sonyps4.ru

Фазовая манипуляция волс восп psk. Фазовые виды манипуляции (BPSK, QPSK, M-PSK)

Цифровая фазовая модуляция - это универсальный и широко используемый метод беспроводной передачи цифровых данных.

В предыдущей статье мы видели, что мы можем использовать дискретные изменения амплитуды или частоты несущей как способ представления единиц и нулей. Неудивительно, что мы также можем представлять цифровые данные с помощью фазы; этот метод называется фазовой манипуляцией (PSK, phase shift keying).

Двоичная фазовая манипуляция

Наиболее простой тип PSK называется двоичной фазовой манипуляцией (BPSK, binary phase shift keying), где «двоичный» относится к использованию двух фазовых смещений (одно для логической единицы и одно для логического нуля).

Мы интуитивно можем признать, что система будет более надежной, если разделение между этими двумя фазами будет большим - конечно, приемнику будет сложно различать символ со смещением фазы 90° от символа со смещением фазы 91°. Для работы у нас есть диапазон фаз 360°, поэтому максимальная разница между фазами логической единицы и логического нуля составляет 180°. Но мы знаем, что переключение синусоиды на 180° - это то же самое, что ее инвертирование; таким образом, мы можем думать о BPSK как о простом инвертировании сигнала несущей в ответ на одно логическое состояние и оставление ее в исходном состоянии в ответ на другое логическое состояние.

Чтобы сделать следующий шаг, мы вспомним, что умножение синусоиды на отрицательную единицу - это то же самое, что ее инвертирование. Это приводит к возможности внедрения BPSK с использованием следующей базовой аппаратной конфигурации:

Базовая схема получения BPSK сигнала

Однако эта схема легко может привести к переходам с высоким наклоном в форме сигнала несущей частоты: если переход между логическими состояниями происходит, когда сигнал несущей находится в своем максимальном значении, напряжение сигнала несущей должно быстро перейти к минимальному значению.

Высокий наклон в форме BPSK сигнала при изменении логического состояния модулирующего сигнала

Такие события с высоким наклоном нежелательны, потому что они создают энергию на высокочастотных составляющих, которые могут помешать другим радиочастотным сигналам. Кроме того, усилители имеют ограниченную способность производить резкие изменения в выходном напряжении.

Если мы усовершенствуем вышеприведенную реализацию двумя дополнительными функциями, то сможем обеспечить плавные переходы между символами. Во-первых, нам необходимо убедиться, что период цифрового бита равен одному или нескольким полным периодам сигнала несущей. Во-вторых, нам необходимо синхронизировать цифровые переходы с сигналом несущей. Благодаря этим усовершенствованиям мы могли бы разработать систему таким образом, чтобы изменение фазы на 180° происходило, когда сигнал несущей частоты находится в пересечении нуля (или близко к нему).

QPSK

BPSK передает один бит на символ, к чему мы и привыкли. Всё, что мы обсуждали в отношении цифровой модуляции, предполагало, что сигнал несущей изменяется в зависимости от того, находится ли цифровое напряжение на низком или высоком логическом уровне, и приемник воссоздает цифровые данные, интерпретируя каждый символ как 0 или 1.

Прежде чем обсуждать квадратурную фазовую манипуляцию (QPSK, quadrature phase shift keying), нам необходимо ввести следующую важную концепцию: нет причин, по которым один символ может передавать только один бит. Это правда, что мир цифровой электроники строится вокруг схем, в которых напряжение находится на одном или другом экстремальном уровне, так что напряжение всегда представляет собой один цифровой бит. Но радиосигнал не является цифровым; скорее, мы используем аналоговые сигналы для передачи цифровых данных, и вполне приемлемо разработать систему, в которой аналоговые сигналы кодируются и интерпретируются таким образом, чтобы один символ представлял два (или более) бита.

Преимущество QPSK заключается в более высокой скорости передачи данных: если мы сохраняем одну и ту же длительность символа, то можем удвоить скорость передачи данных от передатчика к приемнику. Недостатком является сложность системы. (Вы можете подумать, что QPSK более восприимчив к битовым ошибкам, чем BPSK, поскольку разделение между возможными значениями в нем меньше. Это разумное предположение, но если вы рассмотрите их математику, то оказывается, что вероятности ошибок на самом деле очень похожи.)

Варианты

QPSK модуляция, конечно, является эффективным методом модуляции. Но ее можно улучшить.

Скачки фазы

Стандартная QPSK модуляция гарантирует, что переходы между символами будут происходить с высоким наклоном; поскольку скачки фазы могут составлять ±90°, мы не можем использовать подход, описанный для скачков фазы на 180°, создаваемых BPSK модуляцией.

Эту проблему можно смягчить, используя один из двух вариантов QPSK. Квадратурная фазовая манипуляция со сдвигом квадратур (OQPSK, Offset QPSK), которая включает в себя добавление задержки к одному из двух потоков цифровых данных, используемых в процессе модуляции, уменьшает максимальный скачок фазы до 90°. Другим вариантом является π/4-QPSK, которая уменьшает максимальный скачок фазы до 135°. Таким образом, OQPSK обладает преимуществом в уменьшении разрывов фазы, но π/4-QPSK выигрывает, поскольку она совместима с дифференциальном кодированием (обсуждается ниже).

Другим способом решения проблем с разрывами между символами является реализация дополнительной обработки сигналов, которая создает более плавные переходы между символами. Этот подход включен в схему модуляции, называемую частотной модуляцией минимального фазового сдвига (MSK, minimum shift keying), а также улучшение MSK, известное как Гауссовская MSK (GMSK, Gaussian MSK).

Дифференциальное кодирование

Еще одна сложность заключается в том, что демодуляция PSK сигналов сложнее, чем FSK сигналов. Частота является «абсолютной» в том смысле, что изменения частоты всегда можно интерпретировать, анализируя изменения сигнала во времени. Фаза, однако, относительна в том смысле, что она не имеет универсальной опорной точки - передатчик генерирует изменения фазы относительно одного момента времени, а приемник может интерпретировать изменения фазы относительно другого момента времени.

Практическое проявление этого заключается в следующем: если между фазами (или частотами) генераторов, используемых для модуляции и демодуляции, существуют различия, PSK становится ненадежной. И мы должны предположить, что будут разности фаз (если приемник не включает в себя схему восстановления несущей).

Дифференциальная QPSK (DQPSK, differential QPSK) - это вариант, который совместим с некогерентными приемниками (т.е. приемниками, которые не синхронизируют генератор демодуляции с генератором модуляции). Дифференциальная QPSK кодирует данные, создавая определенный сдвиг фазы относительно предыдущего символа таким образом, чтобы схема демодуляции анализировала фазу символа, используя опорную точку, которая является общей и для приемника, и для передатчика.

Резюме

  • Двоичная фазовая манипуляция (BPSK) - это простой способ модуляции, который может передавать один бит на символ.
  • Квадратурная фазовая манипуляция (QPSK) более сложна, но она удваивает скорость передачи данных (или достигает той же скорости передачи данных при вдвое меньшей ширине полосы частот).
  • Квадратурная фазовая манипуляция со сдвигом квадратур (OQPSK), π/4-QPSK, частотная модуляция минимального фазового сдвига (MSK) - это схемы модуляции, которые смягчают эффекты изменения напряжения сигнала несущей с высоким наклоном при переходе между символами.
  • Дифференциальная QPSK (DQPSK) использует разность фаз между соседними символами, чтобы избежать проблем, связанных с отсутствием фазовой синхронизации между передатчиком и приемником.

При цифровой фазовой манипуляции фаза переносчика S(t ) отличается от текущей фазы немодулированного несущего колебания на конечное число значений в соответствии с символами передаваемого сообщения С(t ) :

Существует два типа фазовой манипуляции – двоичная (бинарная) фазовая манипуляция (ДФМП) и квадратурная фазовая манипуляция(КФМП).

4.2.1 Двоичная фазовая манипуляция. Различают абсолютную (двухуровневую) (АФМП) и относительную (дифференциальную) (ОФМП) фазовые манипуляции. При АФМП (рисунок 4.7,в) фаза несущей изменяется при каждом фронте передаваемых сигналов. Получающийся сигнал имеет следующий вид (для одного периода передачи бита):

Двоичная 1

Двоичный 0

(4.19)

Сигнальное созвездие ДФМП сигнала, соответствующее выражению (4.19) приведено на рисунке (4.8).

Рисунок. 4.7 – Абсолютная и относительная фазовая манипуляция

Рисунок. 4.8 – Сигнальное созвездие ДФМП сигнала

Следует отметить, что ДФМП является одной из самых простых форм цифровой манипуляции и широко используется в телеметрии при формировании широкополосных сигналов. Основной недостаток ДФМП заключается в том, что при манипуляции прямоугольным сигналом получают очень резкие переходы, и в результате, сигнал занимает очень широкий спектр. Большинство ДФМП-модуляторов применяет определенные типы фильтрации, которые делают переходы фазы менее резкими, тем самым сужается спектр сигнала. Операция фильтрации практически всегда выполняется над модулирующим сигналом до манипуляции (рисунок 4.9).

Рисунок 4.9 – Функциональная схема формирования ДФМП радиосигнала

Такой фильтр, как правило, называют фильтром основной частоты. Онако при уменьшении полосы частот, занимаемой радиосигналом, путем фильтрации приходится учитывать возникающую при этом проблему межсимвольной интерференции.

Здесь после модулятора добавлены усилитель мощности радиосигнала и узкополосный высокочастотный фильтр. Основное назначение фильтра состоит в том, чтобы ослабить излучение передатчика на частотах, кратных основной частоте несущего колебания; опасность таких излучений обусловлена нелинейными эффектами в усилителе мощности, которые, как правило, имеют место и усиливаются при попытке увеличения эффективности этого усилителя. Часто данный фильтр используется одновременно и для приемника – он подавляет сильные сторонние сигналы вне полосы частот полезных радиосигналов до преобразования частоты «вниз».

4.2.2 Квадратурная фазовая манипуляция (КФМП). При ДФМП один канальный символ переносит один передаваемый бит. Однако, как уже отмечалось выше, один канальный символ может переносить большее число информационных бит. Например, пара следующих друг за другом битов может принимать четыре значения: {0, 0}{0, 1}{1, 0}{1, 1}.

Если для передачи каждой пары использовать один канальный символ, то потребуется четыре канальных символа, скажем {s 1 (t ), s 2 (t ), s 3 (t ), s 4 (t )}, так что М =4. При этом скорость передачи символов в канале связи оказывается в два раза ниже, чем скорость поступления информационных битов на вход модулятора и, следовательно, каждый канальный символ теперь может занимать временной интервал длительностью T с = 2Т б. При М-ичной фазовой манипуляции радиосигнал может быть записан в следующем виде:

Здесь (t) может принимать значения из множества:

где – произвольная начальная фаза.

В дальнейшем вместо четырех канальных символов или четырех радиосигналов будем говорить о единственном радиосигнале, комплексная амплитуда которого может принимать четыре указанных значения, представленных на рисунке 4.10 в виде сигнального созвездия.

Каждая группа из двух битов представляется соответствующим фазовым углом, все фазовые углы отстоят друг от друга на 90°. Можно отметить, что каждая сигнальная точка отстоит от действительной или мнимой оси на =45°.

Сформировать сигналы КФМП-4 можно с помощью устройства, функциональная схема которого приведена на рисунке 4.11, а временные диаграммы его работы – на рисунке 4.12.

Рисунок 4.10 – Сигнальное созвездие КФМП-4 радиосигнала

Последовательность передаваемых битов 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0,… разбивается на две подпоследовательности нечетных 1, 1, 0, 1, 0, 1, … и четных 0, 1, 0, 0, 1, 0,… битов с помощью демультиплексора DD1 .

Биты с одинаковыми номерами в этих подпоследовательностях образуют пары, которые удобно рассматривать как комплексные биты; действительная часть комплексного бита есть бит нечетной подпоследовательности I , а мнимая часть Q – бит четной подпоследовательности. При этом биты нечетной последовательности в синфазной ветви задерживаются на время T б устройством DD2 . Далее длительность каждой последовательности уменьшается до значения 2T б расширителями DD3 и DD4.

Полученные таким способом комплексные биты преобразуются в комплексную последовательность прямоугольных электрических импульсов длительностью 2Т б со значениями +1 или -1 их действительной и мнимой частей, которые используются для модуляции несущего колебания exp{
}. В результате получается КФМП-4 радиосигнал.

Рисунок. 4.11 – Функциональная схема устройства формирования КФМП-4

радиосигнала

Рисунок 4.12 – Временные диаграммы при формировании КФМП-4

радиосигнала

Диаграмма фазовых переходов для КФМП-4 представлена на рисунке 4.13.

Рисунок 4.13 – Диаграмма фазовых переходов для КФМП-4 радиосигнала

На этой диаграмме сигнальная точка с координатами (+1, +1) расположена на линии, образующей угол +45° с осями координат, и соответствует передаче символов +1 и +1 в квадратурных каналах модулятора. Если следующей парой символов будет (- 1, +1), которой соответствует угол +135°, то из точки (+1, +1) к точке (- 1,+1) можно провести стрелку, характеризующую переход фазы радиосигнала от значения +45 к значению +135°. Полезность этой диаграммы можно проиллюстрировать на следующем примере. Из рисунка 4.13 следует, что четыре фазовые траектории проходят через начало координат. Например, переход из точки сигнального созвездия (+1, +1) в точку (-1, -1) означает изменение мгновенной фазы высокочастотного несущего колебания на 180°. Поскольку на выходе модулятора обычно устанавливают узкополосный высокочастотный фильтр (см. рисунок 4.9), то такое изменение фазы сигнала сопровождается существенным изменением значений огибающей сигнала на выходе этого фильтра и, следовательно, во всей линии передачи. Непостоянство значений огибающей радиосигнала по многим причинам является нежелательным в цифровых системах передачи. От этого недостатка свободна КФМП со смещением.

4.2.3 Квадратурная фазовая манипуляция со смещением. Этот способ формирования сигнала практически полностью аналогичен квадратурному способу формирования КФМП-4 сигнала, однако с той лишь разницей, что подпоследовательность в квадратурной ветви сдвигается во времени (задерживается) на время Т б или, что эквивалентно, на половину длительности канального символа. Для реализации этого способа необходимо удалить элемент задержки на время Т б DD2 в синфазной ветви. При таком изменении квадратурная подпоследовательность канальных символов окажется задержанной на время Т с относительно синфазной подпоследовательности (рисунок 4.14).

Рисунок 4.14 – Временные диаграммы при формировании КФМП-4

радиосигнала со смещением

В результате на диаграмме фазовых переходов (рисунок 4.15) для данного метода манипуляции отсутствуют траектории, проходящие через начало координат. Это означает, что мгновенная фаза радиосигнала не имеет скачков на +180° и, следовательно, огибающая этого сигнала не имеет глубоких провалов, как это имело место при квадратурной КФМП-4 (рисунок 4.11).

Рисунок 4.15 – Диаграмма фазовых переходов КФМП-4 радиосигнала

со смещением

4.2.4 КФМП-8 сигналы. Поток информационных битов, поступающих на вход модулятора, можно разбивать на группы по 3, 4 бита и т.д., формируя затем КФМП-8, КФМП-16 сигналы и т.д. На рисунке 4.16 изображено сигнальное созвездие для КФМП-8 радиосигнала.

Рисунок 4.16 – Сигнальное созвездие для КФМП-8 радиосигнала

Для этого способа модуляции необходимо иметь восемь канальных символов, начальные фазы которых отличаются от мгновенной фазы немодулированного несущего колебания на угол, кратный 45°. Если амплитуды всех канальных символов одинаковы, то сигнальные точки располагаются на окружности. Возможные значения вещественных и мнимых частей комплексных амплитуд этих символов при этом пропорциональны коэффициентам I и Q, принимающим значения из множества

. (4.23)

Не совсем простым является вопрос об установлении соответствий между точками сигнального созвездия и тройками информационных битов. Этот процесс обычно называют сигнальным кодированием . В таблице 4.1 приведён пример такого соответствия, который является возможным, но не наилучшим, поскольку для установления наилучшего соответствия необходимо сначала определить способ демодуляции такого сигнала в присутствии помехи, а затем вычислить вероятность ошибки при приеме либо одного канального символа, либо одного информационного бита. Наилучшим можно назвать тот способ сигнального кодирования, при котором вероятность ошибки оказывается наименьшей.

Таблица 4.1 – Соответствие между точками сигнального созвездия и тройками _ информационных битов

Значения начальной фазы при КФМП-8

Значения коэффициентов

Группы из трех информационных символов (битов)

I

-

-

-

-

На рисунке 4.17 приведена функциональная схема устройства формирования КФМП-8 радиосигнала.

Работа формирователя сводится к следующему: демультиплексор DD 1 распределяет входной поток информационных битов длительностью Т б на три подпоследовательности, элементы задержек DD2 и DD3 выравнивают во времени эти подпоследовательности, расширители DD 4- DD 6 увеличивают длительность каждого символа до значения длительности канального символа Т с = 3Т б. Сигнальное кодирование в этом случае сводится к вычислению значений синфазной и квадратурной компонент комплексной огибающей КФМП-8 радиосигнала. Эта операция выполняется сигнальным кодером, в состав которого входит транскодер DD 7 , имеющий два цифровых выхода с 3- битовыми словами, которые в цифро-аналоговых преобразователях (ЦАП) DD 1 и DD 2 преобразуются в аналоговые величины с требуемыми значениями (4.23).

Рисунок 4.17 – Функциональная схема устройства формирования

КФМП-8 радиосигнала

4.2. 5 π/4 - квадратурная относительная фазовая манипуляция. При КФМП-4 и КФМП-4 со смещением максимальное изменение мгновенной фазы радиосигнала равно 180° и 90° соответственно. В настоящее время достаточно широко используетсяπ/4-квадратурная относительная фазовая манипуляция , при которой максимальный скачок фазы равен 135°, а все возможные значения мгновенной фазы радиосигнала кратны значению π/4. Ни одна траектория фазовых переходов для этого способа модуляции не проходит через начало координат. В результате огибающая радиосигнала имеет меньшие провалы по сравнению с квадратурной фазовой манипуляцией. Функциональная схема устройства формирования такого радиосигнала представлена на рисунке 4.18.

Рисунок 4.18 – Функциональная схема устройства формирования

радиосигнала с π/4-квадратурной относительной

фазовой манипуляции

Последовательность информационных битов {n i ,i= 1,2,…} разбивается на две подпоследовательности: нечётных {n 2 i -1 ,i= 1,2,…} и чётных {n 2 i ,i= 1, 2,...} битов, из которых биты выбираются парами. Каждая новая пара таких битов определяетприращение фазы несущего колебания на величину
в соответствии с таблицей 4.2

Таблица 4.2–Приращение фазы несущего колебания от значений битов

Значения информационных битов

Приращение фазы несущего колебания (
)

n 2 i -1

n 2 i

Если ввести обозначение для отклонения фазы радиосигнала от фазы немодулированного несущего колебания на предыдущем интервале, то новые значения отклонения фазы этого сигнала и комплексной амплитуды на текущем интервале определятся равенствами:

В результате значения вещественной и мнимой частей комплексной огибающей этого сигнала на текущем интервале времени длительностью 2T б оказываются равными:

(4.24)

(4.25)

Из равенств (4.24), (4.25) следует, что возможные значения фазы на интервале с номером i зависят от значения фазы радиосигнала на интервале с номером (i - 1). В соответствии с таблицей 4.2 новые значения кратны π/2.

На рисунке 4.19, а изображено созвездие возможных сигнальных точек для интервала с номером i , если
; аналогичное созвездие для случая, когда, представлено на рисунке 4.19, б. Общее созвездие сигнальных точек для данного способа модуляции изображено на рисунке 4.19, в и получается путем наложения рисунок 4.19, а, б друг на друга. На рисунке 4.19, в не указаны стрелками направления переходов, поскольку для каждого перехода возможны направления в обе стороны.

Рисунок 4.19 – Сигнальные созвездия радиосигнала с π/4-квадратурной

относительной манипуляцией

Важно также подчеркнуть, что при данном способе модуляции каждая новая пара информационных битов определяет не полную фазу несущего колебания, а лишь приращение этой фазы для интервала с номером i относительно полной фазы комплексной огибающей на интервале с номером (i - 1). Такие методы модуляции называютсяотносительными .

4.2. 6 Спектр сигнала с ФМП. Обозначив модулирующий сигнал черезС(t) , запишем модулированный сигнал в следующем виде:

Такой сигнал изменяет во время модуляции свою начальную фазу от -  /2 до+  /2 и обратно при изменении модулирующего сигналаC(t) от0 до1 и обратно.

Величину

, (4.27)

характеризующую максимальное отклонение фазы от среднего значения, называют индексом фазовой манипуляции. После тригонометрических преобразований выражение (4.26) можно записать в следующем виде:

Для нахождения спектра ФМП-сигнала достаточно найти спектры функции cos( C(t)) иsin( C(t)) . Этот метод пригоден для любых случаев. В данном случае, т.е. для прямоугольных модулирующих импульсов, можно воспользоваться для расчета более простым наглядным методом.

Рисунок 4.7, б-г показывает, что сигнал с манипуляцией на 180 можно рассматривать как сумму АМП-сигнала с вдвое большей амплитудой немодулированного колебания, фаза которого противоположна фазе несущей АМП-сигнала. Эту закономерность можно обобщить на случай любой величины фазового скачка( <> 180 ) . Следовательно, ФМП на угол можно рассматривать как сумму АМП-сигнала и немодулированной несущей. Отсюда можно сделать вывод, что спектр сигнала, манипулированного по фазе, совпадает по форме со спектром АМП-сигнала (за исключением несущей).

Если воспользоваться любой из двух рассмотренных выше методик, выражения для спектра ФМП имеет вид

Из выражения (4.29) видно, что амплитуды всех спектральных составляющих зависят от величины фазового скачка  и скважности импульсной последовательности.

Для ФМП на  = 180 получаются более простые выражения:


. (4.30)

Примеры спектров, рассчитанных по выражениям (4.29) и (4.30), приведены на рисунке 4.20.

Рисунок 4.20 – Спектры ФМП-сигналов

Как видно из приведенных спектров, необходимая полоса частот в два раза шире, чем для видеоимпульсов, т.е.

ω=2/ илиF=2/, (4.31)

а при ФМП на  = 180и Q= 2 несущая в спектре отсутствует.

Как мы убедились при передаче дискретных сообщений используется не только двухпозиционная ФМП. Все шире применяются методы квадратурной четырехпозиционной и восьмипозиционной ФМП. Величины скачка фазы сигнала в этих случаях могут принять соответственно 4 и 8 значений. Для таких случаев также применимы полученные выше результаты. Спектр боковых полос, сохраняя одну и ту же форму, при изменении величины скачка будет изменять свою амплитуду.

Для более сложных случаев, когда чередуются скачки фазы разной величины, приведенные формулы несправедливы. Спектр может изменяться значительно.

Фазоманипулированный сигнал имеет вид:

где и – постоянные параметры, – несущая частота.

Информация передается посредством фазы . Так как при когерентной демодуляции в приемнике имеется несущая , то путем сравнения сигнала (3.21) с несущей вычисляется текущий сдвиг фазы . Изменение фазы взаимнооднозначно связано с информационным сигналом .

Двоичная фазовая манипуляции (BPSK – Binary Phase Shift Keying)

Множеству значений информационного сигнала ставится в однозначное соответствие множество изменений фазы . При изменении значения информационного сигнала фаза радиосигнала изменяется на 180º. Таким образом, сигнал BPSK можно записать в виде

Следовательно, . Таким образом, для осуществления BPSK достаточно умножить сигнал несущей на информационный сигнал, который имеет множество значений . На выходе модулятора сигналы

, .


Рис. 3.38. Временная форма и сигнальное созвездие сигнала BPSK:

а – цифровое сообщение; б – модулирующий сигнал; в – модулированное ВЧ-колебание; г – сигнальное созвездие

Временная форма сигнала и его созвездие показаны на рис.3.38.

Подвидом семейства BPSK является дифференциальная (относительная) BPSK (DBPSK). Необходимость относительной модуляции обусловлена тем, что большинство схем восстановления несущей частоты приводят к фазовой неоднозначности восстановленной несущей. В результате восстановления может образоваться постоянный фазовый сдвиг, кратный 180º. Сравнение принимаемого сигнала с восстановленной несущей приведет в этом случае к инвертированию (изменению значений всех битов на противоположные). Этого можно избежать, если кодировать не абсолютный сдвиг фазы, а его изменение относительно значения на предыдущем битовом интервале. Например, если на текущем битовом интервале значение бита изменилось по сравнению с предыдущим, то изменяется и значение фазы модулированного сигнала на 180º, если осталось прежним, то фаза также не изменяется.

Спектральная плотность мощности сигнала BPSK совпадает с плотностью сигнала OOK за исключением отсутствия в спектре сигнала несущей частоты:

, (3,22)

Квадратурная фазовая манипуляция (QPSK – Quadrature Phase Shift Keying)

Квадратурная фазовая манипуляция является четырехуровневой фазовой манипуляцией ( =4), при которой фаза высокочастотного колебания может принимать 4 различных значения с шагом, кратным π / 2 .

Соотношение между сдвигом фазы модулированного колебания из множества и множеством символов (дибитов) цифрового сообщения устанавливается в каждом конкретном случае стандартом на радиоканал и отображается сигнальным созвездием рис.3.39. Стрелками показаны возможные переходы из одного фазового состояния в другое.

Из рисунка видно, что соответствие между значениями символов и фазой сигнала установлено таким образом, что в соседних точках сигнального созвездия значения соответствующих символов отличаются лишь в одном бите. При передаче в условиях шума наиболее вероятной ошибкой будет определение фазы соседней точки созвездия. При указанном кодировании, несмотря на то, что произошла ошибка в определении значения символа, это будет соответствовать ошибке в одном (а не двух) бите информации. Таким образом, достигается снижение вероятности ошибки на бит. Указанный способ кодирования называется кодом Грея.

Каждому значению фазы модулированного сигнала соответствует 2 бита информации, и поэтому изменение модулирующего сигнала при QPSK-модуляции происходит в 2 раза реже, чем при BPSK-модуляции при одинаковой скорости передачи информации. Известно, что спектральная плотность мощности многоуровневого сигнала совпадает со спектральной плотностью мощности бинарного сигнала при замене символьного интервала на символьный . Для четырехуровневой модуляции =4 и, следовательно, .

Спектральная плотность мощности QPSK-сигнала при модулирующем сигнале с импульсами прямоугольной формы на основании (3.22) определяется выражением:

.

Из данной формулы видно, что расстояние между первыми нулями спектральной плотности мощности сигнала QPSK равно , что в 2 раза меньше, чем для сигнала BPSK. Другими словами, спектральная эффективность квадратурной модуляции QPSK в 2 раза выше, чем бинарной модуляции ВPSK.

Сигнал QPSK можно записать в виде

где .

Сигнал QPSK можно представить в виде синфазной и квадратурной составляющих

где - синфазная составляющая - го символа,



Загрузка...