sonyps4.ru

Коммутатор: что это такое? Схема коммутатора, управление и неисправности. Коммутационная схема типа впв

Коммутатор - это электронный компонент для обеспечения работы бесконтактной системы зажигания. Она является переходной между контактной и микропроцессорной. Последняя, наиболее совершенная, позволяет управлять моментом при помощи данных, считываемых с датчиков - кислорода, скорости, оборотов двигателя и других. Но на дорогах все еще немало автомобилей, в которых установлены и контактные прерыватели, и бесконтактные. Поэтому для обслуживания и диагностики нужно знать назначение всех элементов, а также методы поиска неисправностей и их основные признаки. Перед тем как проверить коммутатор, внимательно изучите все детали.

Бесконтактная система зажигания

Всего существует три огромные группы систем - контактная, бесконтактная, микропроцессорная. Первая делится на две подгруппы - контактная и с применением транзистора, работающего в режиме ключа. В конструкции бесконтактной системы зажигания тоже применяются транзисторы. Использоваться активно такая схема стала в начале 80-х годов прошлого века. И она имеет ряд преимуществ, о которых будет рассказано несколько ниже. Схема коммутатора несложная, она может быть реализована как на транзисторах, так и на контроллере.

Но у бесконтактной системы зажигания имеется и много недостатков, если сравнивать ее с микропроцессорной. Последняя позволяет контролировать практически все параметры двигателя. БСЗ делать это не позволяет, также не может она нормально использоваться на инжекторных моторах. Причина устаревания бесконтактной системы заключается не только в развитии электроники и автомобилестроения, но и в принятии жестких мер по обеспечению экологичности двигателей внутреннего сгорания. К сожалению, уменьшить количество вредных веществ в выхлопе позволяет только микропроцессорное управление.

Основные элементы системы

Конечно, первыми стоит указать свечи зажигания. Они установлены в головке блока цилиндров, электроды выходят с внутренней части. Это те элементы, которые позволяют воспламенить топливовоздушную смесь. Но с помощью одних только свечей двигатель работать не сможет. Необходимо контролировать положение коленчатого вала, чтобы знать, в каком положении находятся поршни в цилиндрах.

Для этой цели используется индуктивный датчик, работающий на эффекте Холла. Он входит в конструкцию другого элемента - распределителя зажигания. Датчик выдает импульс, который поступает на коммутатор. Это устройство позволяет слабый сигнал усилить до напряжения в 12 Вольт, чтобы затем подать его на катушку. Катушка - не что иное, как простой трансформатор (повышающий). У него вторичная обмотка имеет большее число витков, нежели первичная. За счет этого происходит повышение напряжения и уменьшение силы тока. Напряжение в БСЗ на свечи подается при значении 30-35 кВ (в зависимости от модели автомобиля).

Чем БСЗ лучше контактной?

Внимательно прочитав предыдущий раздел, можно увидеть, что в системе применен индуктивный бесконтактный датчик Холла. Преимущество очевидно - нет трения и коммутации. Для сравнения обратите внимание на контактную систему. В ней прерыватель коммутирует напряжение, величина которого равна 12 Вольт. Как ни крути, но металлические контакты все время соприкасаются друг с другом, постепенно стираются, покрываются нагаром.

По этим причинам необходимо постоянно следить за прерывателем, регулировать зазор, проводить своевременную замену. БСЗ лишена этих недостатков, поэтому без стороннего вмешательства система работает значительно дольше. Датчик Холла выходит из строя очень редко, как и коммутатор. Это повышает надежность системы, но требуется и соблюдать меры предосторожности, в частности, соединение коммутатора с кузовом должно быть максимально плотным, чтобы обеспечить эффективный теплообмен. Кроме того, БСЗ позволяет улучшить работу двигателя, увеличить, хоть и незначительно, его мощность, наряду с повышением надежности.

Как работает коммутатор

По сути, коммутатор - это простой усилитель сигнала. Можно сравнить даже со сборкой Дарлингтона, которая используется в микроконтроллерной технике для преобразования слабого сигнала с порта выхода до необходимого уровня. Основа этой сборки - полевые транзисторы, работающие в режиме ключа. На них подается рабочее напряжение, на управляющий вывод поступает сигнал, который усиливается и снимается с коллектора.

Коммутатор зажигания имеет практически аналогичную схему работы. Только используется сигнал с датчика Холла. Он имеет три вывода - управление, общий, плюс питания. При появлении в области датчика металлической пластины происходит генерация тока, который подается на вход коммутатора. Далее происходит усиление сигнала, а также подача его на первичную обмотку катушки. Питание всей системы происходит только лишь после включения зажигания (после поворота ключа).

Основные элементы коммутатора

Схема коммутатора достаточно простая, но самостоятельное изготовление этого блока бессмысленно, так как готовый вариант купить окажется намного проще. Монтаж должен выполняться максимально грамотно, иначе работа устройства окажется неправильной. Кроме того, при использовании транзисторов нужно тщательно выбирать их по параметрам, а для этого необходимо иметь качественную измерительную аппаратуру. К сожалению, у двух одинаковых полупроводников разброс характеристик может быть очень большим. А это влияет на работу устройства.

Коммутатор ВАЗ, имеющий обозначение 76.3734, состоит из одного основного элемента - контроллера L497. Он создан специально для использования в бесконтактных системах зажигания. Отечественный аналог этого контроллера - КР1055ХП2. Параметры у них практически идентичные, что позволяет использовать любой из контроллеров. Кроме того, эта микросхема позволяет провести подключение тахометра, расположенного на приборной панели автомобиля. Но можно применить и более простую схему, которая представляет собой усилительный блок из двух каскадов. Правда, надежность такого устройства на порядок ниже.

Подключение коммутатора

Случаи бывают разными, не исключено, что придется вам менять проводку. Поэтому потребуется принимать во внимание назначение всех выводов на штекере коммутатора. Это позволит правильно провести подключение, причем риска вывести его из строя не будет. Первый вывод коммутатора - это выход. Другими словами, с него снимается усиленный сигнал. Его нужно соединять с выводом катушки «К». Второй контакт соединяется с массой - минусом аккумуляторной батареи.

Все три провода от датчика Холла идут на коммутатор ВАЗ. Причем сигнальный провод соединяется с шестым выводом коммутатора. Пятый - это вывод для питания (на нем напряжение стабильно 12 Вольт). Третий вывод коммутатора - масса (минус питания). Третий соединен внутри блока со вторым. А вот между четвертым, на который подается питание от АКБ, и пятым имеется постоянное сопротивление и стабилизатор напряжения.

Как осуществить проверку

Ничего сложного нет в этой процедуре. Самый простой способ - это использовать заведомо исправный узел, так как проверить коммутатор таким образом можно буквально за считанные минуты. Но если такового нет, а нужно определить точно, неисправность в катушке либо же в коммутаторе, разумнее использовать другие способы. Потребуется простая лампа накаливания. Если не знаете, где взять ее, то выкрутите из плафона освещения салона либо же из габаритных огней.

Один вывод лампы соединяете с минусом аккумуляторной батареи. Второй подключаете к выводу «1» коммутатора. Это тот самый вывод, с которого снимается усиленный сигнал. Если лампа загорается, то устройство исправно. Более совершенный метод проверки осуществляется при помощи осциллографа. На экране можно видеть величину и форму сигнала, а также сравнить его с эталонным.

Настройка зажигания

При настройке зажигания вам потребуется сделать самое главное - установить валы по меткам, чтобы газораспределение функционировало синхронно с работой поршневой группы. Это первое, что следует сделать перед тем как начать регулировку зажигания. Стоит заметить, что особых трудностей при настройке возникнуть не должно, особенно на автомобилях ВАЗ 2108-21099. Все дело в том, что распределитель зажигания на двигатели этих машин установить можно только в одном положении. Причем коммутатор зажигания при данной процедуре не подвергается никаким настройкам, так как их у него нет.

Корпус трамблера вращается вокруг своей оси, чтобы производить более точную регулировку. И этого оказывается достаточно. Чтобы точно установить момент, можно использовать простейшую схему, в качестве индикатора используется в ней простой светодиод. Датчик Холла отключается от системы, на его минусовой вывод подается плюс питания. Между «+» и сигнальным включается светодиод, для снижения напряжения последовательно с ним включается сопротивление 2 кОм. А вот плюс датчика Холла соединяется с массой. Теперь остается только медленно вращать корпус распределителя. Момент, когда засветится диод, будет являться искомым.

Выводы

Много преимуществ дает такой простой узел в бесконтактной системе зажигания, как коммутатор. Это и повышение мощности, пусть даже незначительное, и уменьшение расхода топлива, и значительное улучшение двигателя с точки зрения надежности. А главное - отпадает необходимость в постоянном контроле и своевременной настройке системы. Современному водителю не хочется заниматься ремонтом автомобиля, ему нужно средство передвижения. Причем надежное, которое не подведет в самый ответственный момент. Независимо от того, какой коммутатор используется в БСЗ, эффективность у него намного выше, нежели у контактного прерывателя.

Многие устройства имеют в своем составе цепи управления (коммутации) нагрузкой, которые обеспечивают их включение/выключение и задают яркость свечения ламп и т.д.. Такие цепи обычно строятся на основе тиристоров или симисторов, реже применяют транзисторы, оптотиристоры или электромагнитные реле. Используя современные тиристоры и симисторы можно коммутировать мощные лампы с напряжением питания свыше 220 В. В маломощных светоизлучающих системах с этой же целью могут использоваться мощные транзисторы, которые управляют лампами с низким напряжением питания (возможные пределы зависят от параметров применяемых транзисторов). Ниже приводятся схемы нескольких простейших узлов коммутации нагрузки.

Очень часто в качестве коммутирующих элементов используются тиристоры серии КУ202 и симисторы серии. КУ208. Эти компоненты выдерживают напряжения 25...480 В (зависит от конкретного типа элемента) и обеспечивают ток в открытом состоянии до 5...10 А. Если же необходимо коммутировать светоизлучатели большей мощности, то могут применяться тиристоры серий Т106-10-4, Т122-20-2, Т131-40-3. В общем случае применение симисторов в качестве коммутирующих элементов несколько упрощает схемы вследствие того, что они могут коммутировать переменное напряжение, т.е. отсутствует необходимость во включении диодного моста на входе силовой цепи (повышается КПД и уменьшаются габариты устройства в целом). Кроме этого, имеется принципиальная возможность применения оптотиристоров, которые обеспечивают гальваническую развязку между силовыми цепями и схемой управления.


Puc.1

На рис.1 приведена типовая схема включения тиристора в качестве элемента коммутации обычных ламп накаливания. Управляющий сигнал с амплитудой 3...7В подается непосредственно на управляющий электрод тиристора VS1. Схема управления должна обеспечивать ток до 200 мА на этом входе. Диодный мост VD1-VD4 обеспечивает подачу на тиристор постоянного напряжения (в случае применения симистора диодный мост можно удалить).


Puc.2

На рис. 2 схема коммутации дополнена эмитгерным повторителем. Слаботочный управляющий сигнал подается на базу транзистора VT1. Ток коммутации протекает через транзистор, то-коограничивающий резистор R1 и управляющий электрод тиристора VS1. В этом случае входное управляющее напряжение может иметь амплитуду немногим более 1 В.


Puc.3

С помощью оптронного тиристора (рис. 3) можно гальванически развязать управляющий сигнал и силовые цепи. В этом случае управляющие импульсы поступают на тиристор уже с оптрона.


Puc.4

Схема на рис. 4 позволяет реализовать гальваническую развязку с помощью импульсного трансформатора. На элементах D1.1 и D1.2 собран высокочастотный генератор с частотой 25 кГц. В исходном состоянии генератор заперт низким уровнем на входе 2 элемента D 1.1. При появлении на входе 2 высокого уровня генератор, запускается и высокочастотные импульсы открывают тиристор VS1 (лампа зажигается).


Puc.5

На рисунке 5 приведены другие часто встречающиеся схемы.

В различных технических текстах можно встретить термин «коммутатор». Что это такое? В самом общем смысле - это устройство для переключения электрических цепей (сигналов), которое может быть электронным, электронно-лучевым или электромеханическим.

В узком смысле так обычно называют коммутатор зажигания, которым оснащаются любые транспортные средства с бензиновыми двигателями. Этой разновидности коммутаторов, в основном автомобильных, и посвящена данная статья.

Предыстория систем зажигания

Как известно, в каждом цикле работы бензинового существует этап приготовления топливно-воздушной горючей смеси и этап ее сгорания. Но чтобы смесь сгорела, ее нужно чем-то поджечь.

Первым решением, применявшимся в самых ранних автомобильных ДВС, было зажигание смеси от калильной трубки, вставленной в цилиндр и разогреваемой предварительно перед запуском двигателя. При его работе температура этой трубки постоянно поддерживалась за счет сгорающей в каждом цикле работы смеси.

Интересно, что система искрового зажигания от магнето применялась параллельно с калильным зажиганием автодвигателей, но поначалу только для промышленных газовых ДВС. Этот принцип был быстро перенят и автопроизводителями, а после изобретения Р. Бошем в 1902 году привычной свечи зажигания искровая система стала общепринятой.

Принцип искрового зажигания

В настоящее время наиболее распространена батарейная система зажигания, содержащая источник тока в виде автомобильного аккумулятора при пуске и автомобильного генератора при работающем двигателе, катушку зажигания, представляющую собой трансформатор с высоковольтной вторичной обмоткой, к которой присоединена искрообразующая свеча зажигания, а также распределитель (коммутатор) зажигания. Работа коммутатора заключается в периодическом прерывании цепи тока первичной обмотки катушки зажигания. При каждом таком прерывании тока его магнитное поле, существующее в точках пространства, занятых проводами вторичной обмотки катушки зажигания, очень быстро уменьшается. При этом в соответствии с законом электромагнитной индукции в тех же точках пространства возникает весьма большое напряженность которого создает высокую (до 25 кВ) ЭДС во вторичной обмотке катушки зажигания, разорванной электродами свечи. Напряжение между ними быстро достигает величины, достаточной для пробоя воздушного промежутка, и тогда проскакивает электрическая искра, поджигающая топливно-воздушную смесь.

Что коммутируется в системе зажигания?

Итак, автомобильный коммутатор. Что это такое и зачем он нужен? Коротко говоря, это устройство, задачей которого является разрыв цепи тока в первичной обмотке катушки зажигания в наиболее выгодный для этого момент.

В четырехтактном ДВС этот момент наступает в конце такта сжатия (2-го такта работы ДВС), незадолго до достижения поршнем так называемой верхней мертвой точки (ВМТ), в которой расстояние от любой точки поршня до оси вращения коленвала ДВС является максимальным. Поскольку коленвал совершает круговое то момент прерывания тока привязывают к некоторому его положению перед достижением им и поршнем положения ВМТ. Угол между этим положением коленвала и вертикальной плоскостью называют углом опережения зажигания. Он варьируется в диапазоне от 1 до 30 градусов.

Учитывая историю, на вопрос: «Автомобильный коммутатор: что это такое?» - следует отвечать, что это сначала механический, а позже, по мере развития техники, электронный прерыватель тока в катушке зажигания.

Механический предшественник коммутатора зажигания

Собственно, коммутатором это устройство стали называть лишь в последние годы, после того как оно стало полностью электронным. А прежде, начиная с 1910 года, когда на автомобилях «кадиллак» впервые появилась автоматическая система зажигания, его функцию наряду с другими задачами выполнял прерыватель-распределитель (трамблер). Такая двойственность наименования возникла из-за двоякой функции его в системе зажигания. С одной стороны, ток в первичной обмотке катушки зажигания нужно прерывать - отсюда возникает «прерыватель». С другой стороны, напряжение высоковольтной обмотки катушки зажигания нужно поочередно распределять по свечам всех цилиндров, причем с нужным углом опережения. Отсюда вторая половина названия - «распределитель».

Как работали трамблеры?

Прерыватель-распределитель имеет приводимый во вращение от коленвала внутренний вал, на котором закреплен диэлектрический ротор-бегунок с вращающейся токоразносной пластиной на его торце. По пластине скользит подпружиненная угольная щетка, соединенная с высоковольтным центральным контактом в крышке распределителя, который, в свою очередь, соединен с вторичной обмоткой катушки зажигания. Токоразносная пластина периодически приближается к расположенным в крышке трамблера контактам высоковольтных проводов, идущих к свечам цилиндров. В этот момент во вторичной обмотке катушки возникает которое пробивает два воздушных промежутка: между токоразностной пластиной и контактом провода к данной свече и между электродами свечи.

На том же валу установлены кулачки, число которых равно числу цилиндров, а выступы каждого кулачка размыкают одновременно с подключением конкретной свечи контакты прерывателя тока, включенные в цепь первичной обмотки катушки зажигания.

Чтобы между контактами прерывателя не возникало искры при размыкании, параллельно им подключен конденсатор большой емкости. При размыкании контактов прерывателя ЭДС индукции в первичной обмотке вызывает ток заряда конденсатора, но вследствие его большой емкости напряжение на нем, а следовательно и между разомкнутыми контактами, не достигает величины пробоя воздуха.

А как же с углом опережения?

Как известно, при уменьшении частоты вращения коленвала смесь в цилиндрах нужно поджигать в такте ее сжатия попозже, прямо перед самой ВМТ, т.е. угол опережения зажигания следует уменьшать. Наоборот, при увеличении частоты вращения смесь в такте сжатия нужно поджигать пораньше, т.е. угол опережения увеличивать. В трамблерах эту функцию выполнял центробежный регулятор, механически связанный с кулачками прерывателя тока. Он поворачивал их на валу распределителя таким образом, чтобы они пораньше или попозже в такте сжатия смеси размыкали контакты прерывателя.

Изменять угол опережения необходимо и при неизменной частоте, когда меняется нагрузка на двигатель. Эту работу выполняло специальное устройство - вакуумный регулятор зажигания.

Появление первых коммутаторов

К концу 70-х годов прошлого века стало ясно, что самым слабым узлом трамблера являются контакты прерывателя, через которые протекал полный ток первичной обмотки. Они постоянно подгорали и выходили из строя. Поэтому первым решением стала специальная электронная схема коммутатора для прерывания тока в катушке. В ее входную слаботочную цепь включались провода от выводов традиционного контактного прерывателя трамблера. Однако теперь его контакты прерывали не полный ток катушки зажигания, а небольшой ток во входной цепи коммутатора.

Собственно же электронный коммутатор был конструктивно выполнен в отдельном блоке и подключался (по желанию водителя) к классическому трамблеру. Такая система зажигания получила название контактной электронной. Она была весьма популярной в 80-е годы прошлого века. И в наше время еще можно встретить оснащенные ею автомобили.

Схема коммутатора контактной электронной системы собиралась на транзисторах.

Следующий шаг - отказ от контактного прерывателя

Контактный прерыватель тока даже в слаботочном варианте, применяемом в контактной электронной системе зажигания, оставался весьма ненадежным узлом. Поэтому автомобилестроители предпринимали немалые усилия для его исключения. Эти усилия увенчались успехом после создания бесконтактного датчика-распределителя на основе датчика Холла.

Теперь вместо нескольких кулачков на валу распределителя стали устанавливать цилиндрический полый экран с прорезями и шторками между ними, причем число шторок и прорезей равно числу цилиндров двигателя. Шторки и прорези экрана движутся в магнитном поле, создаваемом постоянным магнитом, мимо миниатюрного датчика Холла. Пока мимо него движется шторка экрана, выходное напряжение датчика Холла отсутствует. Когда же шторка сменяется прорезью, с датчика Холла электронной схемой снимается фронт импульса напряжения, свидетельствующий о необходимости прервать ток в первичной обмотке катушки зажигания. Этот импульс напряжения передается по проводам в блок коммутатора тока в катушке зажигания, где он предварительно усиливается и далее используется для управления основным силовым коммутирующим каскадом.

Другим вариантом бесконтактного датчика-распределителя является узел с оптическим датчиком, у которого вместо датчика Холла используется фототранзистор, а вместо постоянного магнита - светодиод. имеет такой же вращающийся экран с прорезями и шторками.

Появление коммутатора как такового

Итак, в бесконтактной системе зажигания вместо одного контактного трамблера появились два отдельных узла: бесконтактный (но только по низкому напряжению) датчик-распределитель и электронный коммутатор. Функцию же распределения высоковольтного напряжения по свечам зажигания в датчике-распределителе по-прежнему выполняет механический ротор-бегунок с токоразносной пластиной.

А как же с регулированием угла зажигания? Эти задачи по-прежнему выполняют центробежный и вакуумный регуляторы в составе датчика-распределителя. Первый из них теперь поворачивает на валу не кулачки, а сдвигает шторки экрана, изменяя тем самым угол зажигания. Вакуумный же регулятор имеет возможность сдвигать датчик Холла с его опорной пластиной, также регулируя данный угол.

Учитывая вышеизложенное, на вопрос: «Современный автомобильный коммутатор: что это такое?» - следует давать ответ, что это конструктивно обособленный электронный блок бесконтактной системы зажигания.

Отказ от распределения высокого напряжения

Дольше всего в коммутаторе сохранялся механический распределитель высоковольтного напряжения по свечам цилиндров. Самое интересное, что этот узел был достаточно надежен и не вызывал больших нареканий. Однако время не стоит на месте, и в начале нашего столетия схема подключения коммутатора претерпела очередные крупные изменения.

В современных автомобилях вообще отсутствует распределение высоковольтного напряжения от одной катушки по разным свечам. Наоборот, в них «размножились» сами катушки и стали принадлежностью свечи каждого цилиндра. Теперь вместо контактной коммутации свечей по высокому напряжению выполняется бесконтактная коммутация их катушек по низкому напряжению. Конечно, это усложняет схему коммутатора, но и возможности современной схемотехники гораздо шире.

В современных автомобилях с инжекторными двигателями управление коммутатором осуществляет либо автономный двигателем, либо бортовой компьютер автомобиля. Эти устройства управления анализируют не только скорость вращения коленвала, но множество других параметров, характеризующих топливо и охлаждающую жидкость, температуру различных узлов и окружающей среды. На основании их анализа в режиме реального времени меняются и настройки угла опережения зажигания.

Неисправности коммутатора

Наиболее часто встречающейся неисправностью механического трамблера является подгорание его контактов: как подвижных, так и высоковольтных контактов свечей. Чтобы этого не случилось (по крайней мере, не слишком быстро), нужно регулярно осматривать их, и если на них образовался нагар, то его следует снять надфилем или мелкой шкуркой.

Если вышел из строя конденсатор, включенный параллельно контактам прерывателя, или резистор в цепи центрального высоковольтного электрода, то их можно заменить.

Неисправности коммутатора электронного, вызванные выходом из строя усилителя импульсов датчика Холла или коммутатора тока катушки, обычно не подлежат устранению, так как такой коммутатор является неразборным. В этом случае, как правило, неисправный блок просто заменяется новым.

Как проверить коммутатор?

Если обороты двигателя на холостом ходу «плавают», или он глохнет на ходу, или вообще не запускается, то следует проверить наличие искры на подключенных к распределителю зажигания с датчиком Холла свечах. Для этого нужно выкрутить их, надеть наконечники бронепроводов, положить свечи на «массу» и «крутануть» коленвал стартером. Если искры нет или она слабая, нужно переходить к коммутатору.

Но как проверить коммутатор? Следует включить зажигание и оценить, как отклоняется стрелка вольтметра. Если коммутатор исправен, то она должна отклоняться в два этапа. Сначала стрелка занимает некоторое промежуточное положение, в котором остается 2-3 секунды, а затем переходит в конечное (штатное) положение. Если стрелка сразу занимает конечное положение, то можно пробовать заменять коммутатор.

Подключение коммутатора

Как подключить коммутатор к бесконтактной системе зажигания? Следует помнить, что его клеммная колодка подключается двумя проводами к клеммам «Б» и «К» катушки зажигания, трехпроводным жгутом с разъемом - к датчику Холла на датчике-распределителе и одним проводом - к «массе». С выводом «+» аккумулятора схема коммутатора соединяется на клемме «Б» катушки.

Второй формой реализации многозвенной коммутационной схемы со звеньями пространственной и временной коммутации является структура, приведенная на . Эту коммутационную схему обычно называют схемой время - пространство - время. Информация, поступающая по каналу входящего тракта с ВРК , задерживается на входящем звене временной коммутации до тех пор, пока не будет найден соответствующий свободный путь через звено пространственной коммутации.


В этот момент информация будет передана через звено пространственной коммутации на соответствующее выходное звено временной коммутации, где она будет храниться до тех пор, пока не наступит временной интервал, в котором требуется осуществить передачу данной информации. Предполагая, что на звеньях временной коммутации обеспечивается полнодоступность (т. е. все входящие каналы могут быть соединены со всеми исходящими), при установлении соединения на звене пространственной коммутации можно использовать любой временной интервал. В функциональном смысле звено пространственной коммутации как бы повторяется (копируется) по одному разу для каждого внутреннего временного интервала Это иллюстрирует вероятностный граф схемы ВПВ , приведенный на .


Важной особенностью коммутационной схемы ВПВ , на которую следует обратить внимание, является то, что звено пространственной коммутации работает с разделением времени независимо от внешних трактов с ВРК . По существу, число временных интервалов работы звена пространственной коммутации l не должно совпадать с числом временных интервалов с внешних трактов с ВРК .
Если звено пространственной коммутации является неблокирующейся коммутационной схемой, то блокировка в схеме ПВП может возникать в тех случаях, когда нет свободных внутренних временных интервалов звена пространственной коммутации, в течение которых промежуточная соединительная линия, ведущая от входящего звена временной коммутации, и промежуточная соединительная линия, ведущая к исходящему звену временной коммутации, одновременно свободны. Очевидно, что вероятность блокировки будет минимальней, если число временных интервалов звена пространственной коммутации l будет выбрано достаточно большим. Действительно, проводя прямую аналогию с трехзвенными пространственными коммутационными схемами, схему ПВП можно считать неблокирующейся, если l=2c-1. Общее выражение для вероятности блокировки для коммутационной схемы ВПВ , отдельные звенья которой (В, П, В) являются неблокирующимися, имеет вид

Где - коэффициент временного расширения (l/с), l - число временных интервалов работы звена пространственной коммутации.
Сложность реализации ВПВ -коммутации можно рассчитать по следующей формуле

Cтруктура ВПВ более сложная, чем структура ПВП . Заметим, однако, что в коммутационной схеме ВПВ используется временная концентрация, а в схеме ПВП - пространственная. По мере того, как будет расти использование входящих соединительных линий, будет уменьшаться степень возможной концентрации. Если окажется, что нагрузка входящих каналов достаточно высока, то для поддержания заданного значения вероятности блокировки в коммутационных схемах ВПВ и ПВП необходимо вводить расширение соответственно в первой - временное, во второй - пространственное. Поскольку реализация временного расширения значительно дешевле, чем пространственного, то при высоком использовании каналов коммутационная схема ВПВ окажется более экономичной, чем схема ПВП . На приведены зависимости сложности реализации схем ПВП и ВПВ от использования входящих каналов.


Как видно из , коммутационные схемы ВПВ имеют четко выраженное преимущество перед схемами ПВП в области больших значений использования каналов. Для коммутационных схем малой емкости более предпочтительной оказывается структура ПВП . Возможно, что выбор конкретной архитектуры в значительно большей степени будет зависеть от других факторов, таких как модульность, простота организации тестирования, легкость наращивания емкости. Одним из моментов, который обычно выделяют, отдавая предпочтение структуре ПВП , является относительно более простые требования к организации управления схемами ПВП , чем схемами ВПВ . Для станций большой емкости с большой нагрузкой необходимость преимущественного использования структуры ВПВ становится совершенно очевидной. В подтверждение справедливости этого утверждения можно привести систему № 4 ESS со структурой ВПВ , которая является самой большой по емкости коммутационной схемой, построенной до настоящего времени.
Коммутационные схемы типа ВПППВ . Если звено пространственной коммутации схемы ВПВ оказывается достаточно большим по емкости, что приводит и к дополнительному увеличению сложности управляющего устройства, то для уменьшения общего числа точек коммутации звено пространственной коммутации заменяется многозвенной схемой. На приведена структура типа ВПВ , когда звено пространственной коммутации заменено трехзвенной схемой.


Поскольку три соседних звена являются звеньями пространственной коммутации, то эту структуру иногда называют коммутационной схемой ВПППВ. Сложность реализации схемы ВПППВ можно определить следующим образом:


Результаты показывают, что коммутационные схемы сверхбольшой емкости могут быть реализованы с использованием методов цифровою временного разделения на вполне приемлемом для практики уровне сложности. В середине 60-х годов стало очевидно, что на телефонной сети США необходимо использовать коммутационные схемы именно такой емкости. Поскольку для реализации сопоставимой с ними по емкости восьмизвеннои схемы пространственной коммутации потребовалось бы порядка 10 млн. точек коммутации, то традиционная технология, используемая при построении систем с пространственным разделением, была срезу же отвергнута, и фирма Bell System приступила к разработке системы № 4 ESS. Это была первая цифровая коммутационная система телефонной сети США, введенная в эксплуатацию в 1976 г. Система № 4 ESS (коммутационная схема типа ВПППВ) имеет емкость 107 520 соединительных линий, обеспечивает вероятность блокировки менее 0,005 при вероятности занятия канала 0,7 (11).

mstheme>

Загрузка...