sonyps4.ru

Режимы работы lpt порта. Использование параллельных интерфейсов

Порт параллельного интерфейса был введен в PCдля подключения принтера -LPT-порт (Line PrinTer -построчный принтер).

Адаптер параллельного интерфейса представляет собой набор регистров, расположенных в пространстве ввода/вывода. Регистры порта адресуются от­носительно базового адреса порта, стандартными значениями которого являют­ся 386h, 378hи 278h. Порт имеетвнешнюю 8-битнуюшину дан­ных, 5-битнуюшину сигналовсостояния и 4-битнуюшину управляющих сиг­налов.

BIOSподдерживает до четырех LPT-портов (LPT1-LPT4) своим сервисом -прерыванием INT 17h,обеспечивающим через них связь с принтерами по интерфейсу Centronics.Этим сервисом BIOSосуществляет вывод символа, инициа­лизацию интерфейса и принтера, а также опрос состояния принтера.

Интерфейс Centronics

Понятие Centronicsотносится как к набору сигналов и протоколу взаимодейст­вия, так и к 36-контактному разъему, устанавливаемому на принтерах. Назна­чение сигналов приведено в табл. 1.

Таблица 1.

Сигналы интерфейса Centronics

Назначение

Строб данных. Данные фиксируются по низкому уровню сигнала

Линии данных. Data 0(контакт 2) -младший бит

Acknowledge -импульс подтверждения приема байта (запрос на прием сле­дующего). Может использоваться для формирования запроса прерывания

Занято. Прием данных возможен только при низком уровне сигнала

Высокий уровень сигнализирует о конце бумаги

Сигнализирует о включении принтера

Автоматический перевод строки.

Ошибка: конец бумаги, состояние OFF-Lineили внутренняя ошибка принтера

Инициализация

Выбор принтера (низким уровнем). При высоком уровне принтер не воспринимает остальные сигналы интерфейса

Общий провод интерфейса

Направление

(вход/выход) применительно к принтеру.

Интерфейс Centronicsподдерживается большинством принтеров с параллель­ным интерфейсом, его отечественным аналогом является интерфейсИРПР-М.

Традиционный lpt-порт

Традиционный порт SPP (Standard Parallel Port)является одно­направленным портом, на базе которого программно реализуется протокол обмена Centronics.Порт обеспечивает возможность вырабатывания запроса ап­паратного прерывания по импульсу на входе АСК#. Сигналы порта выводятся наразъем DB-25S (розетка), установленный непосредственно на плате адаптера (или системной плате) или соединяемый с ней плоским шлейфом. Название и назначение сигналов разъема порта (табл. 2)соответствуют интерфейсу Centronics.

Таблица 2.

Разъем стандартного LPT-порта

Контакт DB-25S

Провод шлейфа

Назначение

18, 20, 22, 24, 26

* I/Oзадает направление передачи (вход/выход) сигнала порта; 0/Iобозначает выходные линии, состояние которых считывается при чтении из соответствующих портов вывода.

**Символом «\» отмечены инвертированные сигналы (1в регистре соответствует низкому уров­ню линии).

***Вход Ack#соединен резистором (10кОм) с питанием +5В.

Стандартный порт имеет три 8-битных регистра, расположенных по сосед­ним адресам в пространстве ввода/вывода, начиная с базового адреса порта(BASE).

Data Register (DR) -регистр данных, адрес= BASE.Данные, записанные в этот порт,выводятся на выходные линии интерфейса. Данные, считанные из этого регистра, в зависимости от схемотехники адаптера соответствуют либо ранее записанным данным, либо сигналам на тех же линиях.

Status Register (SR) -регистр состояния, представляющий собой5-битный порт ввода сигналов состояния принтера (биты SR.4-SR.7),адрес= BASE+1.БитSR.7инвертируется -низкому уровню сигнала соответствует единичное значе­нию бита в регистре, и наоборот.

Назначение бит регистра состояния (в скобках даны номера контактов разъема):

SR.7-Busy -инверсные отображения состояния линии Busy (11);

SR.6 -АСК (Acknowledge) -отображения состояния линии Ack# (10).

SR.5 -РЕ (Paper End) -отображения состояния линии Paper End (12).

SR.4-Select -отображения состояния линии Select (13).Единичное зна­чение соответствуетcигналу о включении принтера.

SR.3-Error -отображения состояния линии Error (15).

SR.2 - PIRQ -флаг прерывания по сигналу Ack#(только для порта PS/2). Бит обнуляется, если сигнал Ack#вызвал аппаратное прерывание. Единич­ное значение устанавливается по аппаратному сбросу и после чтения ре­гистра состояния.

SR -зарезервированы.

Control Register (CR) -регистр управления, адрес=ВА5Е+2. Как и регистр дан­ных, этот4-битный порт вывода допускает запись и чтение (биты 0-3),но его выходной буфер обычно имеет типоткрытый коллектор. Это позволяет более корректно использовать линии данного регистра как входные при программи­ровании их в высокий уровень. Биты О, 1, 3инвертируются -единичному зна­чению в регистре соответствует низкий уровень сигнала, и наоборот.

Назначение бит регистра управления:

CR -зарезервированы.

CR.5 - Direction -бит управления направлением передачи (только для портов PS/2).Запись единицы переводит порт данных в режим ввода.

CR.4 -ACKINTEN (Ack Interrupt Enable) -единичное значение разрешает пре­рывание по спаду сигнала на линии Ackff -сигнал запроса следующего байта.

CR.3 - Select In -единичное значение бита соответствует низкому уровню на выходе Selecting (17) -сигналу, разрешающему работу принтера по интерфейсу Centronics.

CR.2 - Init -нулевое значение бита соответствует низкому уровню на выходе Imt# (16) -сигнал аппаратного сброса принтера.

CR.1 - Auto LF -единичное значение бита соответствует низкому уров­ню на выходе Auto LF# (14) -сигналу на автоматический перевод строки(LF - Line Feed)по приему байта возврата каретки (CR - Carriage Return).

CR.O -Strobe -единичное значение бита соответствует низкому уровню на выходе Strobeff (1) -сигналу стробирования выходных данных.

Запрос аппаратного прерывания (обычно IRQ7или IRQ5)вырабатывается по отрицательному перепаду сигнала на выводе 10разъема интерфейса (АСК#) при установке CR.4=1. Прерывание вырабатывается, когда принтер подтвер­ждает прием предыдущего байта.

Процедура вывода байта по интерфейсу Centronicsчерез стандартный порт включает следующие шаги (в скобках приведено требуемое количество шинных операций процессора):

Вывод байта в регистр данных (1цикл IOWR#).

Ввод из регистра состояния и проверка готовности устройства (бит SR.7 - сигнал BUSY).

По получении готовности выводом в регистр управления устанавливается строб данных, а следующим выводом строб снимается (2цикла lOWRff).

Стандартный порт сильно асимметричен -при наличии 12линий (и бит), нормально работающих на вывод, на ввод работает только 5линий состояния. Если необходима симметричная двунаправленная связь, на всех стандартных портах работоспособенрежим полубайтного обмена - Nibble Mode.В этом режи­ме, называемым также и Hewlett Packard Bitronics,одновременно передаются 4бита данных, пятая линия используется для квитирования.

Компьютер обрабатывает сигналы параллельными потоками, поэтому ему легче «общаться» с параллельными, а не с последовательными внешними портами. В 1984 г. в составе IBM PC впервые появился параллельный порт. Задуман он был как средство подключения матричных принтеров, отсюда и название LPT - Line PrinTer или Line Printer Terminal. В дальнейшем для принтеров стали использовать быстродействующий интерфейс USB, а LPT-порт начал постепенно вытесняться из компьютерных спецификаций. Остряки сравнивают LPT с чемоданом без ручки - и выбросить жалко, и тащить невозможно. Тем не менее, «ветеран» ещё на многое способен, если, конечно, он присутствует в конкретном компьютере.

Разъём LPT-порта имеет 25 контактов. Нормой «де-факто» считается розетка DB-25F в компьютере и вилка DB-25M в ответном кабеле (Табл. 4.2). Нумерация контактов вилок и розеток зеркальная (Рис. 4.7, а, б).

Таблица 4.2. Раскладка сигналов в 25-контактном разъёме LPT-порта

Расшифровка

Направление

Вход/выход

Вход/выход

Подтверждение

Готовность

Нет бумаги

Автоперенос

Вход/выход

Инициализация

Вход/выход

Выбор входа

Вход/выход

Рис. 4.7. Внешний вид спереди 25-контактных разъёмов LPT-порта: а) розетка DB-25F в компьютере; б) вилка DB-25M в соединительном кабеле.

Первоначально линии LPT-порта были однонаправленными SPP (Standard Parallel Port). Часть из них работала только на вход, часть - только на выход, что по набору сигналов и протоколу обмена соответствовало принтерному интерфейсу «Centronics». В 1994 г. был утверждён новый стандарт параллельного интерфейса IEEE 1284, предусматривающий двунаправленные линии и три режима работы: SPP, EPP (Enhanced Parallel Port), ECP (Extended Capabilities Port).

Уровни электрических сигналов LPT-порта совпадают с обычными «пятивольтовыми» логическими микросхемами. Раньше в компьютерах применялись буферные TTJl-микросхемы серии 74LSxx, позднее - КМОП-микросхемы и БИС, примерно эквивалентные серии 74ACxx. В последнем случае можно ориентировочно считать, что НИЗКИЙ уровень равен 0.1..0.2 В, а ВЫСОКИЙ - 4.5…4.9 В.

Стандартом регламентируется нагрузка 14 мА по каждому выходу при сохранении напряжения не менее +2.4 В ВЫСОКОГО и не более +0.4 В НИЗКОГО уровня. Однако в разных материнских платах выходные буферы LPT-порта могут иметь разную нагрузочную способность, в том числе и ниже стандарта («слабый» порт).

Требования к соединительным кабелям, подключаемым к LPT-порту:

Сигнальные провода должны быть свиты в пары с общим проводом GND;

Каждая пара должна иметь импеданс 56…68 Ом в диапазоне частот 4… 16 M Гц;

Если применяется плоский ленточный кабель, то сигнальные провода должны физически чередоваться с общим проводом GND (локальные экраны);

Уровень перекрёстных помех между сигналами не более 10%;

Кабель должен иметь экран, покрывающий не менее 85% внешней поверхности. На концах кабеля экран должен быть окольцован и соединён с «земляным» контактом разъёма;

В разъёме кабеля можно запаять на контакты 1…17 последовательные резисторы C2-23 (OMJIT-O.125) сопротивлением 100…300 Ом (Рис. 4.8). Это позволит защитить компьютер от случайных коротких замыканий в нагрузке и уменьшить высокочастотный «звон» на фронтах сигналов.

Рис. 4.8. Электрическая схема LPT-кабеля с «антизвонными» резисторами.

Схемы соединения MK с LPT-портом можно разделить на три группы:

Приём сигналов от компьютера (Рис. 4.9, а…з);

Передача сигналов в компьютер (Рис. 4.10, а…д);

Приём/передача сигналов одновременно (Рис. 4.11, a…e).

В схемах приняты некоторые упрощения. В качестве входного сигнала указывается в основном «DO», а в качестве выходного - «АСК», хотя могут быть и другие, перечисленные в Табл. 4.2. На каждом конкретном компьютере работоспособность самодельных схем необходимо проверять экспериментально, что связано с наличием «сильных» и «слабых» LPT-портов по нагрузочной способности.

Рис. 4.9. Схемы ввода сигналов из LPT-порта в MK (начало):

а) резистор R1 ограничивает входной ток. Элементы R2, C1 могут отсутствовать, но они уменьшают «звон» на фронтах сигналов при длинном кабеле;

б) буферный транзистор VT1 инвертирует сигнал. Диод VD1 не обязателен, но он защищает транзистор от ошибочной подачи большого отрицательного напряжения. Если не ставить резистор R2, то схема останется работоспособной, однако при отстыковке кабеля от LPT-порта возможны ложные срабатывания транзистора VT1 от внешних помех и наводок;

в) диод VD1 отсекает помехи и повышает порог срабатывания транзистора VT1. Резистор R1 надёжно закрываеттранзистор VT1 при НИЗКОМ уровне с LPT-порта;

г) буферный логический элемент DD1 имеет выход с открытым коллектором. Фронты сигналов формируются элементами R1, C1. Можно вместо инвертора DD1 поставить повторитель К155ЛП9, сделав соответствующие изменения в программе MK и компьютера;

д) триггер Шмитта DD1 (замена - К555ТЛ2) повышает помехоустойчивость. Чем меньше сопротивление резисторов R1, R2, тем больше крутизна фронтов сигнала. При отключённом кабеле от LPT-порта резистор R1 не даёт входу микросхемы DD1 «висеть в воздухе»;

е) последовательное включение двух логических элементов DD11, /)/)/.2увеличивает (восстанавливает) крутизну фронтов сигнала. Резистор R1 устраняет выбросы, «звон»;

Рис. 4.9. Схемы ввода сигналов из LPT-порта в MK (окончание):

ж) данные, поступающие от LPT-порта, предварительно помещаются в промежуточный регистр DD1. Запись производится при ВЫСОКОМ уровне на входе «С» микросхемы DD1, хранение - при НИЗКОМ. Такое решение устраняет помехи, поскольку в LPT-порт в зависимости от установленных в компьютере драйверов периодически могут выводиться случайные данные. Их устраняют программно, например, путём многократного считывания входного сигнала с линий MK;

з) буферизация LPT-порта мощными транзисторными ключами, находящимися в микросхеме DA1 фирмы Texas Instruments. Резисторы R1…R8 могут иметь в 10… 15 раз более низкие сопротивления, что позволяет подключить параллельно выходам микросхемы А4/другие узлы устройства.

Рис. 4.10. Схемы вывода сигналов из MK в LPT-порт (начало):

а) непосредственное подключение выхода MK без буферных элементов. Резисторы R1, R2 уменьшают отражение сигналов в линии. Кроме того, резистор R2 защищает выход MK от случайного короткого замыкания с цепью GND в проводах соединительного кабеля;

б) триггер Шмитта DD1 служит защитным буфером для MK при аварийной ситуации на выходе (короткое замыкание или подача большого напряжения);

в) микросхема DD1 имеет выход с открытым коллектором, что защищает её от короткого замыкания в проводах и разъёмах соединительного кабеля;

г) подача двух противофазных сигналов в компьютер. Цель - программная необходимость или организация дублирующего (контрольного) канала передачи данных;

д) опторазвязка на элементах HL1, BL1, которые применяются в компьютерных механических «мышах». Транзистор КГ/усиливает и инвертирует сигнал. Для нормальной работы устройства компьютер должен выставить ВЫСОКИЙ уровень на линии «D8».

Рис. 4.11. Комбинированные схемы ввода/вывода сигналов между MK и LPT-портом (начало):

а) если компьютер выставляет на линии «DO» ВЫСОКИЙ уровень, то MK в режиме выхода может генерировать сигнал «АСК» через резистор R1. Если MK переводится в режим входа, то компьютер может передавать ему данные по линии «DO» через диод VD1 при этом внутренний « pull-up» резистор MK формирует ВЫСОКИЙ уровень;

б) сигнал от LPT-порта вводится в MK через инвертор на транзисторе VT1 при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «D2». Информация в MK вводится с линии «DO» через резистор R1 Высокое сопротивление резистора R1 физически развязывает входной и выходной каналы;

Рис. 4.11. Комбинированные схемы ввода/вывода сигналов между MK и LPT-портом (окончание):

б) сигнал от LPT-порта вводится в MK через инвертор на транзисторе VT1, при этом компьютер должен выставить НИЗКИЙ уровень на линии «DO». Информация в МК вводится через элементы R1, R3, VT2;

г) сигнал от LPT-порта вводится в MK через повторитель на транзисторе VT1, при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «DO». Информация в MK вводится через повторитель на микросхеме DD1\

ж) сигналы «D0»…«D3» вводятся в MK при НИЗКОМ уровне на линии «INIT», при этом компьютер должен настроить линии «D4»…«D7» как входы. В настройках BIOS компьютера надо установить двунаправленный режим EPP или ЕСР для LPT-порта. Информация в компьютер из МК передаётся по линиям «D4»…«D7» при ВЫСОКОМ уровне на линии «INIT». Резистор R1 переводит выходы микросхемы DD1 в Z-состояние при отключённом кабеле от LPT-порта;

e) сигнал от MK в LPT-порт вводится через повторитель DD1.2, при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «D2» и НИЗКИЙ уровень на линии «D5». Информация в MK вводится через повторитель DD1.1 при НИЗКОМ уровне налинии «D2». Стробирование сигналов по входам «Е1», «Е2» микросхемы DD1 повышает достоверность передачи данных.

Скачать распиновку порта принтера:

IEEE 1284 (порт принтера, параллельный порт, англ. Line Print Terminal, LPT) - международный стандарт параллельного интерфейса

В основе данного стандарта лежит интерфейс Centronics и его расширенные версии (ECP, EPP).

Название «LPT» образовано от наименования стандартного устройства принтера «LPT1» (Line Printer Terminal или Line PrinTer) в операционных системах семейства MS-DOS. Интерфейс Centronics и стандарт IEEE 1284

Параллельный порт Centronics - порт, используемый с 1981 года в персональных компьютерах фирмы IBM для подключения печатающих устройств, разработан фирмой Centronics Data Computer Corporation; уже давно стал стандартом де-факто, хотя в действительности официально на данный момент он не стандартизирован.

Изначально этот порт был разработан только для симплексной (однонаправленной) передачи данных, так как предполагалось, что порт Centronics должен использоваться только для работы с принтером. Впоследствии разными фирмами были разработаны дуплексные расширения интерфейса (byte mode, EPP, ECP). Затем был принят международный стандарт IEEE 1284, описывающий как базовый интерфейс Centronics, так и все его расширения.

Виды Разъёмов паралельного порта

Кабельный 36-контактный разъём Centronics для подключения внешнего устройства (IEEE 1284-B)

25-контактный разъём DB-25, используемый как LPT-порт на персональных компьютерах (IEEE 1284-A)

Порт на стороне управляющего устройства (компьютера) имеет 25-контактный 2-рядный разъём DB-25-female ("мама") (IEEE 1284-A). Не путать с аналогичным male-разъёмом ("папа"), который устанавливался на старых компьютерах и представляет собой 25-пиновый COM-порт.

На периферийных устройствах обычно используется 36-контактный микроразъем ленточного типа Centronics (IEEE 1284-B), поэтому кабели для подключения периферийных устройств к компьютеру по параллельному порту обычно выполняются с 25-контактным разъёмом DB-25-male на одной стороне и 36-контактным IEEE 1284-B на другой (AB-кабель). Изредка применяется AC-кабель с 36-контактным разъемом MiniCentronics (IEEE 1284-C) .

Существуют также CC-кабеля с разъёмами MiniCentronics на обоих концах, предназначенные для подключения приборов в стандарте IEEE 1284-II, который применяется редко.

Длина соединительного кабеля не должна превышать 3 метров. Конструкция кабеля: витые пары в общем экране, либо витые пары в индивидуальных экранах. Изредка используются ленточные кабели.

Для подключения сканера, и некоторых других устройств используется кабель, у которого вместо разъема (IEEE 1284-B) установлен разъем DB-25-male. Обычно сканер оснащается вторым интерфейсом с разъемом DB-25-female (IEEE 1284-A) для подключения принтера (поскольку обычно компьютер оснащается только одним интерфейсом IEEE 1284).

Схемотехника сканера построена таким образом, чтобы при работе с принтером сканер прозрачно передавал данные с одного интерфейса на другой. Физический интерфейс

Интерфейс разъема

Базовый интерфейс Centronics является однонаправленным параллельным интерфейсом, содержит характерные для такого интерфейса сигнальные линии (8 для передачи данных, строб, линии состояния устройства).

Данные передаются в одну сторону: от компьютера к внешнему устройству. Но полностью однонаправленным его назвать нельзя. Так, 4 обратные линии используются для контроля за состоянием устройства. Centronics позволяет подключать одно устройство, поэтому для совместного очерёдного использования нескольких устройств требуется дополнительно применять селектор.

Скорость передачи данных может варьироваться и достигать 1,2 Мбит/с.

Стандартные шнуры провода кабеля Centronics IEEE 1284 Printer lpt:

Упрощённая таблица - схема сигналов интерфейса Centronics LPT - разъема

Контакты
DB-25 IEEE 1284-A
Контакты
Centronics IEEE 1284-B
Обозначение Примечание Функция
1 1 Strobe Маркер цикла передачи (выход) Управление Computer
2 2 Data Bit 1 Сигнал 1 (выход) Данные Computer
3 3 Data Bit 2 Сигнал 2 (выход) Данные Computer
4 4 Data Bit 3 Сигнал 3 (выход) Данные Computer
5 5 Data Bit 4 Сигнал 4 (выход) Данные Computer
6 6 Data Bit 5 Сигнал 5 (выход) Данные Computer
7 7 Data Bit 6 Сигнал 6 (выход) Данные Computer
8 8 Data Bit 7 Сигнал 7 (выход) Данные Computer
9 9 Data Bit 8 Сигнал 8 (выход) Данные Computer
10 10 Acknowledge Готовность принять (вход) Состояние Printer
11 11 Busy Занят (вход) Состояние Printer
12 12 Paper End Нет бумаги (вход) Состояние Printer
13 13 Select Выбор (вход) Состояние Printer
14 14 Auto Line Feed Автоподача (выход) Управление Computer
15 32 Error Ошибка (вход) Состояние Printer
16 31 Init Инициализация (выход) Initialize Printer (prime-low) Управление Computer
17 36 Select In Управление печатью (выход) Select Input Управление Computer
18-25 16-17, 19-30 GND Общий Земля

Распайку порта Centronics IEEE 1284 Printer Cable lpt - com9 можно и в виде картинки-изображения

Порт «LPT» редко встречается на современных компьютерах. Это специальный разъем компьютера для подключения принтера. Некоторые компьютеры были снабжены несколькими портами «LPT». Эти порты нумеровались: «LPT1», «LPT2» и так далее.

Параллельные порты

Исторически так сложилось, что порты для подключения компьютера разделены на категории: серийные и параллельные порты. «LPT» относится к параллельным портам. Это значит, что информация перемещается по восьми различным проводам, то есть одновременно и параллельно. Компьютеры имеют дело с двоичной информацией. Двоичность преобразует информацию в массивы нулей и единиц. Одно двоичное число (ноль или единица) называется битом. Группа из восьми бит называется байтом. Восемь бит каждого байта, которые перемещаются из компьютера в параллельный порт, перемещаются одновременно. Другой тип кабеля, подключенный к серийному порту, перемещает восемь бит каждого байта друг за другом.

Значение

У параллельного порта есть название. По умолчанию название для единственного параллельного порта компьютера «LPT1». Данный вид портов в основном используется для подключения принтера. К таким портам можно подключить и другие устройства, однако пользователи используют принтер гораздо чаще, чем другие устройства. Подключение принтера к компьютеру делает его «периферией». «Периферийным» может быть любое подключенное с помощью специального кабеля к компьютеру дополнительное устройство. Это «периферийное» оборудование одновременно может использоваться только одним компьютером. Единственный способ подключить уже подключенное «периферийное» устройство к другому компьютеру, чтобы использовать принтер, подключенный к первому компьютеру – с помощью сети и программного обеспечения. Этот процесс отличен от сетевого принтера, который подключается к сети, а не к одному компьютеру. В этом случае используется другой тип кабеля и другой тип порта.

Подключение

Параллельный порт «LPT» и соответствующий разъем имеет 25 штифтов и называется «DB-25», либо «D-Type 25». В разъеме штифты оголены. Они вставляются в 25 отверстий параллельного порта. Восемь из 25 штифтов отвечают за передачу данных, остальные несут либо данные управления, либо инструкции принтера вроде сообщений от принтера о отсутствии бумаги в принтере.

Будущее

Сетевые принтеры подключаются к компьютеру не с помощью порта «LPT», а с помощью порта «Ethernet». К порту «LPT» можно подключить не только принтер, но и другие устройства. Сегодня «периферийные» устройства не используют параллельные порты. И порты «LPT», и серийные порты сегодня ушли в историю и на смену им пришел «USB» порт, либо сетевой порт. Способность беспроводного подключения новых принтеров и периферийных устройств предоставляет еще одну альтернативу «LPT» порту, как способу подключения принтера к компьютеру.

Интерфейс LPT

Интерфейс LPT также часто называют параллельным (имеется ввиду параллельный порт). Из его названия следует, что обмн данными происходит в этом интерфейсе параллельно Это означает, что биты передаются не один за другим, как это делается в последовательных интерфейсах, а несколько бит передаются одновременно (паралельно), или, точнее, рядом, друг возле друга. То число бит, которое может быть передано за один такт, определяет разрядность интерфейса. Интерфейс LPT является 8-разрядным. Существует также множество других паралельных интерфейсов (например, SCSI, PCI и др.), поэтому название "параллельный" здесь не совсем корректно и оно вовсе не означает, что LPT "параллельнее" остальных - просто исторически сложилось такое название, и нет особых причин его менять.

Сегодня параллельный порт есть в каждом компьютере. Первоначально он предназначался исключительно для подключения принтера (LPT означает Line PrinTer), но впоследствии стали появляться и другие устройства: сканеры, мобильные дисководы, цифровые фотоаппараты, так что сейчас работа параллельного интерфейса не ограничивается только принтером, хотя в большинстве случаев это именно так и есть. LPT также часто называют Centronics в честь соответствующей фирмы, ставшей основным разработчиком параллельного порта. Соответственно и кабель для подключения принтера к РС тоже называется Centronics. Но это тоже не совсем правильно, так как разъем, непосредственно подключаемый к компьютеру, представленный в виде 25-контактной вилки (рисунок, верхняя часть), называют Amphenolstakcer, а собственно разъем Centronics находится на другом конце кабеля, идущего к устройству (нижняя часть рисунка), он тоже представлен в виде вилки, но имеет 36 контактов.

Передача данных по кабелю может вестись только в одном направении. Но некоторые устройства (современные принтеры, дисководы ZIP и т. д.) позволяют осуществлять и обратную связь. Для это го нужен другой кабель, называемый Bitronics. Внешне он (и его разъемы) ничем не отличается от кабеля Centronics, но там нужен еще и улучшенный параллельный порт (EPP/ECP), о котором речь пойдет дальше. Назначение контактов кабеля Centronics вы можете посмотреть в таблице.

25-контактный разъем 36-контактный разъем Обозначение сигнала Вход/выход Назначение
1 1 STROBE Выход Готовность данных
2 2 D0 (Data0) Выход 1 бит данных
3 3 D1 (Data1) Выход 2 бит данных
4 4 D2 (Data2) Выход 3 бит данных
5 5 D3 (Data3) Выход 4 бит данных
6 6 D4 (Data4) Выход 5 бит данных
7 7 D5 (Data5) Выход 6 бит данных
8 8 D6 (Data6) Выход 7 бит данных
9 9 D7 (Data7) Выход 8 бит данных
10 10 ACK (acknoledge) Вход Подтверждение приема данных
11 11 BUSY Вход Принтер не готов к приему (занят)
12 12 PE (Paper End) Вход Конец бумаги
13 13 SLCT (Select) Вход Контроль состояния принтера
14 14 AF (Auto Feed) Выход Автоматический первод строки (LF) после перевода каретки (CR)
15 32 ERROR Вход Ошибка
16 31 INIT (Initialize Printer) Выход Инициализация принтера
17 36 SLCT IN (Select In) Выход Принтер в состоянии On-Line
18 33 GND (Ground) - Корпус
19 19 GND (Ground) - Корпус
20 20 GND (Ground) - Корпус
21 21 GND (Ground) - Корпус
22 22 GND (Ground) - Корпус
23 23 GND (Ground) - Корпус
24 24 GND (Ground) - Корпус
25 25 GND (Ground) - Корпус
- 15 GND/NC (Ground/No Connect) - Корпус/свободный
- 16 GND/NC (Ground/No Connect) - Корпус/свободный
- 17 GND (Ground) - Корпус для монтажной платы принтера
- 18 +5 V DC (External +5 V) Вход +5 V
- 26 GND (Ground) - Корпус
- 27 GND (Ground) - Корпус
- 28 GND (Ground) - Корпус
- 29 GND (Ground) - Корпус
- 30 GND (Ground) - Корпус
- 34 NC (No Connect) - Корпус
- 35 +5 V DC/NC (External +5 V/No Connect) - +5 V/свободный

BIOS компьютера подерживает до трех параллельных портов (которые на практике редко кому требуются). Микросхема одного порта уже встроена в чипсет на материнской плате, другие могут находиться на картах расширения. Раньше такие карты широко использовались, потому что чипсет не имел соответствующих контролеров, но сейчас они вымерли и давно не производятся. Но если есть желание, можно покопаться на рынке в компьютерном хламе и найти такую карточку (на ней также есть два последовательных порта и, как правило, игровой порт и IDE-контроллер) и поставить ее в свой компьютер (правда, здесь может возникнуть проблема, куда ее вставлять, потому что они делались для шины ISA, а теперь хорошую материнскую плату со слотами ISA тяжеловато найти). При загрузке система анализирует наличие параллельных портов по трем базовым адресам: 03BCh, 0378h и затем 0278h. Первому найденному порту присваевается имя LPT1, второму LPT2 и третьему LPT3. LPT1 еще иногда называют PRN (сокращение от printer), потому что к нему, как правило, подключается принтер.

Как вы, наверное, догадались, название "LPT" тоже не совсем правильно. LPT - это название стандартного параллельного порта, самого первого, который сейчас уже вряд ли можно найти даже на рынке. Есть еще паралельные порты, называемые соответственно EPP и ECP. Но обо всем по порядку.

Стандартный парвллельный порт (LPT)

Стандартный параллельный порт, которым обладали самые первые персональные компьютеры, им оснащенные, был предназначен только для односторонней передачи данных от PC к принтеру. Он обеспечивает пропускную способность от 120 до 200 Kb/s. Как уже было сказано, он устарел.

Порт EPP

Фирмы Intel, Xircon, Zenith и ряд других совместно разработали спецификацию улучшенного параллельного порта, назвав ее EPP (Enhanced Parralel Port ).

Порт EPP является дуплексным, то есть обеспечивает передачу восьми битов данных в двух направлениям. Он поддерживает режим, при котором порт, за счет использования DMA, может пересылать информацию из RAM на устройство и обратно минуя процессор, что снижает нагрузку на последний.

EPP принимает и передает данные в несколько раз быстрее, чем стандартный LPT. Этому также способствует буфер, сохраняющий данные до того, как устройство будет способно их принять. Он позволяет подключать устройства количеством до 64 в цепочку, подобно SCSI. Для этого некоторые устройства (например, ZIP-дисковолы) имеют два разъема - один на вход, другой на выход для следующего устройства.

Порт EPP полностью совместим со стандартным портом. Для использования его спецфических функций нужна только BIOS, их поддерживающая. Максимальная скорость передачи может достигать 2 Mbps.

Порт ECP

Дальнейшим развитием параллельного порта явился порт ECP (Extended Capability Port ). Скорость передачи данных по сравнению с EPP немного возрасла, в ECP, также как и в EPP, используется метод DMА. Он позволяет создавать цепочку из 128 устройств.

Одной из самых важных функций, рализованных в ECP, является сжатие данных. Это позволяет еще больше повысить реальную скорость передачи. Сжатие возмодно как программно, путем применения драйвера, так и аппаратно самой схемой порта. Для сжатия используется метод RLE (Run Length Encoding ), при которм последовательность из повторяющихся символов передается двумя байтами: первый определяет повторяющийся байт, а второй - число повторений. Данная функция, однако, не является обязательной. Она работает только в том случае, когда и устройство поддерживает ее. Если таковой поддержки нет, то порт обменивается данными с устройством без сжатия.

Режимы параллельного порта (AT, EPP, ECP) можно выставить в CMOS Setup. Если вс работает нормально, то в любом случае ставьте EPP/ECP. Если порт поддерживает эти режимы (а это любой современный параллельный порт), то эта опция, как правило, уже установлена как оптимальное значение.

Стандарт IEEE 1284

Стандарты портов ECP и EPP были включены в стандарт Американского института инженеров по электротехнике и электронике IEEE 1284 (не путать с IEEE 1394). Большинство современных лазерных принтеров используют этот стандарт.

Стандарт IEEE 1284 определяет четыре режима работы: полубайтовый, байтовый, EPP и ECP, то есть поддерживает все ранее существовавшие стандарты параллельного порта. Все эти режимы также поддерживают двунаправленную передачу. Дополнительно к этим уже рассмотрененным функциям стандарт IEEE 1284 позволяет принтеру послать сигнал при аварии. Всякий раз при возникновении ошибки параллельный порт посылает сигнал прерывания (IRQ). (15-й контакт обычного паралельного порта не использовался для прерывания процессора, и ошибка могла быть обнаружена только если программа (драйвер) предусматривала контроль этой линии.)

Как уже упоминалось, к параллельному порту могут подключаться не только принтеры, но и другие устройства. Существуют даже конвертеры (правда, вряд ли они кем-либо используются) LPT to IDE, которые позволяют подключить к параллельному порту жесткий диск. Однако это, по-моему, уже извращение. Возможностей параллельного порта еле-еле хватает для принтеров, да и то лазерные принтеры заметно тормозят, а печать сложных графических изображений на них (да и на струйных, впрочем, тоже, хотя и в гораздо меньшей степени) будет идти с очень капитальными замедлениями. Например, картинка размером с лист A4 и разрешением порядка 600 точек на дюйм может иметь размеры не в одну сотню мегабайт (правда, лазерный принтер тогда должен иметь не меньшее количество оперативной памяти), и можно представить, сколько будет продолжаься ее передача по параллельному порту со средней скоростью 0.8-1.2 Mb/s. А что уж там говорить о мобильных дисководах, сканерах? А в случае с жестким диском прокачка нескольких гигабайт через параллельный порт может вдохновить разве что лишь самого отчаянного последователя господина Мазоха, да и то, наверное, ему надоест ждать. Так то подключать к LPT что-нибудь кроме принтера или переносного дисковода типа ZIP, когда требуется перенести не слишком большое количество данных на другой компьютер, я бы, честно говоря, не посоветовал бы. Лазерные принтеры в связи тем, что они формируют перед печатью страницу целиком, тоже очень желательно подсоединить к чему-то другому, например, к USB (если принтер не имеет возможности работы через USB, то можно воспользоваться переходником USB to LPT). А для сканеров и дисков существуют SCSI и Mobile Rack. Естественно, все это стоит денег, но тогда же зачем, простите, если нет денег, из всякого отстоя город городить. Да к тому же сейчас все РС имеют USB-разъемы, а периферии с соответствующим интерфейсом по вполне приемлимой цене в магазинах тоже хватает. Конечно, я не хочу сказать, что USB намного быстрее, чем LPT (для тех же сканеров, если вы не хотите наслаждаться притормаживаниями, нужен SCSI а не USB), но все же пропускная способность шины USB немного (на 30-35%) выше, чем пропускная способность параллельного порта. Следует еще отметить, что параллельный интерфейс уже устарел как таковой, и производители периферии давно начали потихоньку сворачивать ее выпуск в LPT-варианте, переходя на USB. Поэтому, когда вы идете в магазин за принтером (или за сканером, но не хотите платить за сканер со SCSI-контроллером), то подумайте, а стоит ли покупать антиквариат с целью выгодно продать его лет этак через 200, может все-таки лучше обзавестись чем-нибудь посовременнее?



Загрузка...