sonyps4.ru

Как работает электронная лампа. Поколения вычислительных систем

Ознакомление с историей изобретения радиолампы возвращает нас к 1881 г., когда известный изобретатель Томас Эдисон обнаружил явление, положенное впоследствии в основу действия почти каждой радиолампы. Занимаясь опытами, целью которых было улучшение первых электрических ламп, Эдисон ввел внутрь стеклянной колбы лампы металлическую пластинку, расположив ее поблизости от накаливаемой угольной нити. Эта пластинка совершенно не соединялась с нитью внутри колбы (фиг. 1). Металлический стержень, на котором держалась пластинка, проходил сквозь стекло наружу. Чтобы нить не перегорела, воздух из колбы лампы был выкачан. Изобретатель был весьма удивлен, заметив отклонение стрелки электроизмерительного прибора, включенного в проводник, соединяющий между собой металлическую пластинку с положительным полюсом (плюсом) батареи накала нити. Исходя из обычных по тому времени представлений, нельзя было ожидать появления тока в цепи «пластинка - соединительный провод - плюс батареи», так как эта цепь незамкнута. Тем не менее ток по цепи проходил. Когда же соединительный провод приключили не к плюсу, а к минусу батареи, ток в цепи пластинки прекращался. Эдисон не смог дать объяснения открытому им явлению, которое вошло в историю радиолампы под названием эффекта Эдисона .

Объяснение эффекту Эдисона было дано гораздо позже, уже после того, как в 1891 г. Стонеем и Томсоном были открыты электроны - мельчайшие отрицательные заряды электричества. В 1900 - 1903 гг. Ричардсон предпринял научные исследования, результатом которых явилось опытное и теоретическое подтверждение вывода Томсона о том, что раскаленная поверхность проводников испускает, эмиттирует электроны. Оказалось, что способ нагревания проводника безразличен: раскаленный на горящих углях гвоздь эмиттирует электроны (фиг. 2) так же, как и накаливаемая электрическим током нить электрической лампы. Чем выше температура, тем более интенсивна электронная эмиссия . Ричардсон глубоко исследовал электронную эмиссию и предложил формулы для расчета количества эмиттируемых электронов Им же было установлено, что будучи нагретыми до одинаковой температуры, разные проводники эмиттируют электроны в различной степени, что было приписано структурным свойствам этих проводников, т. е. особенностям их внутреннего строения. Повышенными эмиссионными свойствами отличаются цезий, натрий, торий и некоторые другие металлы. Этим впоследствии воспользовались при конструировании интенсивных эмиттеров электронов.

Однако, установление одного лишь факта существования электронной эмиссии с поверхности раскаленных проводников (такая эмиссия называется термоионной или термоэлектронной) не объясняет еще появления тока в цепи пластинки лампы Эдисона. Но все становится совершенно понятным, если вспомнить два обстоятельства: 1) разноименные электрические заряды стремятся притянуться, а одноименные - оттолкнуться; 2) поток электронов образует собой электрический ток тем большей силы, чем большее количество электронов перемещается (фиг. 3). Пластинка, соединяемая с плюсом батареи накала лампы, заряжается положительно и потому притягивает к себе электроны, заряд которых отрицателен. Таким образом, кажущийся разрыв цепи внутри лампы оказывается замкнутым и в цепи устанавливается электрический ток, который проходит через электроизмерительный прибор. Стрелка прибора отклоняется.

Если пластинку зарядить по отношению к нити отрицательно (это именно и получается, когда она присоединена к минусу батареи накала), то она будет отталкивать от себя электроны. Хотя раскаленная нить и будет попрежнему эмит-тировать электроны, но на пластинку они не попадут. Никакого тока в цепи пластинки не возникнет, и стрелка прибора покажет нуль (фиг. 4). Раскаленная нить окажется окруженной со всех сторон большим количеством беспрерывно эмиттируемых нитью и вновь к ней возвращающихся электронов. Это «электронное облако» вокруг нити создает отрицательный пространственный заряд , который препятствует вылету из нити электронов. Устранить пространственный заряд («рассосать электронное облако») можно действием положительно заряженной пластинки. По мере увеличения положительного заряда притягивающая электроны сила пластинки возрастает, все большее и большее количество электронов покидает «облако», направляясь к пластинке. Пространственный отрицательный заряд вокруг нити уменьшается. Ток в цепи пластинки возрастает. Стрелка прибора отклоняется по шкале в сторону больших показаний. Таким образом ток в цепи пластинки можно менять изменением положительного заряда пластинки . Это - вторая возможность увеличения тока. О первой возможности мы уже знаем: чем выше температура раскаленной нити, тем сильнее эмиссия. Однако, повышать температуру нити можно лишь до известных пределов, после которых возникает опасность перегорания нити. Но и повышение положительного заряда на пластинке также имеет пределы. Чем сильнее этот заряд, тем больше скорости летящих к пластинке электронов. Получается электронная бомбардировка пластинки. Хотя энергия удара каждого электрона и мала, но электронов много, и от ударов пластинка может сильно накалиться и даже расплавиться.

Увеличение положительного заряда пластинки достигается включением в ее цепь батареи с большим напряжением, причем плюс батареи присоединяется к пластинке, а минус - к нити (к положительному полюсу накальной батареи, фиг. 5). Оставляя температуру нити неизменной, т. е. поддерживая неизменным напряжение накала, можно определить характер изменения тока в цепи пластинки в зависимости от изменения напряжения «пластиночной» батареи. Эту зависимость принято выражать графически построением линии, плавно соединяющей точки, соответствующие показаниям прибора.

По горизонтальной оси слева направо обычно откладываются возрастающие значения положительного напряжения на пластинке, а по вертикальной оси снизу вверх - возрастающие значения тока в цепи пластинки. Полученный график (характеристика ) говорит о том, что зависимость тока от напряжения получается пропорциональной только в ограниченных пределах. По мере увеличения напряжения на пластинке ток в ее цепи возрастает сначала медленно, потом быстрее и затем равномерно (линейный участок графика). Наконец, наступает такой момент, когда возрастание тока прекращается. Это - насыщение : ток не может стать больше: все электроны, эмиттируемые нитью, полностью использованы . «Электронное облако» исчезло.

Цепь пластинки лампы обладает свойством одностороннего пропускания электрического тока. Эта односторонность определяется тем, что электроны («переносчики тока») могут проходить в такой лампе только в одном направлении: от раскаленной нити к пластинке. Джону Флемингу, когда он в 1904 г. занимался опытами по приему сигналов беспроволочного телеграфа, необходим был детектор - прибор с односторонним пропусканием тока. Флеминг применил в качестве детектора электронную лампу.

Так эффект Эдисона был впервые практически применен в радиотехнике. Техника обогатилась новым достижением - «электрическим клапаном». Интересно сопоставить две схемы: схему приемного устройства Флеминга, опубликованную в 1905 г., и современную схему простейшего приемника с кристаллическим детектором. Эти схемы по существу мало чем отличаются одна от другой. Роль детектора в схеме Флеминга выполнял «электрический клапан» (вентиль). Именно этот «клапан» и явился первой и простейшей радиолампой (фиг. 6). Так как «клапан» пропускает ток лишь при положительном напряжении на пластинке, а электроды, соединяемые с плюсом источников тока, называются анодами , то именно такое название и дано пластинке, какую бы форму (цилиндрическую, призматическую, плоскую) ей ни придали. Нить, присоединяемая к минусу анодной батареи («пластиночной батареи», как мы ее именовали ранее), называется катодом .

«Клапаны» Флеминга широко применяются и поныне, но носят другие названия. В каждом современном радиоприемнике с питанием от сети переменного тока имеется устройство, преобразовывающее переменный ток в необходимый для приемника постоянный ток. Это преобразование осуществляется посредством «клапанов», называемых кенотронами . Устройство кенотрона в принципе совершенно такое же, как и прибора, в котором Эдисон наблюдал впервые явление термоэлектронной эмиссии: колба, из которой выкачан воздух, анод и накаливаемый электрическим током катод. Кенотрон, пропуская ток лишь одного направления, преобразовывает переменный ток (т. е. ток, попеременно меняющий направление своею прохождения) в ток постоянный, проходящий все время в одном направлении. Процесс преобразования кенотронами переменного тока в постоянный получил название выпрямления , что следует, видимо, объяснить формальным признаком: график переменного тока обычно имеет форму волны (синусоиды), тогда как график постоянного тока - прямая линия. Получается как бы «выпрямление» волнистого графика в прямолинейный (фиг. 7). Полное устройство, служащее для выпрямления, называется выпрямителем .

Общее название для всех радиоламп с двумя электродами - анодом и катодом (нить хотя и имеет два вывода из колбы, но представляет собой один электрод) - двухэлектродная лампа или - сокращенно - диод . Диоды применяются не только в выпрямителях, но и в самих радиоприемниках, где они выполняют функции, относящиеся непосредственно к приему радиосигналов. Таким диодом, в частности, является лампа типа 6X6, у которой в общей колбе помещено два независимых друг от друга диода (такие лампы называются двойными диодами или дубль-диодами). Кенотроны часто имеют не один, а два анода, что объясняется особенностями схемы выпрямителя. Аноды либо располагаются около общего катода вдоль нити, либо каждый анод окружает отдельный катод. Примером одноанодного кенотрона является лампа типа ВО-230, а двуханодных - лампы 2-В-400, 5Ц4С, ВО-188 и др. График, выражающий зависимость анодного тока диода от напряжения на аноде, называется характеристикой диода .

В 1906 г. Ли де-Форест поместил в пространство между катодом и анодом третий электрод в виде проволочной сетки . Так была создана трехэлектродная лампа (триод) - прототип почти всех современных радиоламп. Название «сетка» сохранилось за третьим электродом и поныне, хотя в настоящее время он далеко не всегда имеет вид сетки. Внутри лампы сетка не соединяется ни с каким другим электродом. Проводник от сетки выведен из колбы наружу. Включая между выводным проводником сетки и выводом катода (нити) сеточную батарею, можно заряжать сетку положительно или отрицательно относительно катода в зависимости от полярности включения батареи.

Когда положительный полюс (плюс) сеточной батареи присоединен к сетке, а отрицательный полюс (минус) - к катоду, сетка приобретает положительный заряд и тем больший, чем больше напряжение батареи. При обратном включении батареи сетка заряжается отрицательно. Если проводник сетки непосредственно соединить с катодом (с каким-либо выводом нити), то сетка приобретает такой же потенциал, какой имеет катод (более точно - какой имеет та точка цепи накала, к которой присоединяется сетка). Можно считать, что при этом сетка получает нулевой потенциал относительно катода, т. е. заряд сетки равен нулю. Находясь под нулевым напряжением, сетка почти не влияет на поток устремляющихся к аноду электронов (фиг. 8). Основная их масса проходит сквозь отверстия сетки (соотношение между размерами электронов и отверстиями сетки приблизительно таково, как между размерами человека и расстояниями между небесными телами), но некоторая часть электронов все же может попасть на сетку. Отсюда эти электроны по проводнику направятся к катоду, образуя сеточный ток .

Получив заряд того или иного знака (плюс или минус), сетка начинает активно вмешиваться в электронные процессы внутри лампы. Когда заряд отрицателен, то сетка стремится оттолкнуть от себя электроны , имеющие заряд такого же знака. А так как сетка расположена на пути прохождения электронов от катода к аноду, то отталкиванием сетка будет возвращать электроны обратно к катоду (фиг. 9). Если постепенно увеличивать отрицательный заряд сетки, то отталкивающее действие будет возрастать, вследствие чего при неизменном положительном

напряжении на аноде и неизменном напряжении накала нити анод будет получать все меньшее количество электронов. Иначе говоря, анодный ток будет уменьшаться. При некотором значении отрицательного заряда на сетке анодный ток может даже совершенно прекратиться - все электроны будут возвращены обратно к катоду, несмотря на то, что анод имеет положительный заряд. Сетка своим зарядом будет преодолевать действие заряда анода. А так как сетка находится ближе к катоду, чем анод, то ее влияние на поток электронов значительно сильнее. Достаточно изменить лишь немного напряжение на сетке, чтобы анодный ток изменился очень сильно. Такое же изменение анодного тока можно, конечно, получить и за счет изменения анодного напряжения, оставив напряжение на сетке неизменным. Однако, для получения точно такого же изменения тока в цепи анода потребуется значительное изменение анодного напряжения. В современных триодах изменение сеточного напряжения на один-два вольта вызывает такое же изменение анодного тока, как и изменение анодного напряжения на десятки и даже сотни вольт.

Положительно заряженная сетка не отталкивает, а притягивает к себе электроны , тем самым ускоряя их пробег (фиг. 10). Если постепенно увеличивать положительное напряжение на сетке, начиная от нуля, то можно наблюдать следующее. Сначала сетка будет как бы помогать аноду: вылетая из раскаленного катода, электроны испытают более сильное ускоряющее воздействие. Основная масса электронов, направляясь к аноду, по инерции пролетит сквозь отверстия в сетке и попадет в «засеточном пространстве» в поле усиленного напряжения анода. Эти электроны попадут на анод. Но некоторая часть электронов попадает непосредственно на сетку и образует сеточный ток. Затем при возрастании положительного заряда сетки сеточный ток будет увеличиваться, т. е. все большее количество электронов от общего электронного потока будет задерживаться сеткой. Но и анодный ток будет увеличиваться, так как скорости электронов возрастают. Наконец, вся эмиссия будет полностью использована, пространственный заряд вокруг катода уничтожится, и анодный ток перестанет возрастать. Наступит насыщение, эмиттированные электроны разделятся между анодом и сеткой, причем большая их часть придется на долю анода. Если еще больше увеличивать положительное напряжение на сетке, то это приведет к возрастанию сеточного тока, но исключительно за счет уменьшения Тока анода: сетка будет перехватывать все большее количество электронов из направляющегося к аноду потока их.

При очень больших положительных напряжениях на сетке (больших, чем напряжение на аноде) сеточный ток может даже превысить анодный ток, сетка может «перехватить» у анода все электроны. Анодный ток уменьшится до нуля, а сеточный возрастет до максимума, равного току насыщения лампы. Все эммитируемые нитью электроны попадают на сетку.

Характерные свойства трехэлектродных ламп наглядно отображаются графиком зависимости анодного тока от напряжения на сетке при неизменном положительном напряжении на аноде. Этот график называется характеристикой лампы (фиг. 11). При некотором отрицательном напряжении на сетке анодный ток совершенно прекращается; этот момент отмечен на графике слиянием нижнего конца характеристики с горизонтальной осью, вдоль которой отложены величины напряжений на сетке. В этот момент лампа «заперта»: все электроны возвращаются сеткой обратно на катод. Сетка преодолевает действие анода. Анодный ток равен нулю.

При уменьшении отрицательного заряда сетки (движение по горизонтальной оси вправо) лампа «отпирается»: появляется анодный ток, сначала слабый, а потом все более быстро возрастающий. График устремляется кверху, отдаляясь от горизонтальной оси. Момент, когда заряд сетки доведен до нуля, на графике отмечен пересечением характеристики с вертикальной осью, вдоль которой от нуля кверху отложены величины анодного тока. Начинаем постепенно увеличивать положительный заряд на сетке, вследствие чего анодный ток продолжает возрастать и, наконец, достигает максимального значения (ток насыщения), при котором характеристика загибается и далее становится почти горизонтальной. Вся эмиссия электронов полностью использована. Дальнейшее увеличение положительного заряда сетки приведет лишь к перераспределению электронного потока: все большее количество электронов будет задерживаться сеткой и, соответственно, меньшее их количество придется на долю анода.

Обычно радиолампы не работают при столь больших положительных напряжениях на сетке, и поэтому пунктирный участок характеристики анодного тока можно не рассматривать. Обратите внимание на характеристику, начинающуюся в точке пересечения осей. Это - характеристика сеточного тока. Отрицательно заряженная сетка не притягивает к себе электроны, и ток сетки равен нулю. При возрастании положительного напряжения на сетке ток в ее цепи, как показывает график, увеличивается.

До сих пор мы предусматривали постоянство напряжения на аноде. Но при увеличении этого напряжения анодный ток возрастает, а при понижении - уменьшается. Это приводит к необходимости снимать и, следовательно, вычерчивать не одну характеристику, а несколько - по одной для каждого выбранного значения анодного напряжения. Так получается семейство характеристик (фиг. 12), в котором характеристики, соответствующие более высоким анодным напряжениям, располагаются выше, левее. На большей части своей длины характеристики оказываются параллельными. Итак, есть две возможности влиять на величину анодного тока: изменением напряжения на сетке и изменением напряжения на аноде. Первая возможность требует меньших изменений, так как сетка находится ближе к катоду, чем анод, и поэтому изменения ее потенциала значительно сильнее влияют на электронный ток. Числовой коэффициент, указывающий, во сколько раз влияние сетки при совершенно одинаковых условиях больше влияния анода, называется коэффициентом усиления лампы . Предположим, что увеличение анодного напряжения на 20 вольт оказывает на анодный ток такое же влияние, как изменение сеточного напряжения всего лишь на 1 вольт. Это значит, что конструкция данной лампы такова, что в ней влияние сетки на анодный ток в 20 раз сильнее влияния анода, т. е. коэффициент усиления лампы равен 20. Зная величину коэффициента усиления, можно оценить усилительные свойства лампы, определить, во сколько раз более сильные колебания электрического тока возникнут в анодной цепи, если к сетке подвести относительно слабые электрические колебания. Только введение сетки в лампу позволило создать прибор, усиливающий электрические колебательные токи: диоды, рассмотренные нами ранее, усилительными свойствами не обладают. Существенное значение при оценке свойства лампы имеет крутизна (наклон) характеристики. Лампа с большой крутизной весьма чувствительна к изменениям напряжения на сетке: достаточно изменить сеточное напряжение в очень малой степени, чтобы анодный ток изменился в значительных пределах: Количественно крутизна оценивается величиной изменения анодного тока в миллиамперах при изменении сеточного напряжения на 1 вольт.

Катод в радиолампе представляет собой накаливаемую током тонкую металлическую проволоку (нить). Если накал такой нити осуществлять постоянным током, то и эмиссия электронов будет строго постоянна. Но почти все современные радиовещательные приемники рассчитаны на питание от переменного тока, а таким током накаливать нить нельзя, так как эмиссия электронов будет изменяться, «пульсировать». Из громкоговорителя будет слышен фон переменного тока - неприятное гудение, мешающее слушать программу.

Конечно, можно было бы переменный ток сначала с помощью диода выпрямить, превратить в постоянный, как это и делается для питания анодных цепей - об этом мы уже говорили. Но найден гораздо более простой и более эффективный способ, позволяющий для нагрева катода применять непосредственно переменный ток. В каналах тонкого и длинного фарфорового цилиндрика помещена вольфрамовая нить - нагреватель . Нить накаливается переменным током и ее тепло передается фарфоровому цилиндрику и надетому поверх него никелевому «чехлу» (фиг. 13), на внешней поверхности которого нанесен тонкий слой окислов щелочного металла (стронция, бария, цезия или др.). Эти окислы отличаются большой эмиссионной способностью даже при сравнительно низких температурах (порядка 600 градусов). Именно этот слой окислов и является источником электронов, т. е. собственно катодом. Вывод ка-

тода из колбы присоединен к никелевому «чехлу», причем никакого электрического соединения между катодом и накаливаемой нитью нет. Все нагреваемое устройство обладает сравнительно большой массой, которая не успевает терять тепло при быстрых изменениях переменного тока. Благодаря этому эмиссия строго постоянна и никакого фона в приемнике не прослушивается. Но тепловая инерция катода ламп в приемнике является причиной того, что включенный приемник начинает работать не сразу, а лишь, когда катоды нагреются.

Сетки в современных лампах чаще всего имеют вид проволочных спиралей: «густая сетка» - витки спиралей расположены ближе друг к другу, «редкая сетка» - расстояния между витками увеличены. Чем гуще сетка, тем при прочих равных условиях больше ее влияние на поток электронов, тем больше коэффициент усиления лампы.

В 1913 г. Лэнгмюйр увеличил количество электродов в лампе до четырех, предложив ввести в пространство между катодом и сеткой еще одну сетку (фиг. 14). Так был создан первый тетрод - четырехэлектродная лампа, имеющая две сетки, анод и катод. Ту сетку, которую Лэнгмюйр поместил ближе к катоду, называют катодной , а «старую» сетку назвали управляющей , поскольку катодная сетка выполняет лишь вспомогательную роль. Своим небольшим положительным напряжением, получаемым от части анодной батареи, катодная сетка ускоряет поток электронов к аноду (отсюда и другое название сетке - ускоряющая ), «рассасывая» электронное облачко вокруг катода. Это позволило применить лампу даже при сравнительно малых напряжениях на аноде. Одно время нашей промышленностью выпускалась двухсеточная лампа типа МДС (или СТ-6), в паспорте которой значилось: рабочее анодное напряжение 8-20 в. Наиболее распространенные в то время лампы типа Микро (ПТ-2) обычно работали при гораздо более высоких напряжениях - порядка 100 в . Однако, лампы с катодной сеткой не получили распространения, так как вместо них вскоре были предложены еще более совершенные лампы. Кроме того, «двухсетки» имели существенный недостаток: положительно заряженная катодная сетка отнимала очень большое количество электронов от общего потока, что равносильно бесполезной их затрате. Хотя и прельщала возможность работать с малыми анодными напряжениями, но этому противопоставлялась большая трата тока, - ощутительной выгоды не получалось. Но введение второй сетки послужило сигналом для конструкторов радиоламп: началась «эпоха» многоэлектродных ламп.

В 1916 г. Шоттки, занимаясь опытами с триодами и преследуя задачу повышения их коэффициента усиления, нашел необходимым ввести вторую сетку в пространство между анодом и имеющейся (управляющей) сеткой (фиг. 15). Подавая на эту - анодную - сетку положительное напряжение, по величине примерно равное половине анодного, Шоттки в известной мере достигал требуемого. Но прошло десятилетие, прежде чем эти работы получили широкое признание и применение. В 1926 г. Хэлл конструктивно видоизменил анодную сетку, придав ей вид электростатического экрана , которым он отделил анод от всех других электродов. Для чего же это понадобилось? В триоде анод и сетка образуют как бы небольшой конденсатор, емкости которого, однако, достаточно для того, чтобы цепь анода оказалась электростатически связанной с цепью сетки.

Обычно экранирующая сетка имеет такую конструкцию, что только лишь та ее часть, которая обращена к аноду, выполнена в виде проволочной, спиралью навитой сетки. Остальная же часть этого электрода в целях лучшего экранирования сделана сплошной, без отверстий. Чтобы заметно не ослаблять анодного тока, на экранирующую сетку подается (от анодной батареи) положительное напряжение, по величине равное приблизительно половине анодного. Лампы с экранирующими сетками выгодно отличаются от триодов большим коэффициентом усиления: у триодов он обычно не превышает 20 - 100, а у экранированных ламп измеряется сотнями, поэтому вместо 2 триодов можно применять 1 экранированную лампу.

В экранированных лампах пришлось столкнуться с одним неприятным явлением. Дело в том, что электроны, ударяясь о поверхность анода, могут выбивать из него так называемые вторичные электроны. Это по своей природе такие же электроны, только освобожденные из металлической поверхности не нагреванием (как из катода), а электронной бомбардировкой. Один бомбардирующий электрон может выбить несколько вторичных электронов. Получается так, что сам анод превращается в источник электронов (фиг. 16). Вблизи

от анода находится положительно заряженная экранирующая сетка, и вторичные электроны, вылетая с малыми скоростями, могут притянуться к этой сетке, если в какой-либо момент напряжение на сетке окажется больше напряжения на аноде. Именно это имеет место в том случае, когда экранированная лампа используется в оконечном каскаде усиления низкой частоты. Устремляясь к экранирующей сетке, вторичные электроны устанавливают в лампе ток обратного направления, и работа лампы совершенно нарушается. Это неприятное явление именуется динатроныым эффектом . Но есть средство борьбы с этим явлением. В 1929 г. появились первые лампы с пятью электродами, из которых два - анод и катод, а остальные три - сетки. По числу электродов эти лампы получили название пентодов . Третья сетка помещена в пространстве между экранирующей сеткой и анодом, т. е. находится ближе всего к аноду. Она соединяется непосредственно с катодом и, следовательно, имеет такой же потенциал, как и катод, т. е. отрицательный по отношению к аноду. Благодаря этому сетка возвращает вторичные электроны обратно на анод и тем предотвращает динатронный эффект. Отсюда и название этой сетки - защитная или противодинатронная. По многим своим качествам пентоды выше триодов. Они применяются для усиления напряжения высокой и низкой частот и прекрасно работают в оконечных каскадах.

Увеличение числа сеток в лампе не приостановилось на пентоде. Ряд «диод» - «триод» - «тетрод» - «пентод» пополнился еще одним представителем ламповой семьи - гексодом . Это - лампа с шестью электродами, из которых четыре - сетки (фиг. 17). Она применяется в каскадах высокочастотного усиления и частотного преобразования в супергетеродинных приемниках. Обычно сила приходящих к антенне радиосигналов, особенно на коротких волнах, изменяется в весьма значительных пределах. Сигналы то возрастают, то быстро замирают (явление фединга - замирания). Гексод же устроен так, что автоматически быстро меняет коэффициент усиления: слабые сигналы он усиливает в большей степени, а сильные - в меньшей. В результате слышимость выравнивается и поддерживается приблизительно на одном уровне. Автоматизм действия достигается изменением потенциалов на сетках в такт с изменением силы принимаемых сигналов. Такой гексод получил название фединг-гексода . В обычных приемниках такая регулировка усиления также имеет место, но осуществляется посредством пентодов с вытянутой нижней частью характеристики, где крутизна имеет плавно меняющееся значение.

Такие пентоды называются «варимю ».

Вторая категория гексодов - смесительные гексоды . В супергетеродинных приемниках принимаемый сигнал сначала понижается по частоте,а затем уже усиливается. Это понижение или преобразование частоты может быть осуществлено и посредством триодов, как это и делалось ранее. Но смесительные гексоды выполняют эту функцию более рационально. В нашей практике радиовещательного приема для выполнения этой функции применяются и другие лампы, с еще большим количеством сеток. Это -пентагриды (пятисеточные лампы) или, как их иначе называют, гептоды (семиэлектродные лампы). Лампы типа 6А8 и 6Л7 относятся к этой категории ламп. Для преобразования частоты в супергетеродинных приемниках применяется

также и шестисеточная лампа (восемь электродов) - октод . В отличие от пентагрида октод представляет собой как бы комбинацию триода с пентодом (тогда как пентагрид - триода с тетродом). Появившись позже пентагрида, октод по своим качествам выше своего предшественника.

Но не только в «сеточном направлении» развивались лампы за последние годы. О помещении двух «электрических вентилей» в общую колбу мы уже говорили ранее, касаясь устройства двойного диода типа 6Х6. Теперь широко применяются и такие комбинации, как диод-триод, двойные триоды, двойные диод-триоды (ДДТ), двойные диод-пентоды (ДДП), триод-гексоды и т. п. По большей части такие комбинированные лампы имеют общий катод. Работа одной лампы уподобляется работе нескольких более простых. Например, лампа 6Н7 является двойным триодом - два обособленных триода в общей колбе, своеобразные близнецы. Эта лампа с успехом заменяет собой две триодные лампы и может быть использована либо в двухкаскадном усилителе на сопротивлениях, либо в пушпульной схеме, для чего она собственно и предназначена. После детектирования, производимого в супергетеродинных приемниках, обычно посредством диодов, необходимо осуществлять усиление. Для этой цели теперь в общей колбе с детектирующим диодом помещают усилительный триод; так появились диод-триоды. В супергетеродинных приемниках для автоматической регулировки громкости (АРГ) необходимо получать постоянный ток, величина которого менялась бы в такт с силой принимаемых сигналов. Для этих целей можно было бы применить отдельный диод, но и его оказалось возможным поместить в колбу диод-триода. Так в одной лампе разместились сразу три лампы: два диода и триод, и лампа получила название двойной диод-триод. Таким же путем возникли диод-пентод, триод-гексод и т. д.

Несколько особняком от других ламп стоит лампа типа 6Л6. Это очень интересная лампа : одного электрода в ней нет, но он как бы подразумевается. С одной стороны, эта лампа - очевидный тетрод, так как в ней всего лишь четыре электрода: катод, анод и две сетки, из которых одна - управляющая, а другая - экранирующая. Но, с другой стороны, 6Л6 - пентод, ибо обладает всеми его свойствами и весьма положительными особенностями. Роль защитной сетки, обязательной для пентода, в лампе 6Л6 выполняет... пустое пространство, искусственно созданная зона, находящаяся между анодом и экранирующей сеткой (фиг. 18).

В этой зоне создан нулевой потенциал, именно такой же, какой имела бы защитная сетка, если бы только она существовала в этой лампе. Чтобы создать такую зону, пришлось произвести конструктивные изменения. В частности, анод отнесен дальше от защитной сетки. «Мнимый электрод» действует на вторичные электроны так же, как и защитная сетка, так же предотвращает возникновение динатронного эффекта. Электроны в этой лампе идут от катода к аноду как бы отдельными лучами, проходя в пространствах между витками сеток; отсюда и название лампы - лучевая . Витки сеток так расположены, что экранирующая сетка находится в «электронной тени», создаваемой витками управляющей сетки, ближайшей к катоду. Благодаря этому экранирующая сетка притягивает к себе сравнительно мало электронов, и ток эмиссии почти полностью расходуется на анодную цепь. С боковых узких сторон катода в лампе установлены металлические щитки, соединенные с катодом, благодаря чему электроны попадают на анод только с определенных сторон, где создано равномерное электрическое поле. Никаких «электронных завихрений» не получается, что сказывается в отсутствии искажений в работе лампы. Лучевые лампы обладают высоким коэффициентом полезного действия и способны отдать весьма большую мощность на выходе. Достаточно сказать, что две такие лампы в пушпульной схеме при некоторых условиях могут отдать до 60 вт полезной мощности.

Лампы совершенствуются не только электрически, но также и чисто конструктивно. Первые радиолампы по виду мало чем отличались от электрических ламп и светили почти так же. Многим еще памятны первые радиолампы, разработанные нашими соотечественниками проф. А. А. Чернышевым и проф. М. А. Бонч-Бруевичем. За последние годы внешний облик радиолампы сильно изменился. Большой вклад в дело создания новых типов ламп и усовершенствования ранее выпущенных внесла наша отечественная научная мысль. Достаточно указать на работы коллектива сотрудников лауреата Сталинской премии орденоносца проф. С. А. Векшинского. Сначала радиолампа, к великому удивлению начинающих радиолюбителей, перестала светить и была обращена только к выполнению своих прямых обязанностей. Затем неоднократно изменялась конфигурация баллона. Появились малогабаритные лампы размером немногим более половины мизинца. Для радиотехнической аппаратуры лабораторного типа были вылущены лампы, величиной и формой похожие на желуди. В настоящее время широко распространены металлические лампы, которые даже как-то и неудобно называть лампами, так как они совсем не светятся. Замена стеклянного баллона металлическим (стальным) - не простая замена: металлические лампы выгодно отличаются от стеклянных малыми габаритами (лампа 6X6, например, величиной всего лишь в грецкий орех), прочностью, хорошей электрической экранировкой (не надо надевать громоздких экранов, как на стеклянные лампы), меньшими междуэлектродными емкостями и пр. Правда, есть и недостатки у металлических ламп, из которых весьма существенный - сильный нагрев металлической колбы, особенно у кенотронов.

Сейчас многие типы ламп выпускаются в двух вариантах: в металлическом и стеклянном оформлении. Применение «ключа» на ножке ламп облегчает процедуру вставления лампы в панельку. Если раньше возможно было неосторожное прикосновение к гнездам панельки не теми штырьками, в результате чего лампа, на мгновение эффектно вспыхнув, навсегда выбывала из строя из-за перегорания нити, то теперь нельзя вставить лампу, пока штырьки не заняли правильного положения. Ошибки, влекущие к гибели лампы, исключены.

Ламповая техника непрерывно совершенствуется. Ее уровень определяет прогресс радиотехники.

Электронные лампы можно классифицировать по числу электродов, назначению, диапазону частот, мощности, типу катода, габаритам.

В зависимости от числа электродов электронные лампы делят на диоды, триоды, тетроды, пентоды, гептоды, комбинированные лампы (двойные диоды, двойные триоды, триод-пентоды, триод-гептоды и т. д.).

В зависимости от выполняемых функций лампы могут быть выпрямительные, детекторные, усилительные, преобразовательные, генераторные и др.

Диодом называется электронная лампа с двумя электродами: анодом и катодом. Она была изобретена Джоном Флемингом в 1904 г. Катод располагается в центре лампы: анод, имеющий форму цилиндра, охватывает катод. Принцип действия диода сводится к следующему. Если к аноду приложен положительный потенциал, то вылетевшие из катода отрицательно заряженные электроны под действием электрического поля устремятся к положительному аноду, образуя непрерывный электронный поток, замыкающий электрическую цепь источника анодного питания. Во внешней Цепи пойдет ток анода I а. Так как условно за положительное направление тока принято направление от плюса к минусу источника тока, то внутри диода ток протекает от анода к катоду, т. е. против движения электронов. Величина анодного тока определяется количеством электронов, перелетающих с катода на анод в единицу времени.

Если к аноду диода подключить минус источника тока, а к катоду - плюс, то отрицательно заряженный анод будет отталкивать отрицательные электроны обратно на катод. В этом случае ток через лампу не пойдет. Следовательно, диод проводит электрический ток только в одном направлении - от анода к катоду, когда потенциал анода выше потенциала катода.

Односторонняя проводимость диода является его основным свойством. Именно это свойство определяет назначение диода - выпрямление переменных токов в постоянные и преобразование высокочастотных модулированных колебаний в токи звуковой частоты (детектирование).

Диоды, предназначенные для выпрямления переменного тока, называются кенотронами. В маркировке они имеют букву Ц (1Ц1С, 1Ц7С, 1Ц11П, 1Ц21П, ЗЦ18П, 5ЦЗС, 6Ц4П и др.).

Диоды, предназначенные для детектирования, являются маломощными. Они выпускаются чаще всего двуханодными или входят в состав комбинированных ламп. В маркировке эти диоды имеют букву X или Д (6Д14П, 6Д20П, 6Х6С).

Триодом называется электронная лампа, у которой в промежутке между анодом и катодом помещается третий электрод - сетка. Эта лампа предложена в 1906 г. американским ученым Ли-де-Форестом. Сетку в современных лампах выполняют в виде проволочной спирали, окружающей катод. Изготовляют сетку из никеля, молибдена или вольфрама. Сетка триода называется управляющей, так как с ее помощью легко управлять плотностью анодного тока, подавая на сетку положительное или отрицательное напряжение определенной величины.

Учитывая, что сетка в триоде расположена ближе к катоду, чем анод, ее воздействие на электронный поток будет более значительным. Это свойство триода широко используют в радиотехнике для усиления ослабленных радиосигналов. Принцип усиления радиосигнала сводится к следующему. Сигнал, который необходимо усилить, подается на управляющую сетку триода. Изменение величины потенциала сетки приведет к соответствующему изменению анодного тока. При этом с анода будет сниматься усиленное напряжение подводимого к сетке сигнала. На сетку подается постоянный отрицательный потенциал (напряжение сеточного смещения) такой величины, чтобы положительные полупериоды сигнала не создали на сетке положительного напряжения. В противном случае появляется сеточный ток (положительная сетка притянет часть электронов), в результате уменьшается анодный ток, что приводит к искажению сигнала.

Триоды используют в качестве усилителей низких и высоких частот, для генерирования различных форм импульсов в широком диапазоне частот, для согласования цепей (катодные повторители). В маркировке триодов имеется буква С или Н (двойные триоды) 6Н1П, 6НЗП, 6Н7С, 6Н9С, 6Н24П и др.

Для определения возможности применения триодов и многоэлектродных ламп вообще в той или иной схеме пользуются техническими характеристиками (параметрами) лампы, важнейшими из которых являются: крутизна характеристики, коэффициент усиления и внутреннее сопротивление лампы.

Крутизна характеристики S - это величина, показывающая, на сколько миллиампер изменится анодный ток при изменении напряжения на сетке на 1 В и постоянном напряжении на аноде. Определяют ее как отношение приращения анодного тока АI а к приращению сеточного напряжения AU C

Коэффициент усиления и определяет усилительные свойства ламп. Он представляет собой отношение приращения анодного напряжения AU a к приращению сеточного напряжения AU C , которые вызывают одно и то же приращение анодного тока АI а


Внутреннее сопротивление триода Ri- это сопротивление между анодом и катодом для переменного тока анода. Его выражают отношением приращения анодного напряжения AU a к приращению анодного тока АI а


Если крутизна оценивает действие сеточного напряжения на анодный ток, то внутреннее сопротивление позволяет оценить действие анодного напряжения на анодный ток.

Тетродом называется четырехэлектродная лампа с двумя сетками, одна из которых управляющая, другая - экранирующая. Последнюю помещают между управляющей сеткой и анодом для увеличения коэффициента усиления лампы. На экранирующую сетку подают положительное напряжение, равное 50- 80% анодного. При этих условиях электроны под действием двух ускоряющих полей (анода и второй сетки) развивают большую скорость и выбивают из анода вторичные электроны, которые движутся от него к экранирующей сетке и притягиваются ею. Данное явление называется динатронным эффектом в тетроде. Он приводит к росту тока экранирующей сетки и к уменьшению тока анода, что равносильно искажению усиливающего сигнала.

Чтобы устранить вредное влияние динатронного эффекта, в промежутке между экранирующей сеткой и анодом создают тормозящее отрицательное поле. С этой целью между сеткой и анодом помещают две металлические пластины, соединенные с катодом. Такие лампы называют лучевыми тетродами. Их широко используют в качестве оконечных усилителей сигналов низкой частоты (6П13С, 6П31С, 6П36С, 6П1П).

Второй путь устранения динатронного эффекта в тетроде - введение еще одной сетки, которая называется защитной, или антидинатронной. Лампу с пятью электродами называют пентодом. Третья сетка соединяется с катодом. Она создает тормозящее поле для вторичных электронов, вылетающих из анода, и возвращает их обратно на анод. Пентоды являются лучшими усилительными лампами, коэффициент усиления для некоторых типов пентодов доходит до нескольких тысяч. Используют их в качестве усилителей высокой и промежуточной частот.

Гептодом называется семиэлектродная электронная лампа, имеющая пять сеток. Назначение сеток может быть следующим: первая и третья - управляющие, вторая и четвертая - экранирующие, пятая - антидинатронная. Гептоды используют для преобразования электрических колебаний одной частоты в колебания другой. Например, в супергетеродинных приемниках они выполняют роль преобразователя высокочастотных колебаний принятого сигнала в сигналы промежуточной частоты.

В современной радиоаппаратуре широко используют комбинированные лампы, у которых в одном баллоне помещены две или три лампы, имеющие свои отдельные системы электродов. Преимущество таких ламп очевидно: они уменьшают габариты радиоаппаратуры, повышают ее экономичность. Отечественная промышленность выпускает следующие комбинированные лампы: двойные диоды, двойные триоды, диод-триоды, диод- пентоды, триод-пентоды и др. (6И1П, 6Ф1П, 6ФЗП и др.).

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. За последние 50 лет произошла смена уже не одного поколения компьютеров. И если первые четыре поколения отличались друг от друга только элементной базой и архитектурой, то так и не созданные «компьютеры пятого поколения» должны были включать в себя функции искусственного интеллекта.

К первому поколению относятся компьютеры на основе электронных ламп и реле (40-е года XX века). Оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках. Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы – 7 см, машины были огромных размеров. Каждые 7-8 минут одна из ламп выходила из строя, а так как в компьютере их было 15-20 тысяч, то для поиска и замены поврежденной лампы требовалось много времени. Быстродействие таких вычислительных систем: 5-30 тыс. арифметических операций в секунду. Данные заносились в память ЭВМ при помощи соединения нужного штекера с нужным гнездом. Такие компьютеры использовались в основном для научно-технических расчетов.

1 июля 1948 года фирма «Белл телефон лабораториз» разработала электронный прибор, способный заменить электронную лампу – транзистор. Это событие можно считать началом компьютеров второго поколения . Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме «Digital Equipment» выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник и стоимостью всего 20 тыс. долларов.

Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности. Самым главным отличием транзистора является то, что он один заменяет 40 электронных ламп и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию.

Появление интегральных схем ознаменовало появление машин третьего поколения . Интегральная схема, представляет собой миниатюрную электронную схему площадью около 10 квадратных миллиметров. Интегральная схема способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Частью ЭВМ становятся операционные системы. Многие задачи управления памятью, устройствами ввода/вывода и другими ресурсами стали брать на себя ОС или же непосредственно аппаратная часть ЭВМ. Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Приход ЭВМ четвертого поколения связан с переходом интегральных схем на большие интегральные схемы и сверхбольшие интегральные схемы. Элементная база позволила достичь больших успехов в минимизации размеров, повышении надежности и производительности ЭВМ. Первым персональным компьютеров можно считать Altair-8800, созданным на базе Intel-8080, в 1974г. Лицо 4-го поколения в значительной мере определяется и созданием супер-ЭВМ, характеризующихся высокой производительностью. Супер-ЭВМ используются при решении задач математической физики, космологии и астрономии, моделировании сложных систем и др.

Термин компьютеры пятого поколения является ничем иным, как широкомасштабная правительственная программа в Японии по развитию компьютерной индустрии и искусственного интеллекта, предпринятая в 1980-е годы. Целью программы было создание «эпохального компьютера» с производительностью суперкомпьютера и мощными функциями искусственного интеллекта. Ожидалось добиться существенного прорыва в области решения прикладных задач искусственного интеллекта. В частности, должны были быть решены такие задачи как:

  • создание автоматического портативного переводчика с языка на язык (непосредственно с голоса);
  • автоматическое реферирование статей, поиск смысла и категоризация
  • задачи распознавания и др.

Идея саморазвития системы, по которой система сама должна менять свои внутренние правила и параметры, оказалась непродуктивной – система, переходя через определённую точку, скатывалась в состояние потери надёжности и утраты цельности, резко «глупела» и становилась неадекватной. За десять лет на разработки было истрачено более порядка 500 млн. долларов, программа завершилась, так и не достигнув цели. На сегодняшний день проект считается абсолютным провалом.

Сейчас мы привыкли к компактным электронным устройствам и сверхтонким ноутбукам. А чуть больше ста лет назад появился девайс, который сделал это реальностью и произвел настоящую революцию в развитии электроники. Речь идет о радиолампе.

Ламповое вступление

В схемотехнике раньше повсеместно использовались лампы, первые электронные приборы были построены именно с их использованием. Золотое время радиоламп пришлось на первую половину 20 века. Для наших дедов и прадедов гораздо привычнее были гигантские ЭВМ, занимавшие целое помещение и греющиеся как адское пекло. На такой машине сериальчик не посмотришь.

Потом еще было время, когда советские микросхемы стали самыми большими в мире. Но это уже другая история, которая началась после появления полупроводниковых приборов. Как вы поняли, эта статья о работе электронной лампы и ее современном использовании.

Вакуумные приборы

Вакуум – это отсутствие материи. Точнее, практически полное ее отсутствие. В физике разделяют высокий, средний и низкий вакуум. Понятно, что электрического тока в вакууме быть не может, так как ток – это направленное движение (частиц) носителей заряда, которым в вакууме взяться неоткуда.

Но так уж и неоткуда? Металлы при нагревании испускают электроны. Это так называемая термоэлектронная эмиссия. На ней и основана работа электронных вакуумных приборов.

Термоэлектронную эмиссию открыл Томас Эдисон. Точнее ученый выяснил, что при нагреве нити и наличия в вакуумной колбе второго электрода вакуум проводит ток. Тогда Эдисон не в полной мере оценил значение своего открытия, но на всякий случай запатентовал его. Вывод: в любой непонятной ситуации патентуйте!

Вакуумные приборы – герметично запаянные баллоны с электродами внутри. Баллоны делают из стекла, металла или керамики, предварительно откачав из них воздух.

Помимо электронных ламп есть следующие вакуумные приборы:

  • приборы СВЧ, магнетроны, клистроны;
  • кинескопы, электронно-лучевые трубки;
  • рентгеновские трубки.

Принцип работы электронной лампы

Электронная лампа – это электронный вакуумный прибор, который работает за счет управления интенсивностью потока электронов между электродами.

Простейший тип лампы – диод. Вместо того чтобы читать определения, лучше посмотрим на нее.

В любой лампе есть катод, с которого электроны вылетают, и анод, на который они летят. Если на катод подать «минус», а на анод «плюс», электроны, вылетевшие из раскаленного катода, начнут двигаться к аноду. В лампе потечет ток.

Кстати! Если вам нужно произвести расчет усилителя на диодах, для наших читателей сейчас действует скидка 10% на

Диод обладает односторонней проводимостью. Это значит, что если на катод подать плюс, а на анод минус, тока в цепи уже не будет.

Помимо этих двух электродов в лампах могут быть и другие.

Все названия электронных ламп связаны с количеством электродов. Диод – два, триод – три, тетрод – четыре, пентод – пять и т.д.

Возьмем триод. Это диод, в который добавлен дополнительный электрод - управляющая сетка. Такая лампа с тремя электродами уже может работать как усилитель тока.

Если на сетке есть небольшое отрицательное напряжение, она будет задерживать часть электронов, летящих к аноду, и ток уменьшится. При большом отрицательном напряжении сетка «запрет» лампу, и ток в ней прекратится. А если подать на сетку положительное напряжение, анодный ток будет усиливаться.

Небольшое изменение напряжения на сетке, которая устанавливается рядом с катодом, существенно влияет на ток между катодом и анодом. На этом и строится принцип усиления.

Применение электронных ламп

Почти везде лампу вытеснил полупроводниковый транзистор. Однако в некоторых отраслях лампы заняли свое место и остаются незаменимыми.

Например, в космосе. Ламповое оборудование выдерживает больший диапазон температур и радиационный фон, поэтому используется в производстве космических аппаратов.

Лампы с воздушным или водяным охлаждением также находят применение в мощных радиопередатчиках.

Конечно, сложно представить современное музыкальное оборудование без ламповых схем.

Ламповый звук: правда или вымысел?

Усилители низкой частоты или просто усилители звука – самое известное современное применение радиоламп, которое к тому же вызывает много споров.

Доходит вплоть до «холиваров» между адептами лампового и транзисторного звука. Ламповый звук, как говорят, более «душевный» и «мягкий», его приятно слушать. В то время как транзисторный звук – «бездушный» и «холодный».

Ничего не бывает просто так, и вряд ли такие споры и мнения возникали на пустом месте. В свое время вопросом, действительно ли ламповый звук приятнее для слуха, заинтересовались ученые. Было проведено довольно много исследований на тему отличий лампы от транзистора.

По данным одного из них, ламповые усилители добавляют в сигнал четные гармоники, которые субъективно воспринимаются людьми как «теплые», «приятные» и «уютные». Правда, сколько людей, столько и мнений, поэтому споры до сих пор ведутся.

Часто спор – пустая трата времени. А вот студенческий сервис , наоборот, поможет сохранить ценные человеко-часы. Обращайтесь к нашим специалистам за качественной помощью в любой области знаний.

Было время, когда вся электроника создавалась на основе электронных вакуумных ламп, которые по внешнему виду напоминают маленькие лампочки, и которые выполняют функции усилителей, генераторов и электронных коммутаторов. В современной электронике для выполнения этих всех функций используются транзисторы, которые изготавливаются в промышленных масштабах при весьма низкой их себестоимости. Теперь же, исследователи из Исследовательского центра НАСА имени Эймса (NASA Ames Research Center) разработали технологию производства наноразмерных электронных вакуумных ламп, что позволит в будущем создать более быстро и более надежно работающие компьютеры.

Электронную вакуумную лампу называют вакуумной из-за того, что это стеклянный сосуд с вакуумом внутри. Внутри лампы есть нить накаливания, но она разогревается до более низкой температуры нежели нити обычных осветительных ламп. Так же, внутри электронной вакуумной лампы имеется положительно заряженный электрод, одна или несколько металлических сеток, с помощью которых управляют электрическим сигналом, проходящим через лампу.

Нить накала нагревает электрод лампы, который создает в окружающем пространстве облако электронов, и чем выше температура электрода, тем на большее расстояние от него могут удалиться свободные электроны. Когда это электронное облако достигает положительно заряженного электрода, то через лампу может течь электрический ток. Тем временем, регулируя полярность и значение электрического потенциала на металлической сетке, можно усилить поток электронов или прекратить его вообще. Таким образом, лампа может служить усилителем и коммутатором электрических сигналов.

Электронные вакуумные лампы, хоть редко, но используются сейчас, в основном для создания высококачественных акустических систем. Даже самые лучшие образцы полевых транзисторов не могут обеспечить того качества звука, которое обеспечивают электронные лампы. Это происходит по одной главной причине, электроны в вакууме, не встречая сопротивления, перемещаются с максимальной скоростью, чего невозможно добиться при движении электронов сквозь твердые полупроводниковые кристаллы.

Электронные вакуумные лампы более надежны в работе нежели транзисторы, которые достаточно просто вывести из строя. К примеру, если транзисторная электроника попадает в космос, то рано или поздно ее транзисторы выходят из строя, "поджаренные" космическим излучением. Электронные лампы же практически не подвержены воздействию радиации.

Создание электронной вакуумной лампы, размерами не превышающей размеры современного транзистора, является огромной проблемой, особенно в массовом производстве. Изготовление крошечных индивидуальных вакуумных камер - это сложнейший и дорогой процесс, который применяют только в случаях острой необходимости. Но ученые НАСА решили эту проблему достаточно интересным путем, оказалось, что при уменьшении размеров электронной лампы менее некоторого предела наличие вакуума перестает быть необходимым условием. Наноразмерные вакуумные лампы, у которых имеется нить накаливания и один электрод, имеют размеры в 150 нанометров. Зазор между электродами лампы настолько мал, что наличие в нем воздуха не является помехой для их работы, вероятность столкновения электронов с молекулой воздуха стремиться к нулю.

Естественно, впервые новые наноэлектронные лампы появятся в электронном оборудовании космических кораблей и аппаратов, где устойчивость электроники к радиации имеет первостепенное значение. Помимо этого, электронные лампы могут работать на частотах, в десятки раз превышающих частоты работы самых лучших экземпляров кремниевых транзисторов, что в будущем позволит на их основе создавать компьютеры, намного более быстрые, чем те, которые мы используем сейчас.



Загрузка...