sonyps4.ru

Количество слотов pci e x16 что. PCI Express vs

Стандарт PCI Express является одной из основ современных компьютеров. Слоты PCI Express уже давно занимают прочное место на любой материнской плате декстопного компьютера, вытесняя другие стандарты, например, такие как PCI. Но даже стандарт PCI Express имеет свои разновидности и отличающийся друг от друга характер подключения. На новых материнских платах, начиная примерно с 2010 года, можно увидеть на одной материнской плате целую россыпь портов, обозначенных как PCIE или PCI-E , которые могут отличаться по количеству линий: одной x1 или нескольких x2, x4, x8, x12, x16 и x32.

Итак, давайте выясним почему такая путаница среди казалось бы простого периферийного порта PCI Express. И какое предназначение у каждого стандарта PCI Express x2, x4, x8, x12, x16 и x32?

Что такое шина PCI Express?

В далеких 2000-х, когда состоялся переход с устаревающего стандарта PCI (расш. - взаимосвязь периферийных компонентов) на PCI Express, у последнего было одно огромное преимущество: вместо последовательной шины, которой и была PCI, использовалась двухточечная шина доступа. Это означало, что каждый отдельный порт PCI и установленные в него карты, могли в полной мере использовать максимальную пропускную способность не мешая друг другу, как это происходило при подключении к PCI. В те времена количество периферийных устройств, вставляемых в карты расширения, было предостаточно. Сетевые карты, аудио карты, ТВ-тюнеры и так далее - все требовали достаточное количество ресурсов ПК. Но в отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, если рассматривать в общем, является пакетной сетью с топологией типа звезда.


PCI Express x16, PCI Express x1 и PCI на одной плате

С точки зрения непрофессионала, представьте свой настольный ПК в качестве небольшого магазина с одним, двумя продавцами. Старый стандарт PCI был как гастроном: все ожидали в одной очереди, чтобы их обслужили, испытывая проблемы со скоростью обслуживания с ограничением в лице одного продавца за прилавком. PCI-E больше похож на гипермаркет: каждый покупатель движется за продуктами по своему индивидуальному маршруту, а на кассе сразу несколько кассиров принимают заказ.

Очевидно, что гипермаркет по скорости обслуживания выигрывает в несколько раз у обычного магазина, благодаря тому, что магазин не может себе позволить пропускную способность больше чем один продавец с одной кассой.

Также и с выделенными полосами передачи данных для каждой карты расширения или встроенными компонентами материнской платы.

Влияние количества линий на пропускную способность

Теперь, чтобы расширить нашу метафору с магазином и гипермаркетом, представьте, что каждый отдел гипремаркета имеет своих кассиров, зарезервированных только для них. Вот тут-то и возникает идея нескольких полос передачи данных.

PCI-E прошел множество изменений со времени своего создания. В настоящее время новые материнские платы обычно используют уже 3 версию стандарта, причем более быстрая 4 версия становится все более распространенной, а версия 5 ожидается в 2019 году. Но разные версии используют одни и те же физические соединения, и эти соединения могут быть выполнены в четырех основных размерах: x1, x4, x8 и x16. (x32-порты существуют, но крайне редко встречаются на материнских платах обычных компьютерах).

Различные физические размеры портов PCI-Express позволяют четко разделить их по количеству одновременных соединений с материнской платой: чем больше порт физически, тем больше максимальных подключений он способен передать на карту или обратно. Эти соединения еще называют линиями . Одну линию можно представить как дорожку, состоящею из двух сигнальных пар: одна для отправки данных, а другая для приема.

Различные версии стандарта PCI-E позволяют использовать разные скорости на каждой полосе. Но, вообще говоря, чем больше полос находится на одном PCI-E-порту, тем быстрее данные могут перетекать между периферийной и остальной частью компьютера.

Возвращаясь к нашей метафоре: если речь идёт об одном продавце в магазине, то полоса x1 и будет этим единственным продавцом, обслуживающим одного клиента. У магазина с 4-мя кассирами - уже 4 линии х4 . И так далее можно расписать кассиров по количеству линий, умножая на 2.


Различные карты PCI Express

Типы устройств, использующих PCI Express x2, x4, x8, x12, x16 и x32

Для версии PCI Express 3.0 общая максимальная скорость передачи данных составляет 8 ГТ/с, В реальности же скорость для версии PCI-E 3 чуть меньше одного гигабайта в секунду на одну полосу.

Таким образом, устройство, использующее порт PCI-E x1, например, маломощная звуковая карта или Wi-Fi-антенна смогут передавать данные с максимальной скоростью в 1 Гбит/с.

Карта, которая физически подходит в более крупный слот - x4 или x8 , например, карта расширения USB 3.0, сможет передавать данные в четыре или восемь раз быстрее соответственно.

Скорость передачи портов PCI-E x16 теоретически ограничивается максимальной полосой пропуская в размере около 15 Гбит/с. Этого более чем достаточно в 2017 года для всех современных графических видеокарт, разработанных NVIDIA и AMD.


Большинство дискретных видеокарт используют слот PCI-E x16

Протокол PCI Express 4.0 позволяет использовать уже 16 ГТ/с, а PCI Express 5.0 будет задействовать 32 ГТ/с.

Но в настоящее время не существует компонентов, которые смогли бы использовать такое количество полос с максимальной пропускной способностью. Современные топовые графические карты обычно используют x16 стандарта PCI Express 3.0. Нет смысла использовать те же полосы и для сетевой карты, которая на порту x16 будет использовать только одну линию, так как порт Ethernet способен передавать данные только до одного гигабита в секунду (что, около одной восьмой пропускной способности одной PCI-E полосы - помните: восемь бит в одном байте).

На рынке можно найти твердотельные накопители PCI-E, которые поддерживают порт x4, но они, похоже, скоро будут вытеснены быстро развивающимся новым стандартом M.2. для твердотельных накопителей, которые также могут использовать шину PCI-E. Высококачественные сетевые карты и оборудование для энтузиастов, такие как RAID-контроллеры, используют сочетание форматов x4 и x8.

Размеры портов и линий PCI-E могут различаться

Это одна из наиболее запутанных задач по PCI-E: порт может быть выполнен размером в форм-факторе x16, но иметь недостаточное количество полос для пропуска данных, например, всего например x4. Это связано с тем, что даже если PCI-E может нести на себе неограниченное количество отдельных соединений, все же существует практический предел пропускной способности полосы пропускания чипсета. Более дешевые материнские платы с более бюджетными чипсетами могут иметь только один слот x8, даже если этот слот может физически разместить карту форм-фактора x16.

Кроме того, материнские платы, ориентированные на геймеров, включают до четырех полных слотов PCI-E с x16 и столько же линий для максимальной пропускной способности.

Очевидно, это может вызывать проблемы. Если материнская плата имеет два слота размером x16, но один из них имеет только полосы x4, то подключение новой графической карты снизит производительность первой аж на 75%. Это, конечно, только теоретический результат. Архитектура материнских плат такова, что Вы не увидите резкого снижения производительности.

Правильная конфигурация двух графических видео карт должна задействовать именно два слота x16, если Вы хотите максимального комфорта от тандема двух видеокарт. Выяснить сколько линий на Вашей материнской плате имеет тот или иной слот поможет руководство на оф. сайте производителя.

Иногда производители даже помечают на текстолите материнской платы рядом со слотом количество линий

Нужно знать, что более короткая карта x1 или x4 может физически вписаться в более длинный слот x8 или x16. Конфигурация контактов электрических контактов делает это возможным. Естественно, если карта физически больше, чем слот, то вставить ее не получится.

Поэтому помните, при покупке карт расширения или обновления текущих необходимо всегда помнить как размер слота PCI Express, так и количество необходимых полос.

Физический уровень интерфейса допускает как электрическую, так и оптическую реализацию. Базовое соединение электрического интерфейса (1x) состоит из двух дифференциальных низковольтных сигнальных пар — передающей (сигналы PETp0, PETn0) и принимающей (PERp0, PERn0). В интерфейсе применена развязка передатчиков и приемников по постоянному току, что обеспечивает совместимость компонентов независимо от технологии изготовления компонентов и снимает некоторые проблемы передачи сигналов. Для передачи используется самосинхронизирующееся кодирование, что позволяет достигать высоких скоростей передачи. Базовая скорость — 2,5 Гбит/с «сырых» данных (после кодирования 8B/10B) в каждую сторону, в перспективе планируются и более высокие скорости. Для масштабирования пропускной способности возможно агрегирование сигнальных линий (lanes, сигнальных пар в электрическом интерфейсе), по одинаковому числу в обоих направлениях. Спецификация рассматривает варианты соединений из 1, 2, 4, 8, 12, 16 и 32 линий (обозначаются как x1, x2, x4, x8, x12, x16 и x32); передаваемые данные между ними распределяются побайтно. В каждой из линий самосинхронизация выплняется независимо, так что явление переноса (бич параллельных интерфейсов) отсутствует. Таким образом достижима скорость до 32×2,5 = 80 Гбит/с, что примерно соответствует пиковой скорости 8 Гбайт/с. Во время аппаратной инициализации в каждом соединении согласуется число линий и скорость передачи; согласование выполняется на низком уровне без какого-либо программного участия. Согласованные параметры соединения действуют на все время последующей работы.

Обеспечение «горячего» подключение на физическом уровне PCI Express не требует каких-либо дополнительных аппаратных затрат, поскольку двухточечное соединение не затрагивает «лишних» участников. Безопасная коммутация сигналов не требуется, возможности подключаемого устройства никак не влияют на режимы работы остальных устройств.

Малое число сигнальных контактов интерфейса дает большую свободу в выборе конструктивных реализаций PCI Express :

  • соединение компонентов в пределах платы;
  • слоты и карты расширения в конструктивах PC/AT и ATX;
  • внутренние и внешние карты расширения мобильных ПК;
  • малогабаритные модули ввода/вывода для серверов и коммуникационной аппаратуры;
  • модули для промышленных компьютеров;
  • разъемное подключение «дочерних» карт (mezannine interface);
  • кабельные соединения блоков.

Для карт расширения в конструктивах PC/AT и ATX предусматриваются разные модификации разъема-слота PCI Express, отличающиеся числом пар сигнальных линий (x1, x4, x8, x16) и, соответственно, размером (см. рисунок ниже). При этом в слоты большего размера можно устанавливать карты с разъемом того же размера или меньшего (это называется Up-plugging). Однако противоположный вариант (Downplugging) — большую карту в меньший слот — механически невозможен (в PCI/PCI-X это возможно). Как было показано выше, самый маленький вариант PCI Express обеспечивает пропускную способность на уровне стандартной шины PCI.

Назначение контактов слотов PCI Express приведено в таблице ниже.

Набор сигналов интерфейса PCI Express невелик:

  • PETp0, PETn0… PETp15, PETn15 — выходы передатчиков сигнальных пар 0…15;
  • PERp0, PERn0… PERp15, PERn15 — входы приемников;
  • REFCLK+ и REFCLK — сигналы опорной частоты 100 МГц;
  • PERST# — сигнал сброса карты;
  • WAKE# — сигнал «пробуждения» (от карты);
  • PRSNT1#, PRSNT2# — сигналы обнаружения подключения-отключения карты для системы горячего подключения. На карте эти цепи соединяются между собой, причем для PRSNT2# выбирается контакт с самым большим номером. Это позволяет точнее отслеживать моменты подключения-отключения (в случае наклона карты). Для определения числа линий подключенной карты данные линии не используются — разрядность линий определяется автоматически при установлении соединения (в процедуре тренировки).

Дополнительно на слоте имеются необязательные сигналы шины SMBus (SMB_CLK и SMB_DATA) и интерфейса JTAG (TCLK, TDI, TDO, TMS, TRST#).

Питание на карты подается по следующим шинам:

  • +3,3V — основное питание +3 В при токе до 9 А;
  • +12V — основное питание +12 В при токе до 0,5/2,1/4,4А для слотов x1/x4, x8/x16 соответственно;
  • +3,3Vaux — дополнительное питание, ток до 375 мА в системах, способных к пробуждению по сигналу от карты и до 20 мА в непробуждаемых системах.

Таблица. Разъемы PCI Express

Ряд B Ряд A
1 +12V PRSNT1#
2 +12V +12V
3 Резерв +12V
4 GND GND
5 SMB_CLK TCK
6 SMB_DATA TDI
7 GND TDO
8 +3.3 V TMS
9 TRST# +3.3 V
10 +3.3 Vaux +3.3 V
11 WAKE# PERST#
КЛЮЧ
12 Резерв GND
13 GND REFCLK+
14 PETp0 REFCLK-
15 PETn0 GND
16 GND PERp0
17 PRSNT2# PERn0
18 GND GND
Конец x1-коннектора
19 PETp1 Резерв
20 PETn1 GND
21 GND PERp1
22 GND PERn1
23 PETp2 GND
24 PETn2 GND
25 GND PERp2
26 GND PERn2
27 PETp2 GND
28 PETn2 GND
29 GND PERp3
30 Резерв PERn3
31 PRSNT2# GND
32 GND Резерв
Конец x4-коннектора
33 PETp4 Резерв
34 PETn4 GND
35 GND PERp4
36 GND PERn4
37 PETp5 GND
38 PETn5 GND
39 GND PERp5
40 GND PERn5
41 PETp6 GND
42 PETn6 GND
43 GND PERp6
44 GND PERn6
45 PETp7 GND
46 PETn7 GND
47 GND PERp7
48 PRSNT2# PERn7
49 GND GND
Конец x8-коннектора
50 PETp8 Резерв
51 PETn8 GND
52 GND PERp8
53 GND PERn8
54 PETp9 GND
..... ..... .....
79 PETn15 GND
80 GND PERp15
81 PRSNT2# PERn15
82 GND GND
Конец x16-коннектора

Для мобильных компьютеров PCMCIA ввела конструктив ExpressCard (см. следующий рисунок), для которого на системный разъем выводится два интерфейса: PCI Express (1x) и USB 2.0. Модули ExpressCard компактнее прежних карт PCMCIA (PC Card и CardBus); предлагается две модификации, различающиеся по ширине: ExpressCard/34 (34×75×5 мм) и ExpressCard/54 (54×75×5 мм). Толщина модулей всего 5 мм, но, если требуется, то более длинные модули могут иметь утолщения в части, выходящие за габариты корпуса компьютера (за пределами 75 мм от края разъема). Как и прежние карты PCIMCIA, карты ExpressCard доступны пользователям и поддерживают «горячее» подключение.

Для внутренних карт расширения блокнотных ПК введен конструктив Mini PCI Express (см. рисунок ниже), формат которого происходит от Mini PCI Type IIIA. Благодаря уменьшению числа контактов ширина карты уменьшена до 30 мм, так что на месте одной карты Mini PCI можно разместить пару карт Mini PCI Express. На разъем карты (см. таблицу ниже) кроме PCI Express выведены интерфейсы последовательных шин USB 2.0 (USB_D+ и USB_D-) и SMBus (SMB_CLK и SMB_DATA), питание +3,3 В (750 мА основное и 250 мА дополнительное) и +1,5 В (375 мА). Собственно интерфейс PCI Express (x1) занимает всего 6 контактов (выходы передатчика PETp0 и PETn0, входы приемника PERp0 и PERn0, а также сигналы опорной частоты 100 МГц REFCLK+ и REFCLK-. Сигнал PERST# — сброс карты, сигнал WAKE# — «пробуждение» (от карты). Сигналы LED_Wxxx# служат для управления светодиодными индикаторами состояния.

Таблица. Разъемы Mini PCI Express

Цепь Цепь
1 WAKE# 2 3.3 V
3 Резерв 4 GND
5 Резерв 6 1.5 V
7 Резерв 8 Резерв
9 GND 10 Резерв
11 REFCLK+ 12 Резерв
13 REFCLK- 14 Резерв
15 GND 16 Резерв
Ключ
17 Резерв 18 GND
19 Резерв 20 Резерв
21 GND 22 PERST#
23 PERn0 24 +3.3 V
25 PERp0 26 GND
27 GND 28 +1.5 V
29 GND 30 SMB_CLK
31 PETn0 32 SMB_DATA
33 PETp0 34 GND
35 GND 36 USB_D-
37 Резерв 38 USB_D+
39 Резерв 40 GND
41 Резерв 42 LED_WWAN#
43 Резерв 44 LED_WLAN#
45 Резерв 46 LED_WPAN#
47 Резерв 48 +1.5 V
49 Резерв 50 GND
51 Резерв 52 +3.3 V

С интерфейсом PCI Express удобно компонуются модули ввода/вывода и сетевых интерфейсов для серверов и коммуникационных устройств стоечного исполнения. Такие модули могут быть достаточно компактными (высота 2U не вызывает проблем размещения разъема), при этом производительности интерфейса достаточно даже для таких критичных модулей, как Fibre Channel, Gigabit Ethernet (GbE), 10GbE.

Интерфейс PCI Express принимается и для промышленных компьютеров, для чего имеются спецификации PICMG 3.4 (малогабаритные конструктивы для x1, x2 и x4), а также конструктивы в формате Compact PCI.

Интерфейс PCI Express существует и в кабельном исполнении для кабельных соединений блоков, находящихся на небольшом удалении друг от друга. Так, например, по PCI Express можно подключать док-станции к блокнотным ПК. Возможность вывода интерфейса системного уровня за пределы корпуса компьютера из предшественников PCI Express поддерживала только шина ISA, и то только при низких скоростях обмена (на частотах до 5 МГц). Из новых последовательных интерфейсов системного уровня эта возможность имеется и в InfiniBand. Наличие кабельного варианта высокопроизводительного интерфейса системного уровня может позволить отойти от традиционной компоновки компьютера, при которой в системном блоке концентрируются все компоненты, требующие интенсивного обмена с ядром компьютера.

Энциклопедичный YouTube

  • 1 / 5

    В отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда.

    Устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором.

    Кроме того, шиной PCI Express поддерживается:

    • гарантированная полоса пропускания (QoS);
    • управление энергопотреблением;
    • контроль целостности передаваемых данных.

    Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X . Де-факто PCI Express заменила эти шины в персональных компьютерах.

    Разъёмы

    • MiniCard (Mini PCIe) - замена форм-фактора Mini PCI . На разъём Mini Card выведены шины: x1 PCIe, USB 2.0 и SMBus.
    • ExpressCard - подобен форм-фактору PCMCIA . На разъём ExpressCard выведены шины x1 PCIe и USB 2.0, карты ExpressCard поддерживают горячее подключение.
    • AdvancedTCA - форм-фактор для телекоммуникационного оборудования.
    • Mobile PCI Express Module (MXM) - промышленный форм-фактор, созданный для ноутбуков фирмой NVIDIA . Его используют для подключения графических ускорителей.
    • Кабельные спецификации PCI Express позволяют доводить длину одного соединения до десятков метров, что делает возможным создание ЭВМ, периферийные устройства которой находятся на значительном удалении.
    • StackPC - спецификация для построения наращиваемых компьютерных систем. Данная спецификация описывает разъёмы расширения StackPC, FPE и их взаимное расположение.

    PCI Express X1

    Mini PCI-E

    Mini PCI Express - формат шины PCI Express для портативных устройств.

    Для этого стандарта разъёма выпускается много периферийных устройств:

    SSD Mini PCI Express

    • Питание 3.3 В

    ExpressCard

    Слоты ExpressCard на настоящее время (ноябрь 2010) применяются для подключения:

    • Плат SSD накопителей
    • Видеокарт
    • Контроллеров 1394/FireWire (iLINK)
    • Док-станций
    • Измерительных приборов
    • Памяти
    • Адаптеров карт памяти (CF, MS, SD, xD, и т. д.)
    • Мышей
    • Сетевых адаптеров
    • Параллельных портов
    • Адаптеров PC Card/PCMCIA
    • Расширения PCI
    • Расширения PCI Express
    • Дистанционного управления
    • Контроллеров SATA
    • Последовательных портов
    • Адаптеров SmartCard
    • ТВ-тюнеров
    • Контроллеров USB
    • Беспроводных сетевых адаптеров Wi-Fi
    • Беспроводных широкополосных интернет-адаптеров (3G, CDMA, EVDO, GPRS, UMTS, и т. д.)
    • Звуковых карт для домашнего мультимедиа и профессиональных аудиоинтерфейсов.

    Описание протокола

    Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка , называемое линией (англ. lane - полоса, ряд); это резко отличается от PCI , в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.

    Конкурирующие протоколы

    Кроме PCI Express, существует ещё ряд высокоскоростных стандартизованных последовательных интерфейсов, вот только некоторые из них: HyperTransport , InfiniBand , RapidIO , и StarFabric. Каждый интерфейс имеет своих сторонников среди промышленных компаний, так как на разработку спецификаций протоколов уже ушли значительные суммы, и каждый консорциум стремится подчеркнуть преимущества именно своего интерфейса над другими.

    Стандартизированный высокоскоростной интерфейс, с одной стороны, должен обладать гибкостью и расширяемостью, а с другой стороны, должен обеспечивать низкое время задержки и невысокие накладные расходы (то есть доля служебной информации пакета не должна быть велика). В сущности, различия между интерфейсами заключаются именно в выбранном разработчиками конкретного интерфейса компромиссе между этими двумя конфликтующими требованиями.

    К примеру, дополнительная служебная маршрутная информация в пакете позволяет организовать сложную и гибкую маршрутизацию пакета, но увеличивает накладные расходы на обработку пакета, также снижается пропускная способность интерфейса, усложняется программное обеспечение, которое инициализирует и настраивает устройства, подключенные к интерфейсу. При необходимости обеспечения горячего подключения устройств необходимо специальное программное обеспечение, которое бы отслеживало изменение в топологии сети. Примерами интерфейсов, которые приспособлены для этого, являются RapidIO, InfiniBand и StarFabric.

    В то же время, укорачивая пакеты, можно уменьшить задержку при передаче данных, что является важным требованием к интерфейсу памяти. Но небольшой размер пакетов приводит к тому, что доля служебных полей пакета увеличивается, что снижает эффективную пропускную способность интерфейса. Примером интерфейса такого типа является HyperTransport.

    Положение PCI Express - между описанными подходами, так как шина PCI Express предназначена для работы в качестве локальной шины, нежели шины процессор-память или сложной маршрутизируемой сети. Кроме того, PCI Express изначально задумывалась как шина, логически совместимая с шиной PCI, что также внесло свои ограничения.

    Введение

    Закон Мура гласит, что количество транзисторов на кристалле кремния, который выгодно производить, удваивается каждые пару лет. Но не нужно думать, что скорость процессора тоже удваивается каждые пару лет. Подобное заблуждение встречается у многих, и пользователи часто ожидают масштабирования производительности ПК по экспоненте.

    Впрочем, как вы наверняка заметили, топовые процессоры на рынке застряли на уровне между 3 и 4 ГГц уже лет шесть. И компьютерной индустрии пришлось искать новые способы увеличения производительности вычислений. Наиболее важный из этих способов заключается в поддержании баланса между компонентами платформы, которые используют шину PCI Express – открытый стандарт, который позволяет скоростным видеокартам, картам расширения и другим комплектующим обмениваться информацией. И интерфейс PCI Express не менее важен для масштабирования производительности, чем многоядерные процессоры. Если двуядерные, четырёхъядерные и шестиядерные процессоры можно нагрузить только с помощью приложений, оптимизированных под многопоточность, любая программа, установленная на вашем компьютере, так или иначе взаимодействует с компонентами, подключёнными через PCI Express.


    Многие журналисты и специалисты ожидали, что материнские платы и чипсеты с поддержкой интерфейса PCI Express 3.0 следующего поколения появятся в первом квартале 2010. К сожалению, проблемы с обратной совместимостью отсрочили выход PCI Express 3.0, и сегодня прошло уже полгода, но мы до сих пор ждём официальной информации по поводу публикации нового стандарта.

    Впрочем, мы пообщались с группой PCI-SIG (Special Interest Group, которая отвечает за стандарты PCI и PCI Express), что позволило нам получить некоторые ответы.

    PCI Express 3.0: планы

    Эл Янс (Al Yanes), президент и председатель PCI-SIG, и Рамин Нешати (Ramin Neshati), председатель PCI-SIG Serial Communications Workgroup, поделились текущими планами по поводу внедрения PCI Express 3.0.



    Нажмите на картинку для увеличения.

    23 июня 2010 вышла версия 0.71 спецификации PCI Express 3.0. Янс утверждал, что версия 0.71 должна устранить все проблемы с обратной совместимостью, которые привели к первоначальной задержке. Нешати отметил, что основная проблема с совместимостью заключалась в функции "DC wandering", которую он объяснил так, что устройства PCI Express 2.0 и более ранние "не давали нужных нуликов и единичек", чтобы соответствовать интерфейсу PCI Express 3.0.

    Сегодня, когда проблемы с обратной совместимостью решены, PCI-SIG готова представить базовую версию 0.9 "позднее этим летом". И за этой базовой версией ожидается уже версия 1.0 в четвёртом квартале этого года.

    Конечно, самый интригующий вопрос заключается в том, когда материнские платы PCI Express 3.0 появятся на прилавках магазинов. Нешати отметил, что он ожидает появления первых продуктов в первом квартале 2011 года (треугольник "FYI" на картинке с планом).

    Нешати добавил, что между версиями 0.9 и 1.0 не должно произойти изменений на уровне кристалла кремния (то есть все изменения будут затрагивать только программное обеспечение и прошивку), так что некоторые продукты должны выйти на рынок ещё до появления финальной спецификации 1.0. И продукты уже могут сертифицироваться для списка PCI-SIG "Integrator’s List" (треугольник "IL"), который является вариантом логотипа соответствия PCI-SIG.

    Нешати в шутку назвал третий квартал 2011 как дату "Fry’s and Buy" (вероятно, ссылаясь на сайты Frys.com, Buy.com или Best Buy). То есть в этот период мы должны ожидать появление большого количества продуктов с поддержкой PCI Express 3.0 в розничных магазинах и в интернет-магазинах.

    PCI Express 3.0: разработан для скорости

    Для конечных пользователей основное отличие между PCI Express 2.0 и PCI Express 3.0 будет заключаться в значительном увеличении максимальной пропускной способности. У PCI Express 2.0 сигнальная скорость передачи составляет 5 GT/s, то есть пропускная способность равняется 500 Мбайт/с для каждой линии. Таким образом, основной графический слот PCI Express 2.0, который обычно использует 16 линий, обеспечивает двунаправленную пропускную способность до 8 Гбайт/с.

    У PCI Express 3.0 мы получим удвоение этих показателей. PCI Express 3.0 использует сигнальную скорость 8 GT/s, что даёт пропускную способность 1 Гбайт/с на линию. Таким образом, основной слот для видеокарты получит пропускную способность до 16 Гбайт/с.

    На первый взгляд увеличение сигнальной скорости с 5 GT/s до 8 GT/s не кажется удвоением. Однако стандарт PCI Express 2.0 использует схему кодирования 8b/10b, где 8 бит данных передаются в виде 10-битных символов для алгоритма устранения ошибок. В итоге мы получаем 20% избыточность, то есть снижение полезной пропускной способности.

    PCI Express 3.0 переходит на намного более эффективную схему кодирования 128b/130b, устраняя 20% избыточность. Поэтому 8 GT/s – это уже не "теоретическая" скорость; это фактическая скорость, сравнимая по производительности с сигнальной скоростью 10 GT/s, если бы использовался принцип кодирования 8b/10b.



    Нажмите на картинку для увеличения.

    Мы поинтересовались у Янса насчёт устройств, которые потребуют повышение в скорости. Он ответил, что они будут включать "коммутаторы PLX, контроллеры Ethernet 40 Гбит/с, InfiniBand, твёрдотельные устройства, которые становятся всё популярнее, и, конечно, видеокарты". Он добавил "Мы не исчерпали инновации, они появляются не статически, это непрерывный поток", они открывают путь для дальнейших улучшений в будущих версиях интерфейса PCI Express.

    Анализ: где мы будем использовать PCI Express 3.0?

    Накопители

    AMD уже интегрировала поддержку SATA 6 Гбит/с в свою 8-ю линейку чипсетов, да и производители материнских плат добавляют контроллеры USB 3.0. Intel в этой области немного отстаёт, поскольку не поддерживает в чипсетах USB 3.0 или SATA 6 Гбит/с (у нас в лаборатории уже появились предварительные образцы материнских плат на P67, и у них присутствует поддержка SATA 6 Гбит/с, но USB 3.0 в этом поколении мы не получим). Впрочем, как мы уже неоднократно видели в противостоянии AMD и Intel, инновации AMD часто вдохновляют Intel. Учитывая скорости интерфейса накопителей следующего поколения и периферии, пока нет необходимости переносить любую из технологий на PCI Express 3.0. И для USB 3.0 (5 Гбит/с), и для SATA 6 Гбит/с (пока ещё не появилось накопителей, которые бы подошли к пределам этого интерфейса) будет достаточно одной линии PCI Express второго поколения.

    Конечно, когда дело касается накопителей, то взаимодействие между приводами и контроллерами – это только часть вопроса. Представьте себе массив из нескольких SSD с интерфейсом SATA 6 Гбит/с у чипсета, когда массив RAID 0 потенциально может нагрузить одну линию PCI Express второго поколения, которую большинство производителей материнских плат используют для подключения контроллера. Так что определиться с тем, могут ли интерфейсы USB 3.0 и SATA 6 Гбит/с действительно требовать поддержки PCI Express 3.0, можно после несложных подсчётов.



    Нажмите на картинку для увеличения.

    Как мы уже упоминали, интерфейс USB 3.0 даёт максимальную скорость 5 Гбит/с. Но и как стандарт PCI Express 2.1, USB 3.0 использует кодирование 8b/10b, то есть фактическая пиковая скорость составляет 4 Гбит/с. Поделите биты на восемь, чтобы преобразовать в байты, и вы получите пиковую пропускную способность 500 Мбайт/с – как раз такую же, что и у одной линии нынешнего стандарта PCI Express 2.1. SATA 6 Гбит/с работает со скоростью 6 Гбит/с, но здесь тоже используется схема кодирования 8b/10b, в результате которой теоретические 6 Гбит/с превращаются в фактические 4,8 Гбит/с. Опять же, преобразуйте это значение в байты, и вы получите 600 Мбайт/с или на 20% больше, чем может обеспечить линия PCI Express 2.0.

    Впрочем, проблема кроется в том, что даже самые быстрые SSD сегодня не могут полностью загрузить подключение SATA 3 Гбит/с. Периферия и близко не подходит к нагрузке интерфейса USB 3.0, то же самое можно сказать и про последнее поколение SATA 6 Гбит/с. По крайней мере, сегодня интерфейс PCI Express 3.0 не является необходимым для активного его продвижения на рынке платформ. Но будем надеяться, что по мере перехода Intel на производство флэш-памяти NAND третьего поколения, тактовые частоты будут возрастать, и мы получим устройства, способные превысить уровень 3 Гбит/с у портов SATA второго поколения.

    Видеокарты

    Мы проводили собственные исследования влияния пропускной способности PCI Express на производительность видеокарт – после выхода на рынок PCI Express 2.0 , в начале 2010 года , а также и совсем недавно . Как мы обнаружили, очень сложно нагрузить пропускную способность x16, которая на данный момент доступна у материнских плат PCI Express 2.1. Вам потребуется конфигурация на нескольких GPU или экстремальная high-end видеокарта на одном GPU, чтобы вы смогли обнаружить разницу между подключениями x8 и x16.

    Мы попросили AMD и Nvidia прокомментировать потребность в PCI Express 3.0 - потребуется ли эта скоростная шина для раскрытия всего потенциала производительности видеокарт следующего поколения? Представитель AMD сообщил нам, что пока не может давать комментарии.


    Нажмите на картинку для увеличения.

    Представитель Nvidia оказался более сговорчивым: "Nvidia играла одну из ключевых ролей в индустрии при разработке PCI Express 3.0, который должен в два раза увеличить пропускную работу стандарта текущего поколения (2.0). Когда происходят подобные существенные увеличения пропускной способности, то появляются приложения, которые могут их использовать. От нового стандарта выиграют потребители и профессионалы, благодаря увеличенной производительности графики и вычислений в ноутбуках, настольных ПК, рабочих станциях и серверах, где есть GPU".

    Возможно, ключевой можно назвать фразу "появятся приложения, которые могут их использовать". Похоже, в мире графики ничего не уменьшается. Дисплеи становятся больше, высокое разрешение выходит на смену стандартному разрешению, текстуры в играх становятся всё более детализованными и интригующими. Сегодня мы не считаем, что даже у новейших топовых видеокарт есть потребность в использовании интерфейса PCI Express 3.0 с 16 линиями. Но энтузиасты из года в год наблюдают повторение истории: прогресс технологии прокладывает путь для новых способов задействовать "более толстые трубы". Возможно, мы получим взрывной рост приложений, которые сделают вычисления на GPU более массовыми. Или, возможно, падение производительности, которое наблюдается при выходе за пределы памяти видеокарты, когда начинается подкачка из системной памяти, будет уже не таким ощутимым у массовых и low-end продуктов. В любом случае, нам предстоит увидеть инновации, которые PCI Express 3.0 позволит реализовать AMD и Nvidia.

    Подключения компонентов материнской платы

    AMD и Intel всегда очень неохотно делятся информацией по поводу интерфейсов, которые они используют для связи компонентов чипсета или логических "кирпичиков" в северном/южном мостах. Мы знаем скорость, с которой работают эти интерфейсы, а также и то, что они разрабатываются так, чтобы, по возможности, не создавать "узких мест". Иногда мы знаем, кто произвёл определённую часть системной логики, например, AMD использовала в SB600 контроллер SATA на основе разработки Silicon Logic. Но технологии, используемые для наведения мостиков между компонентами, часто остаются "белыми пятнами". PCI Express 3.0, конечно, кажется весьма привлекательным решением, наподобие интерфейса A-Link, который использует AMD.

    Недавнее появление контроллеров USB 3.0 и SATA 6 Гбит/с на большом количестве материнских плат тоже позволяет оценить ситуацию. Поскольку чипсет Intel X58 не предоставляет "родную" поддержку ни одной из двух технологий, компаниям, таким как Gigabyte, приходится интегрировать на материнские платы контроллеры, используя для их подключения доступные линии.

    У материнской платы Gigabyte EX58-UD5 нет поддержки ни USB 3.0, ни SATA 6 Гбит/с. Однако у неё есть слот x4 PCI Express.



    Нажмите на картинку для увеличения.

    Gigabyte заменила материнскую плату EX58-UD5 новой моделью X58A-UD5, которая имеет поддержку двух портов USB 3.0 и двух портов SATA 6 Гбит/с. Где Gigabyte нашла пропускную способность, чтобы поддержать две этих технологии? Компания взяла под одной линии PCI Express 2.0 для каждого контроллера, урезав возможности по установке карт расширения, но вместе с тем обогатив функциональность материнской платы.

    Помимо добавления USB 3.0 и SATA 6 Гбит/с, единственное заметное отличие между двумя материнскими платами касается удаления слота x4.



    Нажмите на картинку для увеличения.

    Позволит ли интерфейс PCI Express 3.0, как стандарты до него, добавлять на материнские платы будущие технологии и контроллеры, которые не будут присутствовать в текущих поколениях чипсетов в интегрированном виде? Как нам кажется, так и будет.

    CUDA и параллельные вычисления

    Мы вступаем в эпоху настольных суперкомпьютеров. В наших системах работают графические процессоры с интенсивной параллельной обработкой данных, а также блоки питания и материнские платы, способные поддерживать одновременную работу до четырёх видеокарт. Технология Nvidia CUDA позволяет преобразовать видеокарту в инструмент для программистов по расчётам не только в играх, но и в научных сферах, и в инженерных приложениях. Интерфейс программирования уже прекрасно зарекомендовал себя при разработке разнообразных решений для корпоративного сектора , включая обработку изображений в медицине, математику, работы по разведыванию месторождений нефти и газа.



    Нажмите на картинку для увеличения.

    Мы поинтересовались мнением программиста OpenGL Терри Велша (Terry Welsh) из компании Really Slick Screensavers насчёт PCI Express 3.0 и вычислений на GPU. Терри сообщил нам, что "PCI Express получил хороший рывок, и мне нравится, что разработчики удваивают пропускную способность когда захотят - как с версией 3.0. Однако в проектах, над которыми мне приходится работать, я не ожидаю увидеть какую-либо разницу. Большая часть моей работы связана с авиасимуляторами, но они, как правило, упираются в память и производительность ввода/вывода жёсткого диска; графическая шина не является "узким местом" вообще. Но я могу с лёгкостью предвидеть, что шина PCI Express 3.0 обусловит существенное продвижение вперёд для сферы вычислений на GPU; для людей, которые выполняют научную работу с большими массивами данных".



    Нажмите на картинку для увеличения.

    Возможность удвоить скорость передачи данных при работе с нагрузками, интенсивно использующими математику, безусловно, мотивирует разработки CUDA и Fusion. И в этом заключается одна из самых обещающих сфер для грядущего интерфейса PCI Express 3.0.

    Любой геймер с чипсетом Intel P55 может рассказать о преимуществах и недостатках Intel P55 по сравнению с чипсетом Intel X58. Преимущество: большинство материнских плат на чипсете P55 стоят более разумно, чем модели на Intel X58 (в целом, конечно). Недостаток: у P55 минимальные возможности по подключению PCI Express, основная задача возложена на процессоры Intel Clarkdale и Lynnfield, которые обладают 16 линиями PCIe второго поколения в самом CPU. Между тем, X58 может похвастаться 36 линиями PCI Express 2.0.

    Для покупателей P55, которые желают использовать две видеокарты, их придётся подключать через x8 линий каждую. Если вы захотите добавить к платформе Intel P55 третью видеокарту, то придётся использовать линии чипсета - но они, к сожалению, ограничены скоростью первого поколения, да и чипсет может выделить, максимум, четыре линии для слота расширения.

    Когда мы поинтересовались у Эла Янса из PCI-SIG тем, сколько линий можно ожидать в чипсетах с поддержкой PCI Express 3.0 от AMD и Intel, то он ответил, что это "частная информация", которую он "не может раскрыть". Конечно, мы не ожидали получить ответ, но вопрос всё равно задать стоило. Впрочем, вряд ли AMD и Intel, которые входят в состав PCI-SIG Board of Directors, стали бы инвестировать время и деньги в PCI Express 3.0, если бы они планировали использовать новый стандарт PCI Express просто как средство снижения числа линий. Как нам кажется, в будущем чипсеты AMD и Intel будут по-прежнему сегментироваться так, как мы наблюдаем сегодня, у high-end платформ будет достаточно возможностей для подключения пары видеокарт с полным интерфейсом x16, а у чипсетов для массового рынка число линий будет урезано.

    Представьте себе чипсет, подобный Intel P55, но с 16 доступными линиями PCI Express 3.0. Поскольку эти 16 линий работают в два раза быстрее PCI Express 2.0, то мы получим эквивалент 32 линиям старого стандарта. В такой ситуации от Intel будет зависеть, пожелает ли она сделать чипсет совместимым с конфигурациями 3-way и 4-way GPU. К сожалению, как мы уже знаем, чипсеты следующего поколения Intel P67 и X68 будут ограничены поддержкой PCIe 2.0 (а процессоры Sandy Bridge будут точно так же ограничены поддержкой 16 линий на кристалле).

    Помимо параллельных вычислений CUDA/Fusion, мы также видим рост возможностей систем для массового рынка благодаря повышению скорости связи компонентов PCI Express 3.0 - здесь, как нам кажется, тоже скрыт немалый потенциал. Вне всякого сомнения, PCI Express 3.0 улучшит возможности недорогих материнских плат, которые в предыдущем поколении были доступны только high-end платформам. А high-end платформы, получившие в своё распоряжение PCI Express 3.0, позволят нам поставить новые рекорды по производительности благодаря инновациям в графике, подсистеме хранения данных и сетевых технологиях, которые смогут использовать доступную пропускную способность шины.

    Этот вопрос мне задавали не один раз, поэтому сейчас я попробую максимально доступно и кратко ответить на него, для этого я приведу картинки слотов расширения PCI Express и PCI на материнской плате для более наглядного понимания и, конечно же, укажу основные отличия в характеристиках, т.е. совсем скора, Вы узнаете, что это за интерфейсы и как они выглядят.

    Итак, для начала давайте кратко ответим на такой вопрос, что же вообще такое PCI Express и PCI.

    Что такое PCI Express и PCI?

    PCI – это компьютерная параллельнаяшина ввода-вывода для подключения периферийных устройств к материнской плате компьютера. PCI используется для подключения: видеокарт, звуковых карт, сетевых карт, TV-тюнеров и других устройств. Интерфейс PCI является устаревшим, поэтому найти, например, современную видеокарту, которая подключается через PCI, наверное, не получится.

    PCI Express (PCIe или PCI-E) - это компьютерная последовательная шина ввода-вывода для подключения периферийных устройств к материнской плате компьютера. Т.е. при этом уже используется двунаправленное последовательное соединение, которое может иметь несколько линий (x1, x2, x4, x8, x12, x16 и x32) чем больше таких линий, тем выше пропускная способность у шины PCI-E. Интерфейс PCI Express используется для подключения таких устройств как: видеокарты, звуковые карты, сетевые карты, SSD накопители и другие.

    Существует несколько версий интерфейса PCI-E это: 1.0, 2.0 и 3.0 (скоро выйдет и версия 4.0 ). Обозначается данный интерфейс обычно, например, вот так PCI-E 3.0 x16 , что означает версия PCI Express 3.0 с 16 линиями.

    Если говорить о том будет ли работать, например, видеокарта, которая имеет интерфейсPCI-E 3.0 на материнской плате, которая поддерживает только PCI-E 2.0 или 1.0, так вот разработчики заявляют, что все работать будет, только конечно учтите, что пропускная способность будет ограничена возможностями материнской платы. Поэтому в этом случае переплачивать за видеокарту с более новой версией PCI Express я думаю, не стоит (если только на будущее, т.е. Вы, планируете приобрести новую материнскую плату с PCI-E 3.0 ). Также и наоборот допустим, у Вас материнская плата поддерживает версию PCI Express 3.0, а видеокарта версию скажем 1.0, то такая конфигурация также должна работать, но только с возможностями PCI-E 1.0, т.е. здесь никакого ограничения нет, так как видеокарта в этом случае будет работать на пределе своих возможностей.

    Отличия PCI Express от PCI

    Основное отличие в характеристиках это, конечно же, пропускная способность, у PCI Express она значительно выше, например, у PCI на частоте 66 МГц пропускная способность 266 Мб/сек, а у PCI-E 3.0 (x16) 32 Гб/сек .

    Внешне интерфейсы также отличаются, поэтому подключить, например, видеокарту PCI Express в слот расширения PCI не получится. Интерфейсы PCI Express с разным количеством линий также отличаются, все это я сейчас покажу на картинках.

    Слоты расширения PCI Express и PCI на материнских платах

    Слоты PCI и AGP

    Слоты PCI-E x1, PCI-E x16 и PCI

    Интерфейсы PCI Express на видеокартах

    На этом у меня все, пока!



Загрузка...