sonyps4.ru

Для чего нужен ламповый генератор. Мощный генератор ВЧ на MOSFET-транзисторе

ЛАМПОВЫЙ ГЕНЕРАТОР

ЛАМПОВЫЙ ГЕНЕРАТОР

(Electron tube generator) - прибор, применяемый в радиотехнике для генерирования (получения) незатухающих колебаний с помощью электронной лампы. Л. Г. преобразует энергию постоянного тока в энергию переменного тока высокой частоты. Элементарная схема Л. Г.: трехэлектродная электронная лампа, колебательный контур, катушка связи и источник питания.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941


Смотреть что такое "ЛАМПОВЫЙ ГЕНЕРАТОР" в других словарях:

    ламповый генератор - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN tube generatorvalve generatortube oscillatorvacuum tube… …

    ламповый генератор - lempinis generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Elektrinių virpesių generatorius, kuriame naudojama stiprintuvinė elektroninė lempa. atitikmenys: angl. tube generator; valve generator; valve oscillator vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    ламповый генератор - lempinis generatorius statusas T sritis fizika atitikmenys: angl. tube generator; valve generator; valve oscillator vok. Röhrengenerator, m; Röhrenoszillator, m rus. ламповый генератор, m pranc. générateur à lampes, m; générateur à tube… … Fizikos terminų žodynas

    ламповый генератор импульсов - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN pulsed tube oscillator … Справочник технического переводчика

    - (Valve transmitter) ламповый генератор, связанный с антенной, что позволяет осуществлять излучение тока высокой частоты в виде радиоволн. По роду работы Л. П. разделяются на телеграфные, телефонные, для телевидения и фототелеграфии. Самойлов К. И … Морской словарь

    Схемы генераторов Армстронга из патента US1,113,149 Oct.06, 1914 Генератор Армстронга и генератор Мейснера (Майснера)) называются в честь их изобретателей, электротехников Эдвина Армстронга и Александра Мейснера. В обоих генераторах… … Википедия

    - (лат. generator, от genus, generis род). 1) родоначальник. 2) котел в паровых машинах. 3) машина для получения электрического тока. 4) прибор, производящий искусственный лед. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н … Словарь иностранных слов русского языка

    - (лат. generator производитель) устройство, аппарат, машина, производящие какой либо продукт (напр., ацетиленовый генератор, парогенератор), вырабатывающие электрическую энергию (напр., электромашинный, магнитогидродинамический, термоэмиссионный… … Большой Энциклопедический словарь

    А; м. [от лат. generator производитель]. 1. Устройство, аппарат или машина, предназначенные для производства какого л. вещества, выработки энергии или преобразования одного вида энергии в другой. Г. переменного тока. Г. радиосигналов. Квантовый г … Энциклопедический словарь

    - (от лат. generator производитель) устройство, аппарат или машина: производящие какие либо продукты (генератор ацетиленовый, лёдогенератор, парогенератор, газогенератор, генератор водорода) вырабатывающие электрическую энергию… … Википедия

Современный радиоприемник трудно наладить без соответствующей измерительной аппаратуры. При этом в первую очередь необходим сигнал-генератор, т. е. генератор, создающий высокочастотные колебания в определенном диапазоне частот. С его помощью можно настроить резонансные усилители высокой и промежуточной частоты, проверить сопряжение контуров в супергетеродинном приемнике, определить собственную частоту колебательных контуров и провести ряд других измерений.

Принципиальная схема

Принципиальная схема снгнал-генератора приведена на рис. 1. Он состоит из генератора высокой частоты, генератора низкой частоты (модулятора), выпрямителя и выходного устройства. Прибор позволяет получать высокочастотные модулированные или немодулированные колебания, а также низкочастотные колебания с частотой порядка 400 гц. Диапазон частот сигнал-генератора 100 кгц — 16 Мгц разбит на следующие поддиапазоны:

  • 100 - 250 кгц;
  • 250 - 700 кгц;
  • 700 - 2000 кгц;
  • 2 - 5,5 Мгц
  • 5,5 - 16 Мгц.

Величина выходного напряжения на выходе сигнал-генератора может достигать 0,8 — 1 В и зависит от добротности контуров. Питание прибора осуществляется от сети переменного тока напряжением 127 или 220 в.

Генератор высокой частоты выполнен на левом триоде лампы Л1 по трехточечной схеме с автотрансформаторной обратной связью. На каждом из поддиапазонов колебательный контур образован одной из катушек индуктивности L1— L5, одним из подстроечных конденсаторов С1— С5 и переменным конденсатором С7, Переход с одного поддиапазона на другой осуществляется с помощью переключателя В1. Постоянное напряжение на анод лампы подается через резистор R3. Плавное изменение частоты производится конденсатором переменной емкости С7. Функции гридлика выполняют конденсатор С6 и резисторы R1, R2. По высокой частоте анод лампы заземлен конденсатором С8,

Модулятор представляет собой обычный генератор звуковой частоты с емкостной обратной связью. В качестве контурной катушки используется обычный дроссель Др1 низкой частоты. Колебательный контур низкочастотного генератора образован катушкой дросселя Др1 и конденсаторами постоянной емкости СИ, С12.

Модулятор собран на правом триоде лампы Л1. Для уменьшения содержания гармоник (улучшения формы кривой низкочастотного напряжения) в катод правого триода включен резистор R12. Выключение звукового генератора производится выключателем В3.

В схеме сигнал-генератора применена анодная модуляция. Переменное напряжение низкой частоты с анода правого триода подается иа анод левого триода одновременно с питающим напряжением через резистор R3. Благодаря происходящим в лампе высокочастотного генератора нелинейным процессам и осуществляется процесс модуляции.

Выходное устройство снгнал-генератора состоит из плавного делителя R2, шкала которого разделена на 10 делений. Для дальнейшего уменьшения выходного напряжения служит ступенчатый делитель, образованный резисторами R4— R11. Каждая ячейка, содержащая два резистора, понижает напряжение в 10 раз.

Необходимое ослабление сигнала снимаемого с плавного делители (называемого иногда аттенюатором, т. е. ослабителем) в 1, 10, 100, 1000 и 10.000_раз производится переключателем В2. Например, при установке переключателя В2 в положение «10—1» на выходное гнездо ВЧ с резистора R5 поступает напряжение, равное десятой доле напряжения, снимаемого с потенциометра R2; девять десятых последнего напряжения гасится на резисторе R4, сопротивление которого в 9 раз превышает сопротивление правой части делителя между точками а— б.

Таким образом, четыре ячейки делителя позволяют уменьшить напряжение в 10 раз, что при установке плавного делителя в положение, соответствующее 0,1 в, позволяет получить наименьшее напряжение порядка 10 мкв.

Следует отметить, что в сигнал-генераторе простейшего типа амплитуда колебаний по диапазонам и в пределах каждого диапазона довольно сильно меняется, поэтому применение подобных делителей позволяет лишь косвенно судить о фактическом напряжении сигнал-генератора.

Резистор R1 служит для уменьшения влияния нагрузки сигнал-генератора на частоту колебаний. На рис. 1 указаны фактические значения сопротивлений резисторов R4— R11. Они подбираются из ближайших номиналов резисторов, выпускаемых нашей промышленностью.

Напряжение низкой частоты для проверки различных усилительных низкочастотных устройств снимается с потенциометра R13 и поступает на гнездо НЧ. Резистор R17, являясь сопротивлением утечки сетки, одновременно уменьшает реакцию нагрузки на режим работы низкочастотного генератора.

Выпрямитель смонтирован по обычной однополупериодной схеме на двух германиевых диодах Д1 и Д2. Для уменьшения вероятности пробоя диодов последние зашунтированы резисторами R18, R19. Переключение обмотки трансформатора Тр1 для работы от сети с различными напряжениями осуществляется предохранителем Пр. Фильтр выпрямителя двухзвениый и состоит из конденсаторов С13, С14 и резисторов R15, R16.

Детали и конструкция

Сигнал-генератор смонтирован на угловом шасси из дюралюминия толщиной 1,5 мм. Для того, чтобы предохранить проверяемую аппаратуру от непосредственного излучения цепей генератора (помимо аттенюатора), все контуры, переключатель и конденсатор переменной емкости необходимо заключить в отдельный экран.

Катушки наматываются на керамических каркасах диаметром 10 мм и имеют для подстройки сердечники типа СЦР-1. Намотка катушек L1— L4 типа (универсаль), ширина намотки 5 мм. Катушка L1 содержит 850 витков провода ПЭЛШО 0,12 с отводом от 200-го витка; L2 — 275 витков провода ПЭЛШО 0,2 с отводом от 70-го витка; L3— 112 витков провода лицендрат 7X0,07 с отводом от,45-го витка; L4 — 42 витка провода лицендрат 7X0,07 с отводом от 15-го витка.

Катушка L5 однослойная, имеет 11 витков рядовой намотки, провод ПЭЛШО 0,51 с отводом от 5-го витка. Катушки можно намотать и иа пропитанные церезином бумажные или бакелитовые каркасы соответствующих размеров. При выполнении намотки внавал необходимо сделать щечки. Число витков в этом случае будет отличаться от указанных.

Переменный конденсатор С7 можно применить любой, но желательно примо-частотный, тогда при градуировке можно получить равномерное размещение делений на шкале. Переключатель диапазонов лучше всего применить керамический.

Дроссель Др1 выполнен на сердечнике Ш16, толщина набора 16 мм. На каркас до заполнения наматывают провод ПЭЛ 0,15. Практически можно использовать любой междуламповый трансформатор.

Трансформатор Тр1 имеет сердечник Ш22, толщина набора 32 мм. Сетевая обмотка состоит из двух секций. Секция I содержит 763 витка провода ПЭЛ 0,31, секция II—557 витков провода ПЭЛ 0,2. Повышающая обмотка III содержит 1140 витков провода ПЭЛ 0,2, обмотка накала ламп IV — 44 витка провода ПЭЛ 1,0. В данной конструкции можно применить любой силовой трансформатор от приемников «Москвич-В», «Волна», АРЗ и др.

Для удобства работы с прибором вращение ротора переменного конденсатора С7 осуществляется с помощью верньерного устройства, конструкцию которого легко уяснить из рис. 2.

Передняя панель прибора имеет размеры 210X160 мм. Монтаж основных деталей осуществлен на горизонтальной панели размером 200Х 120 мм. В зависимости от типа примененных деталей размеры шасси могут изменяться.

Налаживание

Налаживание прибора начинают с проверки генерации, прослушивая сигнал на заведомо исправном приемнике. Для этого с помощью отрезка коаксиального кабеля, иа конце которого имеется специальный штекер, высокочастотный выход сигнал-генератора соединяют со входом приемника.

Наличие генерации можно также проверить с помощью авометра, работающего в режиме измерения постоянных напряжений, который присоединяют к аноду левого триода. Если при закорачивании управляющей сетки левого триода на катод напряжение на аноде несколько падает, генератор работает. Обычно при исправных деталях и лампе он сразу начинает работать.

Работу звукового генератора легко проверить путем подачи низкочастотного напряжения с выхода сигнал-генератора на гнезда звукоснимателя вещательного приемника. Требуемая частота генерации устанавливается изменением емкости конденсаторов C11, С12.

Установив, что высокочастотный генератор работает при всех положениях переключателя В1 н имеет место нормальная модуляция, приступают к подгонке границ отдельных поддиапазонов. Регулировку начинают с длинноволнового участка первого диапазона (при максимальной емкости переменного конденсатора С7).

Вращением сердечника или изменением чнсла витков катушки L1 устанавливают частоту, равной 100 кгц. Затем ручку настройки переводят в другое крайнее положение (соответствующее минимальной емкости конденсатора С7) и определяют частоту генератора.

Если она будет выше требуемой, увеличивают емкость подстроечного конденсатора С1 и настройку повторяют вновь. Для установки границ второго поддиапазона также устанавливают конденсатор С7 в положение максимальной емкости и подбором индуктивности катушки L2 добиваются, чтобы в начале шкалы этого поддиапазона частота генератора была несколько ниже частоты (250 кгц) на конце шкалы первого поддиапазона.

Границы остальных поддиапазонов устанавливаются аналогичным образом. Градуировка С Г производится по общепринятой методике — с помощью ГСС по методу биений, с помощью контрольного приемника или гетеродинного индикатора резонанса — ГИРа.

Ламповые генераторы в качестве источников питания электротермических установок используются на частотах от 60 кГц до 80 МГц. Для того, чтобы они не мешали радиосвязи, выделены частоты: 66 кГц (–10...+12%); 440 кГц (±2,5%); 880 кГц (±2,5%); 1,76 МГц (±2,5%); 5,28 МГц (±2,5%); 13,56 МГц (±1%); 27,12 МГц (±1%); 40,68 МГц (±1%); 81,36 МГц (±1%).

Данный курсовой проект охватывает вопросы расчета схемы ламповых генераторов для индукционного нагрева, конструктивного расчета элементов схемы, частотного анализа и разработки конструкции генераторного блока.

Генераторная лампа

Основным элементом лампового генератора является генераторная лампа. Анод генераторной лампы изготавливается из меди и интенсивно охлаждается, так как под действием анодного напряжения (оно составляет в среднем 5…10 кВ) электроны приобретают большую энергию и отдают ее аноду.

Катод лампы изготовляется из вольфрамовой проволоки, которая при работе нагревается примерно до температуры 2300 °С. При нагреве от 20 до 2300 °С сопротивление вольфрама возрастает примерно в 10 раз. Поэтому включать холодный катод на полное напряжение не рекомендуется. Пойдет большой ток накала, и электродинамические усилия между нитями приведут к разрушению катода. Напряжение накала обычно включается в две ступени. Сначала подается половинное напряжение, а когда нить накала прогреется, включается полное напряжение. Для генераторных ламп оно составляет обычно 10–15 В, токи накала – десятки и сотни ампер.

Анодная цепь

Анодная цепь генератора содержит три основных элемента: электронную лампу, колебательный контур и источник анодного напряжения. Их можно соединить последовательно или параллельно.

На рис. 1 представлены два варианта схемы последовательного питания по аноду. В первом из них под высоким напряжением относительно земли находится колебательный контур, во втором – анодный выпрямитель. Необходимость изоляции от земли усложняет изготовление генератора по схеме последовательного питания, поэтому обычно применяется схема параллельного питания по аноду (рис. 2). Эта схема лишена указанных выше недостатков, но более сложна. Пути переменной и постоянной составляющих анодного тока разделяются с помощью анодного разделительного конденсатора C a.р и блокировочного дросселя L а.б. Таким образом, постоянная составляющая анодного тока проходит через выпрямитель, лампу и анодный блокировочный дроссель L а.б.

Рис. 1. Схемы последовательного питания по аноду

Переменная составляющая идет через лампу, колебательный контур и анодный разделительный конденсатор С а.р. Назначение этого конденсатора – не пропускать постоянную составляющую анодного тока и иметь достаточно малое сопротивление для переменной. Значение С а.р выбирается из условия:

где R э – эквивалентное сопротивление колебательного контура.

Назначение L а.б – не пропускать переменную составляющую анодного тока в выпрямитель. Его выбирают из соотношения:

Рис.2. Схема параллельного питания по аноду

Для дальнейшего уменьшения величины переменной составляющей выпрямитель шунтируется конденсатором C б (см. рис. 2).

Сеточная цепь

Генераторы могут быть с независимым возбуждением (на сетку лампы подаются колебания от маломощного генератора) и с самовозбуждением.

Независимое возбуждение используется в радиопередатчиках, в генераторах для электротехнологии обычно используют самовозбуждение (используется положительная обратная связь с колебательного контура).

Для существования колебаний необходимо, чтобы напряжение на сетке было в фазе с напряжением на контуре, и, следовательно, в противофазе с напряжением на аноде (рис. 3). Это условие самовозбуждения по фазе.

Если сигнал обратной связи будет очень малым, то колебания не возникнут. Отсюда следует условие самовозбуждения по амплитуде.

К ос > К ос min ,

где К ос = U g /U a – коэффициент обратной связи, U g – напряжение на сетке;U a –напряжение на аноде (cм. рис. 3), К ос min – минимальное значение коэффициента обратной связи, оно получается из расчета генераторной лампы.

В зависимости от соотношения между остаточным напряжением на аноде e а min максимальным напряжением на сетке e g max различают три режима работы: недонапряженный, перенапряженный и критический (граничный).

На рис. 4 представлены графики анодного тока и сеточного напряжения. Если анодно-сеточная характеристика линейна, то импульсы сеточного и анодного токов имеют вид отрезка синусоиды. Когда ток такой формы протекает через колебательный контур, то в нем возникают синусоидальные колебания, так как колебательный контур выделяет первую гармонику тока, которая и поддерживает колебания за счет положительной обратной связи. Для нормальной работы лампы на ее сетку необходимо подать отрицательное смещение E g (рис. 4).

Рис. 4. Диаграммы анодного тока и сеточного напряжения

Оно может быть фиксированным (от постороннего источника) или автоматическим и необходимо для того, чтобы выбрать рабочую точку на характеристике лампы (рис. 3 и 4).

В генераторах для электротермии обычно используется автоматическое смешение. Оно подается с помощью гридлика (рис. 5).При протекании сеточного тока через элементы гридликаR g , L g , C g на сопротивленииR g выделяется постоянное напряжениеЕ g , которое прикладывается между сеткой и катодом.

Элементы гридлика определяются таким образом: R g = - E g / I g о, где Е g – отрицательное смещение; I g о – постоянная cоставляющая сеточного тока лампы, они известны из расчета лампы. Блокировочные элементы L g , C g находятся из соотношений:

При изменении R g изменяется угол отсечки анодного тока (см. рис. 4). Оптимальным является значение θ = 70º ÷ 90º. При этом обеспечивается достаточно высокий КПД генераторной лампы по аноду и хорошее использование лампы по мощности.

Рис. 5. Гридлик лампового генератора

Одноконтурный генератор

На рис. 6 представлена принципиальная схема промышленного генератора ВЧГ1-25/0,44, имеющего один колебательный контур. Индуктивностью колебательного контора является закалочный трансформатор Т р, нагруженный на индуктор ИЗ. Согласование генератора с нагрузкой осуществляется путем переключения отводов на первичной стороне закалочного трансформатора Т р. Если колебательный контур настроен в резонанс, то его эквивалентное сопротивление

где – характеристическое сопротивление контура; r активное сопротивление; С – емкость; L индуктивность; Q – добротность.

Добротность отражает способность колебательного контура поддерживать электромагнитные колебания. Это отношение реактивной мощности P r к активной P a или реактивного сопротивления к активному:

Иногда вместо добротности используют затухание:

Чтобы генераторная лампа отдавала номинальную мощность, необходимо, чтобы на ней было номинальное колебательное напряжение U a 1 и через нее шел номинальный ток первой гармоники I a 1 . Отсюда вытекает, что эквивалентное сопротивление колебательного контура, подключенного к лампе, должно быть равно эквивалентному сопротивлению лампы:

R ЭЛ = U a1 / I a1 ,

где U a1 и I a1 определяются из расчета лампы.

Если сопротивление колебательного контура R ЭК > R ЭЛ то режим генератора будет перенапряженным, иначе – недонапряженным.

Процесс согласования генератора с нагрузкой заключается в том, чтобы выполнить условие:

R эк = R эк.

Если это условие не выполняется, то включают не всю первичную обмотку трансформатора, а ее часть, используя отводы. При этом уменьшается коэффициент анодной связиp = U a / U k (см. рис. 6), а также эквивалентное сопротивление, приведенное к лампе:

R эк = p 2 R эк

При R эк < R эл следует взять другой индуктор, с большим числом витков.

Как известно, генерация в схемах с самовозбуждением происходит благодаря положительной обратной связи. Она осуществляется делителем С о ’, С о ’’ и звеном обратной связи С о, L о (см. рис. 6).

Особенностью данной схемы является возможность бесконтактного изменения величины индуктивности обратной связи L о. Перемещением катушки L кз внутри L о изменяется индуктивность L о и, следовательно, величина коэффициента обратной связи

K ос = U g / U a

Рассмотрим подробнее влияние положения короткозамкнутой катушки L кз на индуктивность соленоидаL 0 (см. рис. 6)

Известно определение индуктивности соленоида:

L 0 = w Φ / I ,

где w , Ф, I число витков, поток и ток соответственно.

При введении внутрь соленоида L о короткозамкнутой катушки в ней наводится ток, магнитное поле которого уменьшает потокФ, что приводит к уменьшению индуктивности L о.

Путем описанных регулировок генератор настраивается на критический или слабо перенапряженный режим, что обеспечивает высокий КПД по аноду.

Рис. 6. Принципиальная электрическая схема генератора ВЧИ1-25/0,44

Критический режим характеризуется отношением I a о / I g о = 5÷7. Это соотношение обычно используется при настройке, так как все промышленные генераторы имеют приборы, измеряющие постоянные составляющие анодного и сеточного токов.

Многоконтурные схемы ламповых генераторов для электротермии

Эти схемы (см. рис. 7) являются основными для целой серии высокочастотных установок на частоты до 5,28 МГц. Их преимуществом является: гибкость регулировок, возможность изменения режима без отключения генератора, универсальность, Недостатки по сравнению с одноконтурной схемой: сложность схемы, большие габариты и стоимость. Подробные описания схем и методы их расчета имеются в .

Отличительной особенностью этих схем является наличие анодного регулятора L 1 . Этот регулятор позволяет изменять напряжение на нагрузочном контуре без выключения генератора.

Короткозамкнутая катушка L КЗ перемещается внутри L 1 не выходя за ее пределы .

Рис. 7. Принципиальная схема трехконтурного генератора для электротермии

Этим обеспечивается постоянное значение индуктивности L 1 и, следовательно, постоянство рабочей частоты генератора. Катушка L 1 разделена на две части (см. рис. 7).

Когда L КЗ находится а верхней части L 1 , то магнитный поток в этом месте уменьшается, следовательно, уменьшается индуктивность этой части катушки. В результате на нагрузочном контуре будет максимальное напряжение. При перемещении L кз в нижнюю часть L 1 картина будет обратной.

Многоконтурная схема, может генерировать колебания на нескольких частотах. Чтобы убедиться в том, что генератор будет устойчиво работать на заданной частоте, выполняется частотный анализ. Для этого составляется эквивалентная схема генератора. В этой схеме обычно пренебрегают теми элементами, которые дают резонансные частоты, сильно отличающиеся от рабочей. Если анализ выполняется графическим методом, то пренебрегают также активными сопротивлениями.

При анализе частотных характеристик на ЭВМ этого можно не делать. На рис. 8 представлена схема, эквивалентная рис. 7. В ней пренебрегается L а.б и С р, а также цепями постоянных составляющих анодного и сеточного токов.

При курсовом проектировании анализ проводится на компьютере по программе PALEC.

На эквивалентной схеме предварительно обозначить номера узлов и ветвей. При этом анодный узел ввода должен иметь номер 1, катодный – 0, сеточный – 2, остальные нумеруются произвольно. После этого ввести исходные данные аналогично образцу, имеющемуся в вычислительной лаборатории кафедры ЭТПТ.

КОНСТРУКТИВНЫЙ РАСЧЕТ ЭЛЕМЕНТОВ ЛАМПОВОГО ГЕНЕРАТОРА

Конструктивный расчет высокочастотных (ВЧ) дросселей и контурных индуктивностей

Расчет выполняется на основе методики, изложенной в . Известна формула для индуктивности цилиндрическогосоленоида:

где k =k (а/2 R ) – коэффициент Нагаока; R – радиус соленоида; a - его длина; w - число витков. Выразим L , через длину провода l :

l = 2Rw ,

длина катушки a = wh , где h – шаг намотки; тогда число витков:

где Следовательно

Обозначив получим

Эта формула дает возможность найти длину провода, необходимого для изготовления катушки:

Обычно для высокочастот­ных дросселей 2 R / a = 0,3÷0,5.

Поэтому можно принять:

F = 1,03…1,13 (см. рис. 9).

Кроме индуктивности, дроссель имеет также емкость, которая может играть значительную роль на высоких частотах. Для ее уменьшения многослойные обмотки выполняются с транспозицией (рис. 10). Этот тип намотки используется и на низких частотах для уменьшения межвиткового напряжения (сравнить максимальные напряжения между соседними витками катушек на рис. 10, а и б).

рис. 9. График функции F

Порядок расчета блокировочного дросселя

1. Выбор диаметра провода по току дросселя. По дросселю протекает постоянная составляющая анодного тока I a о и переменныйток, который примерно равен: I = U a / (wL а.б). Плотность тока можно принять 3 А/мм 3 .

2. Выбор шага намотки h и отношения 2 R / a .

3. Длина провода определяется по формуле (1).

Скачать c Letitbit.net

или

Для скачивания методического пособия "Ламповый генератор" поделитесь ссылкой с друзьями.

Под этой строчкой в течении 30 секунд появится обещанная Вам ссылка:

Высокочастотные генераторы служат для образования колебаний электрического тока в интервале частот от нескольких десятков килогерц до сотен мегагерц. Такие устройства создают с применением контуров колебаний LС или резонаторов на кварцах, которые являются элементами задания частоты. Схемы работы остаются такими же. В некоторых цепях контуры гармонических колебаний заменяются .

Генератор ВЧ

Устройство для остановки электросчетчика энергии служит для питания электроприборов бытового назначения. Его выходное напряжение 220 вольт, потребляемая мощность 1 киловатт. Если в приборе применить составляющие элементы с характеристиками мощнее, то от него можно запитывать более мощные устройства.

Такой прибор включается в розетку бытовой сети, от него идет питание на нагрузку потребителей. Схема электрических проводов не подвергается каким-либо изменениям. Систему заземления подключать нет необходимости. Счетчик при этом работает, но учитывает примерно 25% энергии сети.

Действие устройства остановки в подключении нагрузки не к питанию сети, а к конденсатору. Заряд этого конденсатора совпадает с синусоидой напряжения сети. Заряд происходит высокочастотными импульсами. Ток, который расходуется потребителями из сети, состоит из высокочастотных импульсов.

Счетчики (электронные) имеют преобразователь, который не чувствителен к высоким частотам. Поэтому, расход энергии импульсного вида счетчик учитывает с отрицательной погрешностью.

Схема прибора

Главные составляющие элементы прибора: выпрямитель, емкость, транзистор. Конденсатор подключен по последовательной цепи с выпрямителем, когда выпрямитель производит работу на транзистор, заряжается в данный момент времени до размера напряжения линии питания.

Зарядка осуществляется частотными импульсами 2 кГц. На нагрузке и емкости напряжение близко к синусу на 220 вольт. Для ограничения тока транзистор в период заряда емкости, предназначен резистор, подключенный с каскадом ключа по последовательной схеме.

Генератор выполнен на логических элементах. Он образует импульсы 2 кГц с амплитудой на 5 вольт. Сигнальная частота генератора определена свойствами элементов С2-R7. Такие свойства могут использоваться для настройки максимальной погрешности учета расхода энергии. Создатель импульсов выполнен на транзисторах Т2 и Т3. Он предназначен для управления ключом Т1. Создатель импульсов рассчитан так, что транзистор Т1 начинает насыщаться в открытом виде. Поэтому на нем расходуется небольшая мощность. Транзистор Т1 тоже закрывается.

Выпрямитель, трансформатор и остальные элементы создают блок питания низкой стороны схемы. Такой блок питания работает на 36 В для микросхемы генератора.

Сначала делают проверку блока питания отдельно от схемы с низким напряжением. Блок должен создавать ток выше 2-х ампер и напряжение 36 вольт, 5 вольт для генератора с малой мощностью. Далее делают наладку генератора. Для этого отключают силовую часть. От генератора должны идти импульсы размером 5 вольт, частотой 2 килогерца. Для настройки выбирают конденсаторы С2 и С3.

Создатель импульсов при проверке должен выдавать импульсный ток на транзисторе около 2 ампер, иначе транзистор выйдет из строя. Для проверки такого состояния включают шунт, при выключенной силовой схеме. Напряжение импульсов на шунте измеряют осциллографом на работающем генераторе. Основываясь на расчете, вычисляют значение тока.

Далее, проверяют силовую часть. Восстанавливают все цепи по схеме. Конденсатор отключают, вместо нагрузки применяют лампу. При подключении прибора напряжение при нормальной работоспособности прибора должно равняться 120 вольт. На осциллографе видно напряжение нагрузки импульсами с частотой, определенной генератором. Импульсы модулируются синусом напряжения сети. На сопротивлении R6 – импульсами выпрямленного напряжения.

При исправности устройства включают емкость С1, в результате напряжение повышается. При дальнейшем повышении размера емкости С1 доходит до 220 вольт. Во время этого процесса нужно контролировать температуру транзистора Т1. При сильном нагревании на небольшой нагрузке возникает опасность, что он не вошел в режим насыщения или не осуществилось полное закрытие. Тогда нужно сделать настройку создания импульсов. На практике такого нагрева не наблюдается.

В итоге, подключается нагрузка по номиналу, определяется емкость С1 такого значения, чтобы создать для нагрузки напряжение 220 вольт. Емкость С1 выбирают осторожно, с небольших значений, потому что повышение емкости резко повышает ток транзистора Т1. Амплитуду токовых импульсов определяют, если подключить осциллограф к резистору R6 по параллельной схеме. Импульсный ток не поднимется выше допускаемого для определенного транзистора. Если нужно, то ток ограничивают путем повышения значения сопротивления резистора R6. Оптимальным решением будет выбрать наименьший размер емкости конденсатора С1.

При данных радиодеталях прибор рассчитан на потребление 1 киловатта. Чтобы повысить мощность потребления, нужно применить более мощные силовые элементы ключа на транзисторе и выпрямителя.

При выключенных потребителях устройство расходует немалую мощность, учитываемую счетчиком. Поэтому лучше выключать этот прибор при отключенной нагрузки.

Принцип работы и конструкция полупроводникового генератора ВЧ

Генераторы высокой частоты выполнены на широко применяемой схеме. Различия генераторов заключаются в цепочке RС эмиттера, которая задает транзистору режим по току. Для образования обратной связи в цепи генератора от индуктивной катушки создают вывод клеммы. Генераторы ВЧ работают нестабильно на из-за влияния транзистора на колебания. Свойства транзистора могут измениться при колебаниях температуры и разности потенциалов. Поэтому образующаяся частота не остается постоянной величиной, а «плавает».

Чтобы транзистор не влиял на частоту, нужно уменьшить связь контура колебаний с транзистором до минимальной. Для этого нужно снизить размеры емкостей. На частоту оказывает влияние изменение нагрузочного сопротивления. Поэтому нужно между нагрузкой и генератором включить повторитель. Для подключения напряжения к генератору применяют постоянные блоки питания с небольшими импульсами напряжения.

Генераторы, сделанные по схеме, изображенной выше, имеют максимальные характеристики, собраны на . Во многих схемах генераторов ВЧ сигнал выхода снимается с контура колебаний через небольшой конденсатор, а также с электродов транзистора. Здесь нужно учесть, что вспомогательная нагрузка контура колебаний изменяет его свойства и частоту работы. Часто это свойство применяют для замера разных физических величин, для проверки технологических параметров.

На этой схеме показан измененный генератор высокой частоты. Значение обратной связи и лучшие условия возбуждения выбирают при помощи элементов емкости.

Из всего количества схем генераторов выделяются варианты с ударным возбуждением. Они действуют за счет возбуждения контура колебаний сильным импульсом. В итоге электронного удара в контуре образуются затухающие колебания по синусоидальной амплитуде. Такое затухание происходит из-за потерь в контуре гармонических колебаний. Скорость таких колебаний вычисляется по добротности контура.

Сигнал ВЧ на выходе будет стабильным в том случае, если импульсы будут иметь высокую частоту. Такой вид генераторов самый старый из всех рассматриваемых.

Ламповый генератор ВЧ

Чтобы получить плазму с определенными параметрами, необходимо подвести необходимую величину к разряду мощности. Для эмиттеров на плазме, работа которых основана на разряде высокой частоты, применяется схема подведения мощности. Схема изображена на рисунке.

На лампах преобразовывает энергию электрического постоянного тока в переменный ток. Главным элементом работы генератора стала электронная лампа. В нашей схеме это тетроды ГУ-92А. Это устройство представляет собой электронную лампу на четырех электродах: анод, экранирующая сетка, управляющая сетка, катод.

Сетка управления, на которую поступает сигнал высокой частоты малой амплитуды, закрывает часть электронов, когда сигнал характеризуется отрицательной амплитудой, и повышает ток на аноде, при положительном сигнале. Экранирующая сетка создает фокус электронного потока, увеличивает усиление лампы, снижает емкость прохода между сеткой управления и анодом в сравнении с 3-электродной системой в сотни раз. Это уменьшает выходные искажения частот на лампе при действии на высоких частотах.

Генератор состоит из цепей:

  1. Цепь накала с питанием низкого напряжения.
  2. Цепь возбуждения и питания сетки управления.
  3. Цепь питания сетки экрана.
  4. Анодная цепь.

Между антенной и выходом генератора находится ВЧ трансформатор. Он предназначен для отдачи мощности на эмиттер от генератора. Нагрузка контура антенны не равна величине отбираемой наибольшей мощности от генератора. Эффективность передачи мощности от каскада выхода усилителя к антенне может быть достигнута при согласовании. Элементом согласования выступает емкостный делитель в цепи контура анода.

Элементом согласования может работать трансформатор. Его наличие необходимо в разных согласующих схемах, потому что без трансформатора не осуществится высоковольтная развязка.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.


Вынужденные электрические колебания, которые мы до сих пор рассматривали, возникают под действием переменного напряжения, вырабатываемого генераторами на электростанциях. Однако такие генераторы не способны создавать применяемые в радиотехнике колебания высокой частоты, так как для этого потребовалась бы чрезмерно большая скорость вращения роторов. Колебания высокой частоты получают с помощью других устройств, одним из которых является так называемый ламповый генератор. Он назван так потому, что одной из его основных частей является трехэлектродная электронная лампа - триод.
Рис. 2.27
Ламповый генератор представляет собой автоколебательную систему, в которой вырабатываются незатухающие колебания за счет энергии источника постоянного напряжения, например батареи гальванических элементов или выпрямителя. В этом отношении ламповый генератор подобен часам, в которых незатухающие колебания маятника поддерживаются за счет энергии поднятой гири или сжатой пружины.
Ламповый генератор содержит колебательный контур, состоящий из катушки с индуктивностью L и конденсатора емкостью С. Известно, что если конденсатор зарядить, то в контуре возникнут затухающие колебания. Чтобы колебания не затухали, нужно компенсировать потери энергии за каждый период.
Пополнять энергию в контуре можно, подзаряжая конденсатор. Для этого надо контур периодически подключать на некоторый промежуток времени к источнику постоянного напряжения. Конденсатор должен подключаться к источнику только в те интервалы времени, когда присоединенная к поло-жительному полюсу источника обкладка конденсатора заряжена положительно, а присоединенная к отрицательному полюсу - отрицательно (рис. 2.27). Только в этом случае источник подзаряжает конденсатор, пополняя его энергию. При этом электрическое поле зарядов на обкладках конденсатора совершает отрицательную работу и энергия конденсатора уве-личивается.
Если же ключ замкнуть в момент времени, когда знаки зарядов на обкладках конденсатора соответствуют рисунку 2.28, то электрическое поле зарядов, имеющихся на обкладках кон-
денсатора, будет совершать положительную работу. Энергия конденсатора при этом уменьшается; конденсатор частично разряжается.
Следовательно, источник постоянного напряжения, все время подключенный к контуру, не может поддерживать в нем незатухающие колебания. Половину периода энергия бу-дет поступать в контур, а в следующую половину периода - уходить из него.
Но если с помощью ключа подключать источник тока к колебательному контуру лишь в те полупериоды, когда происходит передача энергии в контур (см. рис. 2.27), то установятся незатухающие колебания. Понятно, что для этого необходимо обеспечить автоматическую работу ключа (или клапана, как его часто называют). Поскольку речь идет о колебаниях очень высокой частоты, то ключ должен обладать огромным быстродействием. В качестве такого практически безынерционного ключа используется триод (рис. 2.29).
В анодной цепи, в которую включен колебательный контур, должен протекать ток в те промежутки времени, когда обкладка конденсатора, присоединенная к положительному полюсу источника, заряжена положительно. Для этого колебания в контуре должны управлять потенциалом сетки ис, регулирующим силу тока в анодной цепи. Необходима, как говорят, обратная связь.
Обратная связь в ламповом генераторе, схема которого приведена на рисунке 2.29, является индуктивной. В цепь сетки включена катушка Lc, индуктивно связанная с катушкой колебательного контура. Колебания силы тока в контуре вследствие явления электромагнитной индукции приводят к
Направление обхода

Рис. 2.29
колебаниям напряжения на концах катушки Lc и тем самым к колебаниям потенциала сетки триода.
Выберем в качестве положительного направления обхода анодной цепи генератора направление против часовой стрелки. Напряжение на конденсаторе контура в этом случае равно разности потенциалов между нижней обкладкой конденсатора, присоединенной к положительному полюсу анодной батареи G, и верхней обкладкой.
Сила тока в контурной катушке отстает по фазе на л/2 от колебаний напряжения на контуре (это напряжение равно напряжению на конденсаторе). ЭДС индукции в катушке Lc (а значит, и напряжение между сеткой и катодом) согласно закону электромагнитной индукции сдвинута по фазе относительно колебаний силы тока в катушке контура тоже на л/2. В зависимости от порядка подключения концов катушки Lc к сетке и катоду лампы сдвиг фаз напряжения на участке сетка - катод равен либо +л/2, либо -л/2. В первом случае колебания напряжения на сетке совпадают по фазе с колебаниями напряжения на конденсаторе. Это означает, что в момент, когда нижняя пластина конденсатора заряжена положительно, сетка также заряжена положительно относительно катода лампы. Лампа при этом отперта, и ток в анодной цепи, созданный батареей G, подзаряжает конденсатор. В момент, когда нижняя пластина конденсатора заряжена отрицательно, потенциал сетки оказывается ниже потенциала катода и лампа запирается. Анодная цепь размыкается, и конденсатор не раз-ряжается через анодную цепь. Это и является необходимым условием работы генератора.
При переключении концов катушки Lc напряжение на сетке меняет фазу на л. Сетка оказывается заряженной положи-тельно, когда нижняя пластина конденсатора заряжена отрицательно (и наоборот). Анодный ток в лампе при этом разряжает конденсатор, а не подзаряжает его. В этих условиях генератор работать не будет.
После замыкания анодной цепи конденсатор заряжается и в контуре начинаются колебания. Их амплитуда нарастает до тех пор, пока потери энергии в контуре не будут в точности компенсироваться поступлением энергии из анодной цепи. Эта амплитуда прямо пропорциональна напряжению на полюсах источника тока. Увеличение напряжения источника увеличивает «толчки» тока, подзаряжающего конденсатор контура.
Частота колебаний в контуре определяется индуктивностью L катушки и емкостью С конденсатора контура согласно формуле Томсона:
При малых L и С частота колебаний велика.
Обнаружить возникновение колебаний в генераторе (возбуждение генератора) можно с помощью осциллографа, подав на его вертикально отклоняющие пластины напряжение с конденсатора. Если поменять местами концы катушки Lc, присоединяемые к сетке и катоду, генератор работать не будет.
«Ламповые генераторы имеются на мощных передающих радиостанциях и входят в состав других радиотехнических устройств.



Загрузка...