты из гл. 10, рис. 10.1 - 10.11.

Для взятых в качестве примера данных длиной исследован эффект деления на интервалы, состоящие из точек. Интегральные среднеквадратичные ошибки построения оценок приведены в таблице 12.1.

Таблица 12.1

Интегральные среднеквадратические ошибки

для интервалов разбиения различной длины

m

S8 жесткий

S8 мягкий

H жесткий

H мягкий

Как видно из таблицы, интегральная СКО достигает своего минимума при . График данной ошибки показан на рис. 12.1.

Несмотря на тот факт, что для подобных оценок можно определить оптимальный размер интервала, следует быть весьма осторожным в его статистической интерпретации. Дело в том, что разбиение данных на интервалы есть своего рода предварительное сглаживание, которое в теории достаточно часто в расчет не принимается. Очевидно, с ростом числа интервалов разбиения теряется большая часть вычислительной эффективности быстрого алгоритма. Точки, показывающие значения СКО на рис. 12.1 представляют собой компромисс между скоростью вычисления оценки и качеством предварительного сглаживания.

Приближенное построение вейвлет-оценок

Алгоритм реализации дискретного вейвлет-преобразования для целей построения статистических оценок (12.6) - (12.8) выглядит следующим образом:

Интегральная СКО, построенная для симмлета S8

Сделаем в данном месте несколько замечаний по поводу приведенного алгоритма. Во-первых, определение дискретного преобразования подразумевает использование данных, периодически дополняемых на каждом шаге алгоритма. Иначе говоря, данные представляют собой результат диадического суммирования, в котором исходные данные дополняются периодически на Z таким образом, что для .

Во-вторых, как было подчеркнуто ранее, верхний уровень разложения в приводимом алгоритме не участвует: на практике полагается , причем процедуры пороговой обработки применяют к коэффициентам разложения всех уровней за исключением уровня K , содержащего лишь коэффициенты аппроксимации. Однако если предполагается исключение коэффициентов разложения уровней, старших , как это сделано в примере с линейной вейвлет-оценкой, определение (12.6) дополняется условием:

.

Подобно (12.3) действия 1 - 3 алгоритма могут быть представлены в матричной форме. С этой целью вектор исследуемых данных обозначим через . Тогда прямое преобразование примет вид:

, (12.17)

в котором представляет собой оператор размерностью . Легко показать, что данный оператор является ортогональным, поскольку содержит произведения конечного числа ортогональных матриц-операторов, соответствующих различным шагам алгоритма Малла .

Пусть оператор обозначает процедуру трешолдинга вектора :

тогда как оператор обратного преобразования - , или в силу ортогональности . Следовательно, результат последовательного приложения действий 1 - 3, выражаемый вектором , может быть получен следующим образом:

В том случае, если решаемой задачей является построение линейной вейвлет-оценки и в качестве уровня принимается уровень , трешолдинг сводится к преобразованию идентичности, обеспечивающему в итоге . Дело в том, что сохранение коэффициентов разложения на каждом из уровней в данном случае позволяет итоговой оценке лишь повторить исходные данные.

Далее, алгоритм, представленный действиями 1 - 3, является общим правилом построения вейвлет-оценок. Отметим, данный алгоритм является более быстрым по сравнению с БПФ, поскольку требует выполнения лишь операций. Вообще говоря, алгоритм позволяет скорее строить аппроксимацию данных, нежели их оценку. Исключением здесь является разложение данных в базис Хаара. К сожалению, данный факт не обсуждается в литературе.

Остановимся на данном вопросе несколько подробнее. Рассмотрим с этой целью линейную оценку, положив для любых и k . Предположим также, что исходные данные удовлетворяют требованию:

. (12.18)

Известно, что рекурсии (12.9), (12.10) позволяют рассчитать оценки коэффициентов , тогда как выражения рекурсии (12.12), (12.13) - примерно те же коэффициенты в предположении, что исходные данные для рекурсии абсолютно те же. Однако в том случае, если требование (12.18) выполняется, исходные данные для (12.12), (12.13) в действии 3 алгоритма становятся отличными от аналогичных им данных обратной рекурсии (12.9), (12.10) на некоторый множитель . Следовательно, линейность алгоритма влечет за собой необходимость введения в прямое преобразование поправку:

,

.

Более того, поправке подвергается основное выражение для прямого преобразования:

, (12.19)

причем оператор приобретает вид:

Объединяя выражения (12.17) и (12.19), можно записать, что теперь

Появление недорогих цифровых фотоаппаратов привело к тому, что значительная часть жителей нашей планеты, вне зависимости от возраста и пола, приобрела привычку запечатлевать каждый свой шаг и выставлять полученные изображения на всеобщее обозрение в социальных сетях. Кроме того, если раньше семейный фотоархив помещался в одном альбоме, то сегодня он состоит из сотен снимков. Для того чтобы облегчить их хранение и передачу по сетям, требуется уменьшение веса цифрового изображения. С этой целью применяются методы, основанные на различных алгоритмах, включая вейвлет-преобразование. Что это такое, расскажет наша статья.

Что такое цифровое изображение

Визуальная информация в компьютере представляется в виде чисел. Говоря простым языком, фото, сделанное цифровым аппаратом, представляет собой таблицу, в ячейки которой вписаны значения цвета каждого из его пикселей. Если речь идет о монохромном изображении, то их заменяют значениями яркости из отрезка , где 0 используют для обозначения черного цвета, а 1 — белого. Остальные оттенки задаются дробными числами, но с ними неудобно работать, поэтому диапазон расширяют и значения выбирают из отрезка между 0 и 255. Почему именно из этого? Все просто! При таком выборе в двоичном представлении для кодирования яркости каждого пикселя требуется ровно 1 байт. Очевидно, что для хранения даже небольшого изображения требуется довольно много памяти. Например, фотография размером 256 х 256 пикселей займет 8 кБайт.

Несколько слов о методах сжатия изображений

Наверняка каждый видел снимки плохого качества, где присутствуют искажения в виде прямоугольников одного цвета, которые принято называть артефактами. Они возникают в результате так называемого сжатия с потерями. Оно позволяет значительно уменьшить вес изображения, однако неизбежно сказывается на его качестве.

К с потерями относятся:

  • JPEG. На данный момент это один из наиболее популярных алгоритмов. Он основан на применении дискретного косинусного преобразования. Справедливости ради нужно отметить, что существуют варианты JPEG, осуществляющие сжатие без потерь. К ним относятся Lossless JPEG и JPEG-LS.
  • JPEG 2000. Алгоритм используется на мобильных платформах и основан на применении дискретного вейвлет-преобразования.
  • Алгоритм фрактального сжатия. В некоторых случаях он позволяет получать изображения превосходного качества даже при сильном сжатии. Однако из-за проблем с патентованием этот метод продолжает оставаться экзотикой.

Без потерь сжатие осуществляют посредством алгоритмов:

  • RLE (используется в качестве основного метода в форматах TIFF, BMP, TGA).
  • LZW (применяется в формате GIF).
  • LZ-Huffman (используется для формата PNG).

Преобразование Фурье

Прежде чем перейти к рассмотрению вейвлетов, имеет смысл изучить связанную с ними функцию, описывающую коэффициенты при разложении исходной информации на элементарные составляющие, т. е. гармонические колебания с разными частотами. Иными словами, преобразование Фурье — уникальный инструмент, связывающий дискретные и непрерывные миры.

Оно выглядит так:

Формула обращения записывается следующим образом:

Что такое вейвлет

За этим названием скрывается математическая функция, которая позволяет проанализировать различные частотные компоненты исследуемых данных. Ее график представляет собой волнообразные колебания, амплитуда которых уменьшается до 0 вдали от начала координат. В общем случае интерес представляют вейвлет-коэффициенты, определяемые интегральным преобразованием сигнала.

Спектрограммы Wavelet отличаются от обычных спектров Фурье, так как связывают спектр различных особенностей сигналов с их временной компонентой.

Вейвлет-преобразование

Такой способ преобразования сигнала (функции) позволяет переводить его из временного в частотно-временное представление.

Для того чтобы вейвлет-преобразование было возможно, для соответствующей вейвлет-функции должны выполняться следующие условия:

  • Если для некой функции ψ (t) Фурье-преобразование имеет вид

то должно выполняться условие:

Кроме того:

  • вейвлет должен обладать конечной энергией;
  • он должен быть интегрируемым, непрерывным и иметь компактный носитель;
  • вейвлет должен быть локализованным как по частоте, так и во времени (в пространстве).

Виды

Непрерывное вейвлет-преобразование используется для соответствующих сигналов. Гораздо больший интерес представляет его дискретный аналог. Ведь он может использоваться для обработки информации в компьютерах. Однако при этом возникает проблема, связанная с тем, что формулы для дискретного ДВП нельзя получить путем простой дискретизацией соответствующих формул ДНП.

Решение данной задачи было найдено И. Добеши, который смог подобрать метод, позволяющий построить серию таких ортогональных вейвлетов, из которых каждый определяется конечным числом коэффициентов. Позже были созданы быстрые алгоритмы, например алгоритм Малла. При его применении для разложения или для восстановления требуется совершить порядка cN операций, где N - длина выборки, а с - число коэффициентов.

Вайвлет Хаара

Для того чтобы следует найти определенную закономерность среди его данных, а еще лучше, если это будут длинные цепочки нулей. Вот тут-то может пригодиться алгоритм вейвлет-преобразования. Однако продолжим рассмотрение метода по порядку.

Сначала нужно вспомнить, что у фотографий яркость соседних пикселей, как правило, отличается на небольшую величину. Если даже на реальных изображениях присутствуют участки с резкими, контрастными перепадами яркости, то они занимают только малую часть изображения. В качестве примера возьмем всем известное тестовое изображение Lenna в градациях серого. Если взять матрицу яркости его пикселей, то часть первой строки будет выглядеть как последовательность чисел 154, 155, 156, 157, 157, 157, 158, 156.

Для получения нулей к ней можно применить так называемый дельта-метод. Для этого сохраняют только первое число, а для остальных берут лишь отличия каждого числа от предыдущего со знаком «+» или «-».

В результате получится последовательность: 154,1,1,1,0,0,1,-2.

Недостатком дельта-кодирования является его нелокальность. Иными словами, невозможно брать только кусочек последовательности и выяснить, какие яркости в нем закодированы, если не декодированы все значения перед ним.

Для преодоления этого недостатка числа делят на пары и для каждой находят полусумму (об. a) и полуразность (об. d), т. е. для (154,155),(156,157),(157,157),(158,156) имеем (154.5,0.5),(156.5,0.5),(157,0.0),(157,-1.0). В таком случае в любой момент можно найти значение обоих чисел в паре.

В общем случае для дискретного вейвлет-преобразования сигнала S имеем:

Такой дискретный метод вытекает из непрерывного случая вейвлет-преобразования-Хаара и широко используется в разных областях обработки и сжатия информации.

Сжатие

Как уже было сказано, одной из сфер применения вейвлет-преобразования является алгоритм JPEG 2000. Сжатие с использованием метода Хаара основано на переводе вектора из двух пикселей X и Y в вектор (X + Y)/2 и (X - Y)/2. Для этого достаточно умножить исходный вектор на матрицу, представленную ниже.

Если точек больше, то берут матрицу побольше, по диагонали которой расположены матрицы H. Таким образом, исходный вектор независимо от своей длины обрабатывается парами.

Фильтры

Полученные «полусуммы» — это средние значения яркости в парах пикселей. То есть значения при конвертации в изображение должно дать его копию, уменьшенную в 2 раза. При этом полусуммы усредняют яркости, т. е. «отфильтровывают» случайные всплески их значений и играют роль частотных фильтров.

Теперь разберемся с тем, что показывают разности. Они «выделяют» межпиксельные «всплески», устраняя константную составляющую, т. е. «отфильтровывают» значения с низкими частотами.

Даже из приведенного выше хааровского вейвлет-преобразование для «чайников» становится очевидно, что оно представляет собой пару фильтров, которые разделяют сигнал на две составляющие: высокочастотную и низкочастотную. Для получения исходного сигнала достаточно просто вновь объединить эти составляющие.

Пример

Пусть мы хотим сжать фотопортрет (тестовое изображение Lenna). Рассмотрим пример вейвлет-преобразования его матрицы яркостей пикселов. Высокочастотная составляющая изображения отвечает за отображение мелких деталей и описывает шум. Что касается низкочастотной, то она несет в себе информацию о форме лица и плавных перепадах яркости.

Особенности человеческого восприятия фотографий таковы, что важнее последняя компонента. Это значит, что при сжатии определенная часть высокочастотных данных может быть отброшена. Тем более что она имеет меньшие значения и кодируется более компактно.

Для увеличения степени сжатия можно применить преобразование Хаара несколько раз к низкочастотным данным.

Применение к двумерным массивам

Как уже было сказано, цифровое изображение в компьютере представляют в виде матрицы значений интенсивностей его пикселей. Таким образом, нас должно интересовать хааровское двумерное вейвлет-преобразование. Для его осуществления необходимо просто выполнить одномерное его преобразование для каждой строки и каждого столбца матрицы интенсивностей пикселов изображения.

Значения, близкие к нулю, можно отбросить без существенного ущерба для декодированного рисунка. Такой процесс известен как квантование. И именно на этом этапе теряется часть информации. Кстати, число обнуляемых коэффициентов возможно изменять, тем самым регулируя степень сжатия.

Все описанные действия приводят к тому, что получается матрица, которая содержит большое количество 0. Ее следует записать построчно в текстовый файл и сжать любым архиватором.

Декодирование

Обратное преобразование в изображение производится по следующему алгоритму:

  • архив распаковывается;
  • применяется обратное преобразование Хаара;
  • декодированная матрица преобразуется в изображение.

Преимущества по сравнению с JPEG

При рассмотрении алгоритма Joint Photographic Experts Group было сказано, что он основан на ДКП. Такое преобразование осуществляется поблочно (8 х 8 пикселей). В результате, если сжатие сильное, то на восстановленном изображении становится заметной блочная структура. При сжатии с использованием вейвлетов такая проблема отсутствует. Однако могут появиться искажения другого типа, которые имеют вид ряби около резких границ. Считается, что подобные артефакты в среднем менее заметны, чем «квадратики», которые создаются при применении алгоритма JPEG.

Теперь вы знаете, что такое вейвлеты, какими они бывают и какое практическое применение для них нашлось в сфере обработки и сжатия цифровых изображений.

Известно, что произвольный сигнал , для которого выполняется условие может быть представлен ортогональной системой функций :

, (18)

коэффициенты определяются из соотношения

,

где - квадрат нормы или энергия базисной функции . Ряд (18) называется обобщенным рядом Фурье. При этом произведения вида , входящие в ряд (18), представляют собой спектральную плотность сигнала , а коэффициенты - спектр сигнала. Суть спектрального анализа сигнала состоит в определении коэффициентов . Зная эти коэффициенты возможен синтез (аппроксимация) сигналов при фиксированном числе ряда:

.

Обобщенный ряд Фурье при заданной системе базисных функций и числе слагаемых он обеспечивает наилучший синтез по критерию минимума среднеквадратической ошибки , под которой понимается величина

.

Известные преобразования (Адамара, Карунена-Лоэва, Фурье) «плохо» представляют нестационарный сигнал в коэффициентах разложения. Покажем это на следующем примере. Пусть дана нестационарная функция

и ее преобразование Фурье (рис. 9).

Анализ рис. 9 показывает, что нестационарность временного сигнала представляется большим числом высокочастотных коэффициентов отличных от нуля. При этом возникают следующие проблемы:

Сложно провести анализ временного сигнала по его Фурье образу;

Приемлемая аппроксимация временного сигнала возможна при учете большого числа высокочастотных коэффициентов;

Плохое визуальное качество реальных изображений восстановленных по низкочастотным коэффициентам; и т.п.

Существующие проблемы обусловили необходимость разработки математического аппарата преобразования нестационарных сигналов. Одним из возможных путей анализа таких сигналов стало вейвлет-преобразование (ВП).

Рис. 9. Преобразование Фурье синусоидального сигнала с небольшими ступеньками при переходе через нуль

ВП одномерного сигнала – это его представление в виде обобщенного ряда Фурье или интеграла Фурье по системе базисных функций локализованных как в пространственной, так и в частотной областях. Примером такой базисной функции может служить вейвлет Хаара, который определяется выражением

(20)

Графически вейвлет Хаара представляется следующим образом:

Рис. 10. Базисная функция вейвлета Хаара

Рассмотрим процесс разложения сигнала в системе базисных функций Хаара. Первая базисная функция, в отличие от всех последующих, представляет собой прямую линию. В случае нормированного базиса , свертка первой базисной функции с исходным сигналом будет определять его среднее значение. Пусть дан дискретный сигнал длиной отсчетов. Нормированная базисная функция на интервале описывается выражением . Тогда свертка данной функции с сигналом приводит к выражению

Если выполнить синтез сигнала по коэффициенту с помощью синтезирующей функции , получим постоянную составляющую, соответствующую среднему значению сигнала. Для того чтобы иметь возможность более детально описать сигнал, вычислим второй коэффициент с помощью базисной функции, представленной выражением (20):

Анализ данного выражения показывает, что коэффициент характеризует разности средних значений половинок сигнала . Если теперь выполнить синтез по двум коэффициентам с синтезирующей базисной функцией для второго коэффициента

получим следующую аппроксимацию:

Дальнейшая операция анализа, т.е вычисления коэффициентов и синтеза аналогична рассмотренной, с той разницей, что все действия повторяются для половинок сигнала, затем для четверти, и т.д. На самой последней итерации анализ осуществляется для пар случайных величин (рис 11).

Рис. 11. Преобразование пар случайных величин

В результате исходный сигнал точно описывается коэффициентами вейвлет-преобразования Хаара. Вейвлет-коэффициенты сигнала (19) показаны на рис. 10.

Из приведенного рисунка видно, что нестационарности сигнала (резкие перепады) локализуются в малом числе вейвлет-коэффициентов. Это приводит к возможности лучшего восстановления нестационарного сигнала по неполным данным.

Рис. 12. Вейвлет-коэффициенты одного периода функции (19)

При вычислении вейвлет-коэффициентов базисные функции покрывали анализируемый сигнал следующим образом (рис. 12). Из рис. 12 видно, что система базисных функций Хаара в дискретном пространстве должна задаваться двумя параметрами: сдвига и частоты (масштаба):

,

где - масштаб базисной функции; - сдвиг. В дискретном случае параметр масштаба , где - любое целое положительное число, параметр сдвига . Таким образом, все множество базисных функций можно записать как

.

Прямое и обратное дискретные ВП вычисляются по формулам

,

.

Следует отметить, что если число отсчетов , то максимальное значение равно . Наибольшее значение для текущего равно .

Для непрерывных сигналов будут справедливы следующие интегральные выражения:

,

.

Таким образом, задавая вейвлет-функции, можно выполнять разложение сигнала по вейвлет-базису непрерывных или дискретных сигналов.

Рис. 13. Распределение базисных функций Хаара при анализе сигнала

Функция может образовывать вейвлет-базис, если она удовлетворяет следующим условиям:

1. Ограниченность нормы:

.

2. Вейвлет-функция должна быть ограничена и по времени и по частоте:

и , при .

Контрпример: дельта-функция и гармоническая функция не удовлетворяют данному условию.

3. Нулевое среднее:

Если обобщить данное условие, то можно получить формулу , которая определяет степень гладкости функции . Считается, что чем выше степень гладкости базисной функции, тем лучше ее аппроксимационные свойства.

В качестве примера приведем следующие известные вейвлет-функции:

, .

Для ВП, также как и для ДПФ существует алгоритм быстрого преобразования. Рассмотрим снова ВП Хаара. Из рис. 13 видно, что функции с малым масштабным коэффициентом используют те же отсчеты сигнала для вычисления коэффициентов, что и функции с большим масштабным коэффициентом. При этом операция суммирования одних и тех же отсчетов повторяется неоднократно. Следовательно, для уменьшения объема вычислений целесообразно вычислять ВП с самого малого масштабного коэффициента. В результате получаем вейвлет-коэффициенты, представляющие собой средние значения и разности . Для коэффициентов повторяем данную процедуру. При этом усреднение коэффициентов будет соответствовать усреднению четырех отсчетов сигнала, но при этом расходуется одна операция умножения и одна операция сложения. Процесс разложения повторяется до тех пор, пока не будут вычислены все коэффициенты спектра .

Запишем алгоритм быстрого вейвлет-преобразования Хаара в матричном виде. Пусть дан вектор размером 8 элементов. Матрица преобразования Хаара запишется в виде



Загрузка...