sonyps4.ru

Математическая модель дискретного канала связи презентация. Модели дискретных каналов связи михаил владимирович марков

Дискретным каналом называют совокупность средств, предназначенных для передачи дискретных сигналов. Такие каналы широко используются, например, при передаче данных, в телеграфии, радиолокации.

Дискретные сообщения, состоящие из последовательности знаков алфавита источника сообщений (первичного алфавита) , преобразуются в кодирующем устройстве в последовательности символов. Объем m алфавита символов (вторичного алфавита) , как правило, меньше объема l алфавита знаков, но они могут и совпадать.

Материальным воплощением символа является элементарный сигнал, получаемый в процессе манипуляции - дискретного изменения определенного параметра переносчика информации. Элементарные сигналы формируются с учетом физических ограничений, накладываемых конкретной линией связи. В результате манипуляции каждой последовательности символов ставится в соответствие сложный сигнал. Множество сложных сигналов конечно. Они различаются числом, составом и взаимным расположением элементарных сигналов.

Термины «элементарный сигнал» и «символ», так же как «сложный сигнал» и «последовательность символов», в дальнейшем будут использоваться как синонимы.

Информационная модель канала с помехами задается множеством символов на его входе и выходе и описанием вероятностных свойств передачи отдельных символов. В общем случае канал может иметь множество состояний и переходить из одного состояния в другое как с течением времени, так и в зависимости от последовательности передаваемых символов.

В каждом состоянии канал характеризуется матрицей условных вероятностей?() того, что переданный символ u i будет воспринят на выходе как символ? j . Значения вероятностей в реальных каналах зависят от многих различных факторов: свойств сигналов, являющихся физическими носителями символов (энергия, вид модуляции и т.д.), характера и интенсивности воздействующих на канал помех, способа определения сигнала на приемной стороне.

При наличии зависимости переходных вероятностей канала от времени, что характерно практически для всех реальных каналов, он называется нестационарным каналом связи. Если эта зависимость несущественна, используется модель в виде стационарного канала, переходные вероятности которого не зависят от времени. Нестационарный канал может быть представлен рядом стационарных каналов, соответствующих различным интервалам времени.

Канал называется с «памятью » (с последействием), если переходные вероятности в данном состоянии канала зависят от его предыдущих состояний. Если переходные вероятности постоянны, т.е. канал имеет только одно состояние, он называется стационарным каналом без памяти . Подk-ичным каналом подразумевается канал связи, у которого число различных символов на входе и выходе одинаково и равноk.

Стационарный дискретный двоичный канал без памяти однозначно определяется четырьмя условными вероятностями: р(0/0), р(1/0), р(0/1), р(1/1). Такую модель канала принято изображать в виде графа, представленного на рис. 4.2, где р(0/0) и р(1/1) - вероятности неискаженной передачи символов, а р(0/1) и р(1/0) - вероятности искажения (трансформация) символов 0 и 1 соответственно.

Если вероятности искажения символов можно принять равными, т. е. то такой канал называют двоичным симметричным каналом [при р(0/1)р(1/0) канал называется несимметричным ]. Символы на его выходе правильно принимают с вероятностью? и неправильно - с вероятностью 1-p = q. Математическая модель упрощается.

Именно этот канал исследовался наиболее интенсивно не столько в силу своей практической значимости (многие реальные каналы описываются им весьма приближенно), сколько в силу простоты математического описания.

Важнейшие результаты, полученные для двоичного симметрического канала, распространены на более широкие классы каналов.


Следует отметить еще одну модель канала, которая в последнее время приобретает все большее значение. Это дискретный канал со стиранием. Для него характерно, что алфавит выходных символов отличается от алфавита входных символов. На входе, как и ранее, символы 0 и 1, а на выходе канала фиксируются состояния, при которых сигнал с равным основанием может быть отнесен как к единице, так и к нулю. На месте такого символа не ставится ни нуль, ни единица: состояние отмечается дополнительным символом стиранияS. При декодировании значительно легче исправить такие символы, чем ошибочно определенные.

На рис. 4 3 приведены модели стирающего канала при отсутствии (рис. 4.3, а) и при наличии (рис. 4.3, 6) трансформации символов.

Модели дискретных каналов. Дискретным каналом называют совокупность средств, предназначенных для передачи дискретных сигналов. Такие каналы широко используются, например, при передаче данных, в телеграфии, радиолокации.

Дискретные сообщения, состоящие из последовательности знаков алфавита источника сообщений (первичного алфавита) , преобразуются в кодирующем устройстве в последовательности символов. Объемm алфавита символов (вторичного алфавита)
, как правило, меньше объема l алфавита знаков, но они могут и совпадать.

Материальным воплощением символа является элементарный сигнал, получаемый в процессе манипуляции - дискретного изменения определенного параметра переносчика информации. Элементарные сигналы формируются с учетом физических ограничений, накладываемых конкретной линией связи. В результате манипуляции каждой последовательности символов ставится в соответствие сложный сигнал. Множество сложных сигналов конечно. Они различаются числом, составом и взаимным расположением элементарных сигналов.

Термины «элементарный сигнал» и «символ», так же как «сложный сигнал» и «последовательность символов», в дальнейшем будут использоваться как синонимы.

Информационная модель канала с помехами задается множеством символов на его входе и выходе и описанием вероятностных свойств передачи отдельных символов. В общем случае канал может иметь множество состояний и переходить из одного состояния в другое как с течением времени, так и в зависимости от последовательности передаваемых символов.

В каждом состоянии канал характеризуется матрицей условных вероятностей ρ(
) того, что переданный символ u i будет воспринят на выходе как символ ν j . Значения вероятностей в реальных каналах зависят от многих различных факторов: свойств сигналов, являющихся физическими носителями символов (энергия, вид модуляции и т.д.), характера и интенсивности воздействующих на канал помех, способа определения сигнала на приемной стороне.

При наличии зависимости переходных вероятностей канала от времени, что характерно практически для всех реальных каналов, он называется нестационарным каналом связи. Если эта зависимость несущественна, используется модель в виде стационарного канала, переходные вероятности которого не зависят от времени. Нестационарный канал может быть представлен рядом стационарных каналов, соответствующих различным интервалам времени.

Канал называется с «памятью » (с последействием), если переходные вероятности в данном состоянии канала зависят от его предыдущих состояний. Если переходные вероятности постоянны, т.е. канал имеет только одно состояние, он называется стационарным каналом без памяти . Под k-ичным каналом подразумевается канал связи, у которого число различных символов на входе и выходе одинаково и равно k.

Стационарный дискретный двоичный канал без памяти однозначно определяется четырьмя условными вероятностями: р(0/0), р(1/0), р(0/1), р(1/1). Такую модель канала принято изображать в виде графа, представленного на рис. 4.2, где р(0/0) и р(1/1) - вероятности неискаженной передачи символов, а р(0/1) и р(1/0) - вероятности искажения (трансформация) символов 0 и 1 соответственно.

Если вероятности искажения символов можно принять равными, т. е.то такой канал называютдвоичным симметричным каналом [при р(0/1)р(1/0) канал называетсянесимметричным ]. Символы на его выходе правильно принимают с вероятностью ρ и неправильно - с вероятностью 1-p = q. Математическая модель упрощается.

Именно этот канал исследовался наиболее интенсивно не столько в силу своей практической значимости (многие реальные каналы описываются им весьма приближенно), сколько в силу простоты математического описания.

Важнейшие результаты, полученные для двоичного симметрического канала, распространены на более широкие классы каналов.

С
ледует отметить еще одну модель канала, которая в последнее время приобретает все большее значение. Это дискретный канал со стиранием. Для него характерно, что алфавит выходных символов отличается от алфавита входных символов. На входе, как и ранее, символы 0 и 1, а на выходе канала фиксируются состояния, при которых сигнал с равным основанием может быть отнесен как к единице, так и к нулю. На месте такого символа не ставится ни нуль, ни единица: состояние отмечается дополнительным символом стирания S. При декодировании значительно легче исправить такие символы, чем ошибочно определенные.

На рис. 4 3 приведены модели стирающего канала при отсутствии (рис. 4.3, а) и при наличии (рис. 4.3, 6) трансформации символов.

Скорость передачи информации по дискретному каналу. Характеризуя дискретный канал связи, используют два понятия скорости передачи: технической и информационной.

Под технической скоростью передачи V T , называемой также скоростью манипуляции, подразумевают число элементарных сигналов (символов), передаваемых по каналу в единицу времени. Она зависит от свойств линии связи и быстродействия аппаратуры канала.

С учетом возможных различий в длительностях символов скорость

где - среднее значение длительности символа.

При одинаковой продолжительности τ всех передаваемых символов =τ.

Единицей измерения технической скорости служит бод - скорость, при которой за одну секунду передается один символ.

Информационная скорость , или скорость передачи информации , определяется средним количеством информации, которое передается по каналу в единицу времени. Она зависит как от характеристик данного канала связи, таких, как объем алфавита используемых символов, техническая скорость их передачи, статистические свойства помех в линии, так и от вероятностей поступающих на вход символов и их статистической взаимосвязи.

При известной скорости манипуляции V T скорость передачи информации по каналу Ī(V,U) задается соотношением

где I(V,U) - среднее количество информации, переносимое одним символом.

Пропускная способность дискретного канала без помех. Для теории и практики важно выяснить, до какого предела и каким путем можно повысить скорость передачи информации по конкретному каналу связи. Предельные возможности канала по передаче информации характеризуются его пропускной способностью.

Пропускная способность канала С д равна той максимальной скорости передачи информации по данному каналу, которой можно достигнуть при самых совершенных способах передачи и приема:

При заданном алфавите символов и фиксированных основных характеристиках канала (например, полосе частот, средней и пиковой мощности передатчика) остальные характеристики должны быть выбраны такими, чтобы обеспечить наибольшую скорость передачи по нему элементарных сигналов, т. е. обеспечить максимальное значение V Т. Максимум среднего количества информации, приходящейся на один символ принятого сигнала I(V,U), определяется на множестве распределений вероятностей между символами
.

Пропускная способность канала, как и скорость передачи информации по каналу, измеряется числом двоичных единиц информации в секунду (дв. ед./с).

Так как в отсутствие помех имеет место взаимно-однозначное соответствие между множеством символов {ν} на выходе канала и {u} на его входе, то I(V,U) = =I(U,V) = H(U). Максимум возможного количества информации на символ равен log m, где m - объем алфавита символов, откуда пропускная способность дискретного канала без помех

Следовательно, для увеличения скорости передачи информации по дискретному каналу без помех и приближения ее к пропускной способности канала последовательность букв сообщения должна подвергнуться такому преобразованию в кодере, при котором различные символы в его выходной последовательности появлялись бы по возможности равновероятно, а статистические связи между ними отсутствовали бы. Доказано (см. § 5.4), что это выполнимо для любой эргодической последовательности букв, если кодирование осуществлять блоками такой длины, при которой справедлива теорема об их асимптотической равновероятности.

Расширение объема алфавита символовm приводит к повышению пропускной способности канала (рис. 4.4), однако возрастает и сложность технической реализации.

Пропускная способность дискретного канала с помехами. При наличии помех соответствие между множествами символов на входе и выходе канала связи перестает быть однозначным. Среднее количество информации I(V,U), передаваемое по каналу одним символом, определяется в этом случае соотношением

Если статистические связи между символами отсутствуют, энтропия сигнала на выходе линии связи равна

При наличии статистической связи энтропию определяют с использованием цепей Маркова. Поскольку алгоритм такого определения ясен и нет необходимости усложнять изложение громоздкими формулами, ограничимся здесь только случаем отсутствия связей.

Апостериорная энтропия характеризует уменьшение количества переданной информации вследствие возникновения ошибок. Она зависит как от статистических свойств последовательностей символов, поступающих на вход канала связи, так и от совокупности переходных вероятностей, отражающих вредное действие помехи.

Если объем алфавита входных символов u равен m 1 , а выходных символов υ - m 2 , то

Подставив выражения (4.18) и (4.19) в (4.17) и проведя несложные преобразования, получим

Скорость передачи информации по каналу с помехами

Считая скорость манипуляции V T предельно допустимой при заданных технических характеристиках канала, величину I(V,U) можно максимизировать, изменяя статистические свойства последовательностей символов на входе канала посредством преобразователя (кодера канала). Получаемое при этом предельное значение С Д скорости передачи информации по каналу называют пропускной способностью дискретного канала связи с помехами:

где р{u} - множество возможных распределений вероятностей входных сигналов.

Важно подчеркнуть, что при наличии помех пропускная способность канала определяет наибольшее количество информации в единицу времени, которое может быть передано со сколь угодно малой вероятностью ошибки.

В гл. 6 показано, что к пропускной способности канала связи с помехами можно приблизиться, кодируя эргодическую последовательность букв источника сообщений блоками такой длины, при которой справедлива теорема об асимптотической равновероятности длинных последовательностей.

Произвольно малая вероятность ошибки оказывается достижимой только в пределе, когда длина блоков становится бесконечной.

При удлинении кодируемых блоков возрастает сложность технической реализации кодирующих и декодирующих устройств и задержка в передаче сообщений, обусловленная необходимостью накопления требуемого числа букв в блоке. В рамках допустимых усложнений на практике при кодировании могут преследоваться две цели: либо при заданной скорости передачи информации стремятся обеспечить минимальную ошибку, либо при заданной достоверности - скорость передачи, приближающуюся к пропускной способности канала.

Предельные возможности канала никогда не используются полностью. Степень его загрузки характеризуется коэффициентом использования канала

где - производительность источника сообщений; С Д - пропускная способность канала связи.

Поскольку нормальное функционирование канала возможно, как показано далее, при изменении производительности источника в пределах,теоретически может изменяться в пределах от 0 до 1.

Пример 4.4 . Определить пропускную способность двоичного симметричного канала (ДСК) со скоростью манипуляции V T в предположении независимости передаваемых символов.

Запишем соотношение (4.19) в следующем виде:

Воспользовавшись обозначениями на графе (рис. 4.5), можем записать

Величина H U (V) не зависит от вероятностей входных символов, что является следствием симметрии канала.

Следовательно, пропускная способность

Максимум H(V) достигается при равенстве вероятностей появления символов, он равен 1. Отсюда

График зависимости пропускной способности ДСК отρ показан на рис. 4.6. При увеличении вероятности трансформации символа с 0 до 1/2 С Д (р) уменьшается от 1 до 0. Если ρ = 0, то шум в канале отсутствует и его пропускная способность равна 1. При р=1/2 канал бесполезен, так как значения символов на приемной стороне с равным успехом можно устанавливать по результатам подбрасывания монеты (герб-1, решетка - 0). Пропускная способность канала при этом равна нулю.

Математическое моделирование непрерывных каналов связи требует знания физических процессов, протекающих в них. В большинстве случаев для их определения и перевода в аналитическую форму требуется проведение сложных экспериментов, испытаний и последующей аналитической обработки данных.

В подобных ситуациях очень полезной является модель двоичного симметричного канала связи (ДСК). Подобная модель является простейшим примеров взаимодействия двух источников без памяти. Подобная модель является дискретной двоичной моделью передачи информации по каналу с АБГШ. ДСК описывается с помощью диаграммы переходов (рис. 2.10).

Рис. 2.10. Модель двоичного симметричного канала

На диаграмме представлены возможные переходы двоичных символов от передатчика (источника ) в двоичные символы приемника (источника ). Каждому переходу приписана переходная вероятность. Ошибочным переходам соответствует вероятность . Эквивалентом диаграммы переходов является матрица канала. Она содержит переходные вероятности и является стохастической матрицей, у которой сумма всех элементов каждой строки равна единице. В общем случае матрица канала в входным алфавитом их символов и выходным алфавитом из символов , содержит все переходные вероятности и имеет вид

(2.51)

В случае ДСК матрица принимает вид

. (2.52)

Единственным параметром, характеризующим ДСК, является вероятность ошибки и из-за равновероятного появления входных символов и симметрии переходов следует равномерное распределение выходных символов, т.е.

Среднее значение информации, которыми обмениваются два дискретных источника без памяти и равно

Поскольку пропускная способность дискретного канал связи определяется как , то

После подстановки числовых значений выражение принимает вид

Важным частным случаем ДСК является двоичный симметричный канал со стираниями (ДСКС). Как и ДСК подобный канал является упрощенной моделью передачи информации по каналу с АБГШ. Схема переходных вероятностей стирающего канала представлена на рис. 2.11.

Рис. 2.11. Граф переходных состояний в стирающем канале связи

Матрица переходных вероятностей оказывается зависимой от двух параметров и имеет вид

. (2.56)

Входные символы равновероятны, поэтому . Тогда вероятности выходных символов равны

и .

Следовательно,

После преобразований получаем

Положив в полученном уравнении , получим . Введение стирающего канала связи обеспечивает выигрыш пропускной способности стирающего канала связи, при условии, что вероятность ошибки . Отклонение значений и от их минимальных значений приводит к образованию криволинейной поверхности, представляющей общий вид которой представлен на рис. 2.12.

Рис. 2.12. Пропускная способность стирающего канала связи

Рассматривая модель стирающего канала связи, в которойстирания разделяются на ложные и правильные, можно представить граф переходных вероятностей в виде рис. 2.13. Матрица переходных вероятностей оказывается зависимой от четырех параметров принимает вид

Рис. 2.13. Граф переходных состояний с разделением стираний на ложные и правильные стирания

Предположение о точном совпадении стертых позиций с ошибками является условием, которое никогда не выполняется в реальных канала связи. Для гауссовского канала связи соотношения между ложными и правильным стираниями в зависимости от ширины интервала стирания приведены в табл. 2.1.

Табл. 2.1 Соотношение вероятностей между ложными и правильными стираниями в канале без памяти

Значение интервала стирания

Ложные стирания

Относительный прирост

Правильные стирания

Прирост показателей для и в табл. 2.1 определялся относительно интервала стирания при этом показатель для ложных стираний в указанных пределах вырос практически на порядок. Это говорит о невозможности прямого применения стирающего канала связи в системах обмена информацией с целью снижения вероятности ошибочного приема данных.

Дискретный канал предназначен для передачи дискретных сигналов (символов). При передаче по такому каналу сообщение представляется некоторой последовательностью элементарных дискретных сообщений , принадлежащих конечному множеству. В результате помехоустойчивого кодирования последовательность заменяется другой последовательностью , которая ставится в соответствие сообщению . Последовательность , состоящая из кодовых символов , подается на вход дискретного канала. Кодовые символы обычно (но не всегда) являются цифрами двоичной системы счисления. Таким образом, сообщение на входе дискретного канала может быть представлено последовательностью , где - номер позиции, а - дискретная случайная величина, принимающая значение 0 и 1. Сообщение на выходе дискретного канала также представляется в виде , где , а - аналогичная случайная величина. В идеальном случае, при отсутствии помех и искажений, для всех .

Ограничения на входные символы дискретного канала обычно задаются указанием алфавита символов и скорости их следования. Основной характеристикой дискретного канала является вероятность того или иного изменения символа на данной позиции. Эта характеристика определяется теми преобразованиями, которые претерпевает символ при передаче по каналу:

Смещение во времени (задержка символов);

Отличие на некоторых позициях выходных символов от входных (аддитивные ошибки);

Смещение номеров позиций выходной последовательности относительно номеров входной (ошибки синхронизации);

Появление на некоторых позициях символов стирания (невозможность принять надежное решение по какому-либо символу).

Первый фактор (задержка) является детерминированным или содержит детерминированную и случайную составляющие. Все остальные факторы случайны.

При действии рассмотренных факторов основная характеристика дискретного канала – вероятность искажения символа на определенной позиции – зависит от номера позиции, от значения передаваемого и всех ранее переданных символов.

Так определяются характеристики для нестационарного несимметричного канала с неограниченной памятью. Полное описание таких каналов задается совокупностью условных (переходных) вероятностей вида , т.е. вероятностей того, что выходные символы примут значения , если входные символы имеют значения , где и - номера позиций последовательностей и , - длина конечной последовательности (сообщение).

Естественно, что эти вероятности должны быть известны при любых и . Если рассматриваются стационарные каналы с идеальной синхронизацией, то полное описание канала задается системой переходных вероятностей . Располагая этой системой вероятностей, можно, например, найти такую важную характеристику, как пропускную способность дискретного канала.

В ряде случаев, особенно при анализе методов повышения достоверности, дискретный канал удобно описывать методами случайных процессов, а не заданием системы условных вероятностей рассмотренного вида.

Для канала с идеальной синхронизацией используется понятие потока ошибок. Поток представляет собой дискретный случайный процесс Е (иногда используется термин «последовательность ошибок»). Каждая позиция потока Е складывается по определенному правилу с соответствующей позицией процесса Y.

В общем случае реализации потока ошибок зависят от реализации помех в непрерывном канале, вида модели и реализации процесса Y. Так, например, при стационарном канале и стационарной передаваемой последовательности Y поток ошибок также будет стационарным.

Существует тип дискретного канала, для которого характеристики потока ошибок не зависят от вида информации, передаваемой по каналу. Такой тип канала принято называть симметричным. В этом случае переходные вероятности имеют вид , где - реализация потока ошибок.

Из изложенного следует, что модель двоичного канала это, но сути дела, статистическое описание двоичной последовательности Е. Полное описание таких последовательностей достигается на основе многомерных распределений, например, интервалов между элементами последовательности или через многомерные переходные вероятности. Располагая математической моделью, дающей полное описание ошибок двоичного симметричного канала, можно определить любую характеристику методов повышения достоверности при передаче информации по такому каналу. Наиболее удобный вариант модели для проектирования задается теорией случайных процессов в виде потока ошибок.

Представляется логичным и достаточно удобным рассматривать поток ошибок дискретного канала связи как ступенчатый случайный процесс. Такой подход позволяет при исследовании каналов связи использовать многочисленные важные результаты, полученные для случайных процессов.

Выделим среди различных способов задания потоков следующие два.

Первый способ описания потоков. Для задания потоков ошибок этим способом необходимо для любого натурального числа и произвольного набора чисел , указать r -мерную функцию распределения случайного вектора , где - количество ошибок, появившихся в промежутке времени , или найти

Где - начало отсчета времени.

Таким образом, есть вероятность того, что на последовательно расположенных промежутках времени (откладываемого от момента времени ), появится соответственно ошибок. Это распределение полностью определяет поток ошибок. На практике (1) наиболее часто используется для , что соответствует одномерному распределению числа ошибок в промежутке времени :

Для стационарного потока зависимость от отсутствует.

Второй способ описания потоков. Пусть - моменты наступления событий потока ошибок. Можно определить поток, задав распределение - мерного вектора:

Однако часто удобнее получать распределение моментов наступления событий потока не на основе , а несколько иначе. Положим , тогда поток считается заданным, если определено - мерное распределение вектора , т.е.

Если , то имеем одномерную функцию распределения интервалов, которая в общем случае может зависеть от номера интервала, что отражается следующим образом:

.

В общем случае под каналом передачи информации понимается совокупность технических средств, обеспечивающих передачу сигналов от источника информации к потребителю.

Наиболее общую классификацию каналов связи можно осуществить по характеру сигналов на их входе и выходе. Различают поэтому два типа каналов:

1. Непрерывные каналы . В таких каналах сигналы на входе и вы­ходе непрерывны (по уровням).

2. Дискретные каналы . Навходе и выходе таких каналов наблюдаются дискретные сигналы или символы из конечномерного алфавита. Наибольшее распространение получили дискретные модели каналов.

Дискретным каналом является канал, рассматриваемый от входа кодера до выхода декодера.


Рис. 3. Дискретный канал передачи информации.

На вход канала поступают символы Xi , а с выхода – символыYi .

Дискретный канал математически описан, если задан входной алфавит сигналов {X }={ X k , K = 1… M } вместе с их априорными вероятностями {Р(X k)} и выходной алфавит сигналов {Y * }={ Y * k , K = 1. . . M +1 } , который в общем случае может содержать символ стирания Q и значения вероятностей переходов Р(Y * i / X k) , т. е. вероятностей того, что на выходе канала появится сигнал Y * i при условии, что на вход подан сигнал X k .

Удобно вероятностные характеристики канала задавать матрицами. Так априорные вероятности группируются в матрицу-строку априорных вероятностей

||P(X k) ||=|| P(X 1) P(X 2) . . . P(X m) ||

Характеристики, связанные с входным и выходным алфавитами, определяются свойствами источника сообщений и полосой пропускания канала.

Объем выходного алфавита {Y j } (J = 1, 2, …, M+1} определяется способом построения системы передачи информации.

Условная вероятность Р(Y * i / X k) определяется в основном характеристиками дискретного канала и его свойствами.

Если для любых сочетаний Y * i и X k эта вероятность не зависит от момента времени взятия отсчета, т.е.

(5)

то канал называется однородным.

Если данное условие не выполняется, то канал является – неоднородным.

Если справедливо условие

(6)

то такой канал называют каналом без памяти.

Если данное условие не выполняется, то такой канал называют каналом с памятью на n символов.

Реальные дискретные каналы являются неоднородными и с памятью. Это обусловлено следующими причинами:

Искажением и влиянием помех в непрерывном канале;

Задержкой во времени выходной последовательности сигналов по отношению к входной последовательности;

Нарушением тактовой синхронизации.

Однако, модель дискретного однородного канала без памяти, как модель первого приближения, нашла широкое применение. Она позволяет упростить методы анализа и получения исходных данных.



Рассмотрим математические модели дискретных каналов с помехами и без них.



Загрузка...