sonyps4.ru

Что называется батареей.  Батарейки: история создания и развития

Первый химический источник электрического тока был изобретен случайно, в конце 17 века итальянским ученым Луиджи Гальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки. Теоретическое объяснение наблюдаемому процессу Гальвани разработал неверное, однако его опыты стали основой исследований другого итальянского ученого Алессандро Вольта, который собственно и сформулировал главную идею изобретения - причиной возникновения электрического тока является химическая реакция, в которой принимают участие пластинки металлов. Для подтверждения своей теории Вольт создал нехитрое устройство, состоявшее из цинковой и медной пластин погруженных в емкость с соляным раствором. Именно это устройство стало первым в мире автономным элементом питания и прародителем современных батарей, которые в честь Луиджи Гальвани именуют гальваническими элементами.

Современные автономные источники питания внешне имеют мало общего с устройством, созданным Алессандро Вольта, однако базовый принцип остался неизменным. Любая батарея состоит из трех основных элементов – двух электродов, называемых анодом и катодом, и электролита находящегося между ними. Возникновение электрического тока – это побочный результат окислительно-восстановительной реакции идущей между электродами. Выходной ток, напряжение и другие параметры батареи зависят от выбранных материалов анода, катода и электролита, а также конструкции самой батареи. Все батареи можно разделить на два больших класса – первичные и вторичные. В первичных элементах питания химические реакции являются необратимыми, а во вторичных – обратимыми. Соответственно – вторичные элементы, которые известным нам как аккумуляторы, можно восстановить (зарядить) и использовать заново.

Начало промышленного производства первичных химических источников тока было заложено в 1865 г. французом Ж. Л. Лекланше, предложившим марганцево-цинковый элемент с солевым электролитом. В 1880 г. Ф. Лаландом был создан марганцево-цинковый элемент с загущенным электролитом. Впоследствии этот элемент был значительно улучшен. Существенное улучшение характеристик было получено при применении электролитического диоксида марганца на катоде и хлорида цинка в электролите. До 1940 г. марганцево-цинковый солевой элемент был практически единственным используемым первичным химическим источником тока. Несмотря на появление в дальнейшем других первичных источников тока с более высокими характеристиками, марганцево-цинковый солевой элемент используется в очень широких масштабах, в значительной мере благодаря его относительно невысокой цене.

Одним из важнейших факторов при разработке батарей (а также любого устройства, питающегося от них) является достижение максимальной удельной емкости для элемента заданного (минимального) размера и веса. Химические реакции, протекающие внутри элемента, определяют и его емкость, и физические размеры. В принципе, вся история разработки батарей сводится к нахождению новых химических систем и упаковке их в корпуса как можно меньших размеров.

Сегодня производится множество разных типов элементов питания, некоторые из которых были разработаны еще в 19-ом веке, а другие едва отметили десятилетие. Такое разнообразие объясняется тем, что каждая технология имеет свои сильные стороны. Мы расскажем о самых распространенных из тех, что используются в мобильных устройствах.

Сухие батареи

Первыми серийно выпускаемыми элементами питания стали именно сухие. Наследники изобретения Лекланше, они являются самыми распространенными в мире. Одна лишь компания Energizer продает более 6 миллиардов таких батарей ежегодно. В общем, "говорим батарейка, подразумеваем – сухой элемент". И это, несмотря на то, что они имеют самую низкую удельную емкость из всех "массовых" типов. Объясняется такая популярность, во-первых, их дешевизной, а во-вторых, тем, что этим именем называют сразу три разных химических системы: хлорно-цинковые, щелочные и марганцево-цинковые батареи (элементы Лекланше). Их имена дают представление о химических системах, на базе которых они созданы.

В сухих элементах по оси батарейки расположен угольный стержень токосъемника катода. Сам катод это целая система, в которую входят диоксид марганца, уголь электрода и электролит. Цинковый "стаканчик" служит анодом и образует металлический корпус элемента. Электролит, в свою очередь, также представляет собой смесь, в которую входят нашатырь, диоксид марганца и хлорид цинка.

Марганцево-цинковые и хлорно-цинковые элементы отличаются, по сути, электролитом. Первые содержат в себе смесь нашатыря и хлорида цинка, разбавленную водой. В хлорно-цинковых электролит почти на 100% представляет собой хлорид цинка. Различие в номинальном напряжении у них минимально: 1,55В и 1,6В соответственно.

Несмотря на то, что хлорно-цинковые имеют большую емкость по сравнению с элементами Лекланше, это преимущество пропадает при малой нагрузке. Поэтому на них часто пишут "heavy-duty", то есть элементы с повышенной мощностью. Как бы то ни было, эффективность всех сухих элементов сильно падает при увеличении нагрузки. Именно поэтому в современные фотоаппараты их ставить не стоит, они просто для этого не предназначены.

Сколько бы не бегали розовые зайчики в рекламе, щелочные батарейки - это все те же угольно-цинковые ископаемые родом из 19го века. Единственное отличие заключается в специально подобранной смеси электролита, позволяющей добиться увеличения емкости и срока хранения таких батареек. В чем секрет? Эта смесь является несколько более щелочной, чем у двух других типов.

Если химический состав у щелочных батареек мало отличается от оного у элемента Лекланше, то в конструкции различия существенны. Можно сказать, что щелочная батарея это сухой элемент, вывернутый наизнанку. Внешний корпус у них не является анодом, это просто защитная оболочка. Анодом здесь является желеобразная смесь цинкового порошка вперемешку с электролитом (который в свою очередь является водным раствором гидроксида калия). Катод, смесь угля и диоксида марганца, окружает анод и электролит. Он отделяется слоем нетканого материала, таким как полиэстер.

В зависимости от области применения, щелочные батарейки могут прослужить в 4-5 раз дольше, чем обычные угольно-цинковые. Особенно заметна эта разница при таком режиме использования, когда короткие периоды высокой нагрузки перемежаются длительными периодами бездействия.

Важно помнить, что щелочные батарейки не являются перезаряжаемыми, потому что химические процессы, на которых они основаны, не являются обратимыми. Если ее поставить в зарядное устройство, то она будет вести себя не как аккумулятор, а скорее как резистор – начнет нагреваться. Если ее оттуда вовремя не вынуть, то она нагреется достаточно сильно, чтобы взорваться.

Никель-кадмиевые аккумуляторы

Название подсказывает нам, что батареи этого типа имеют никелевый анод и кадмиевый катод. Никель-кадмиевые аккумуляторы (обозначаются Ni-Cad) пользуются заслуженной популярностью у потребителей во всем мире. Не в последнюю очередь это объясняется тем, что они выдерживают большое количество циклов зарядки-разрядки - 500 и даже 1000 - без существенного ухудшения характеристик. Кроме того они относительно легкие и энергоемкие (хотя их удельная емкость приблизительно в два раза меньше, чем у щелочных батареек). С другой стороны, они содержат токсичный кадмий, так что с ними надо быть поаккуратнее, как во время использования, так и после, при утилизации.

Напряжение на выходе у большинства батарей падает по мере разрядки, потому что в результате химических реакций увеличивается их внутреннее сопротивление. Никель-кадмиевые батареи характеризуются очень низким внутренним сопротивлением, а потому могут подать на выход достаточно сильный ток, который, к тому же, практически не изменяется по мере разрядки. Соответственно, напряжение на выходе также остается практически неизменным до тех пор, пока заряд почти совсем не иссякнет. Тогда напряжение на выходе резко падает практически до нуля.

Постоянный уровень выходного напряжения является преимуществом при проектировании электрических схем, но это же делает определение текущего уровня заряда практически невозможным. Из-за такой особенности остаток энергии вычисляется на основе времени работы и известной емкости конкретного типа батарей, а потому является величиной приблизительной.

Гораздо более серьезным недостатком является "эффект памяти". Если такую батарею разрядить не полностью, а потом поставить заряжаться, то их емкость может уменьшиться. Дело в том, что при такой "неправильной" зарядке на аноде образуются кристаллы кадмия. Они и играют роль химической "памяти" батарейки, запоминая этот промежуточный уровень. Когда во время следующей разрядки заряд батареи упадет до этого уровня, выходное напряжение понизится так же, как если бы батарейка была полностью разряжена. Злопамятные кристаллы будут продолжать формироваться на аноде, усиливая влияние этого неприятного эффекта. Чтобы избавиться от него, нужно продолжить разрядку после достижения этого промежуточного уровня. Только таким образом можно "стереть" память и восстановить полную емкость батареи.

Этот прием обычно называют глубокой разрядкой. Но глубокая не значит полная, "до нуля". Это лишь навредит и укоротит срок службы элемента. Если в процессе использования напряжение на выходе упадет ниже отметки 1 Вольт (при номинальном напряжении 1,2 В), то это уже может привести к порче батарейки. Сложная техника, например КПК или ноутбуки, настроены таким образом, чтобы они отключались прежде, чем заряд аккумулятора упадет ниже предельного уровня. Для глубокой разрядки батарей нужно использовать специальные приборы, которые выпускают многие известные фирмы.

Некоторые компании-производители заявляют, что новые никель-кадмиевые аккумуляторы не подвержены влиянию эффекта памяти. Впрочем, на практике это не было доказано.

Что бы там не обещали производители, для достижения максимальной отдачи батареи следует каждый раз полностью заряжать, а потом дожидаться нормальной разрядки, чтобы они не испортились и прослужили весь срок.

Частично устранить недостатки никель-кадмиевых аккумуляторов были призваны никель-металлогидридные (Ni-MH) аккумуляторы, в которых отсутствовал «опасный» кадмий. Так же, как и в никель-кадмиевых, в никель-металлогидридных аккумуляторах анод никелевый, но катоды были сделаны из гидридов, которые фактически представляют собой металлические сплавы, способные удерживать атомарный водород. У никель-металлогидридных аккумуляторов значительно слабее выражен эффект памяти, они имеют лучшее соотношение емкости и габаритных размеров. Однако никель-металлогидридные аккумуляторы выдерживают меньшее количество циклов заряд-разряд и дороже никель-кадмиевых. Также проблемой для никель-металлогидридных аккумуляторов стала большая величина саморазряда – за сутки, без нагрузки, аккумуляторы данного типа умудрялись терять до 5% от своей емкости.

Свинцовые элементы

Большинство аккумуляторов в мире - свинцовые. В основном их используют для пуска двигателей автомобилей. Прообразом этих элементов стали разработки Плантэ. В них также есть аноды, сделанные из ячеистого свинца, и катоды - из оксида свинца. Оба электрода погружены в электролит - серную кислоту.

Из-за свинца эти батареи очень тяжелы. А так как они залиты высококоррозийной кислотой (которая также утяжеляет аккумуляторы), они становятся ещё и опасными, требующими особого внимания. Кислота и испарения могут повредить соседствующие объекты (особенно металлические). А если переусердствовать с зарядкой, может начаться электролиз воды, находящейся в кислоте. При этом вырабатывается водород, взрывоопасный газ, который при определённых условиях может взорваться (как в случае взрывов Хинденбурга).

Разложение воды в батарее может привести и к другому эффекту: ведь общее количество воды в батарее уменьшается. При этом уменьшается площадь реакции внутри батареи, соответственно, уменьшается и емкость аккумулятора. Кроме того, уменьшение жидкости позволяет батарее разряжаться под воздействием атмосферы. Электроды могут шелушиться и вообще закоротить батарею.

Первые свинцовые аккумуляторы требовали регулярного ухода - было необходимо поддерживать нужный уровень воды/кислоты внутри каждого элемента. Так как в батарее подвергается электролизу только вода, заменять необходимо только её. Чтобы избежать загрязнения батареи, производители рекомендуют использовать для обслуживания только дистиллированную воду. Обычно батарею доливают до нормального уровня. Если на батарее нет метки, её необходимо доливать так, чтобы жидкость закрывала пластины электродов внутри.

В неподвижных устройствах, корпус у батарей выполнен из стекла. Оно не только хорошо держит кислоту, но и позволяет обслуживающему персоналу без особых трудностей определять состояние элементов. В автомобильной технике требуются более прочные корпуса. Инженеры для этих целей воспользовались эбонитом или пластиком.

После того, как элементы стали герметизировать, удобство использования таких свинцовых аккумуляторов стало бесценным. В результате появились так называемые необслуживаемые батареи. Так как испарения так и остаются внутри элементов, потери от электролиза сводятся к минимуму. Поэтому такие батареи и не требуют заправки водой (по крайней мере, не должны).

Но это не значит, что у таких батарей вовсе не возникает проблем с обслуживанием. Всё равно внутри плещется кислота. И эта кислота может вытечь через батарейные клапаны. При этом могут повредиться батарейные отсеки или даже оборудование, где она установлена. Инженеры избегают такой ситуации двумя способами. Можно содержать кислоту внутри пластикового сепаратора между электродами элемента (обычно, он сделан из микропористого полиолефина или полиэтилена). Либо можно смешать электролит с другим веществом, чтобы в результате получился гель - например, с коллоидальной массой наподобие желатина. В результате утечка не происходит.

Кроме опасной начинки, у свинцовых батарей есть и другие недостатки. Как было отмечено выше, они очень тяжелые. Количество энергии, которое содержится в единице массы у таких батарей меньше, чем в батареях практически любых других технологий. Это единственное, чем не удовлетворены создатели автомобилей, которые бы с большим удовольствием использовали эти недорогие свинцовые батареи в электрокарах.

С другой стороны, хотя эти батареи и дешевые, они насчитывают 150 летнюю историю. Технология позволяет модернизировать аккумуляторы для специальных нужд, например для использования в устройствах с большими циклами разряда (где батареи используются в качестве единственного источника питания) или в устройствах обеспечения бесперебойного питания, например, в больших центрах обработки информации. Свинцовые батареи также обладают низким внутренним сопротивлением и поэтому могут вырабатывать очень большие токи. В отличие от более экзотичных элементов, к примеру, никель-кадмиевых, они не подвержены эффекту памяти. (Этот эффект, применительно к никель-кадмиевым элементам, сокращает емкость батареи, если перезаряжать её ещё до того, как она полностью разрядится.) Кроме того, такие батареи достаточно долго живут и они предсказуемы. И, конечно же, они дешевы.

Источники бесперебойного питания

В большинстве таких источников используются свинцовые аккумуляторы с желеобразным электролитом. Обычно, такие устройства неприхотливы в обслуживании. Это значит, вы не задумываетесь об их обслуживании. Источники питания, тем не менее, довольно громоздки - ведь внутри находятся аккумуляторы. Будучи полностью заряженными, элементы с желеобразным электролитом постепенно портятся под воздействием постоянного слаботочного заряда. (Большинство свинцовых аккумуляторов содержатся в полностью заряженном состоянии). Поэтому такие элементы требуют специальных зарядных устройств, которые бы автоматически отключались, как только элемент полностью зарядится. Зарядное устройство должно снова включаться, как только аккумулятор разрядится до предопределённого уровня (не важно, под воздействием ли нагрузки, или в результате саморазряда). Обычно источники бесперебойного питания регулярно проверяют заряд аккумулятора.

Предотвращение электролиза

Как и в свинцовых аккумуляторах, в никель-кадмиевых батарейках возможен электролиз - распад воды в электролите на потенциально взрывоопасные водород и кислород. Производители батареек предпринимают различные меры для предотвращения этого эффекта. Обычно элементы для предотвращения утечки герметично упаковывают. Кроме того, батарейки устроены так, чтобы сначала вырабатывался не водород, а кислород, который предотвращает реакцию электролиза.

Для того чтобы герметичные аккумуляторы не взрывались, и чтобы в них не скапливался газ, обычно в батарейках предусматривают клапаны. Если закрыть эти вентиляционные отверстия, то возникнет опасность взрыва. Обычно эти отверстия настолько малы, что остаются незамеченными. Работают они автоматически. Это предостережение (не закрывать вентиляционные отверстия) относятся в основном к производителям устройств. Стандартные отсеки для батареек предполагают возможность вентиляции, но вот если залить батарейку в эпоксидной смоле, то вентиляции не будет.

Литий-ионные аккумуляторы

Литий является самым химически активным металлом и используется именно в самых компактных системах, обеспечивающих энергией самую современную мобильную технику. Литиевые катоды используются практически во всех батареях с большой емкостью. Но благодаря активности этого металла батареи получаются не только очень емкие, они также имеют самое высокое номинальное напряжение. В зависимости от анода, литий-содержащие элементы имеют выходное напряжение от 1,5 В до 3,6 В!

Основной проблемой при использовании лития опять-таки является его высокая активность. Он даже может вспыхнуть – что уж говорить, не самая приятная особенность, когда речь идет о батареях. Из-за этих проблем элементы на базе металлического лития, которые начали появляться еще в 70ых-80ых годах 20го века, "прославились" своей низкой надежностью.

Чтобы избавиться от этих трудностей, производители батарей постарались использовать литий в виде ионов. Таким образом, им удалось получить все полезные электрохимические качества, не связываясь с капризной металлической формой.

В литий-ионных элементах ионы лития связаны молекулами других материалов. Типичный Li-Ion-аккумулятор имеет угольный анод и катод из литийкобальтдиоксида. Электролит в своей основе имеет раствор солей лития.

Литиевые батареи имеют большую плотность, нежели никель-металл гидридные. Скажем, в ноутбуках такие аккумуляторы могут работать в полтора раза дольше никель-металл гидридных. Кроме того, литий-ионные элементы избавлены от эффектов памяти, которыми страдали ранние никель-кадмиевые батареи.

С другой стороны, внутреннее сопротивление у современных литиевых элементов выше, чем у никель-кадмиевых. Соответственно, они не могут обеспечить такие сильные токи. Если никель-кадмиевые элементы способны расплавить монету, то литиевые на это не способны. Но все равно, мощности таких батареек вполне хватит для работы ноутбука, если это не связано со скачкообразными нагрузками(это значит, что некоторые устройства, например, винчестер или CD-ROM, не должны вызывать высоких скачков на предельных режимах - например, при начальной раскрутке или выходе из спящего режима). Более того, даже не смотря на то, что литий-ионные батарейки выдержат не одну сотню подзарядок, они живут меньше, чем те, в которых используется никель.

Из-за того, что в литий-ионных элементах используется жидкий электролит (пусть даже отделенный слоем ткани), по форме они почти всегда являются цилиндром. Хотя такая форма ничуть не хуже форм других элементов, с появлением полимеризованных электролитов литий-ионные батареи становятся компактнее.

Литий-полимерные аккумуляторы

Наиболее продвинутой технологией, используемой сегодня при создании аккумуляторов, является литий-полимерная. Уже сейчас среди производителей, как батарей, так и компьютерных устройств наметилась тенденция по постепенному переходу к этому типу элементов. Главным преимуществом литий-полимерных батарей является отсутствие жидкого электролита. Нет, это не значит, что ученые нашли способ обходиться совсем без электролита. Анод отделен от катода полимерной перегородкой, композитным материалом, таким как полиакрилонитрит, который содержит литиевую соль.

Благодаря отсутствию жидких компонентов, литий-полимерные элементы могут принимать практически любую форму, в отличие от цилиндрических батарей других типов. Обычными формами упаковки для них являются плоские пластины или бруски. В таком виде они лучше заполняют пространство батарейного отсека. В результате, при одинаковой удельной плотности, литий-полимерные батареи оптимальной формы могут хранить на 22% больше энергии, чем аналогичные литий-ионные. Это достигается за счет заполнения "мертвых" объемов в углах отсека, которые остались бы неиспользованными в случае применения цилиндрической батареи.

Кроме этих очевидных преимуществ, литий-полимерные элементы являются экологически безопасными и более легкими, за счет отсутствия внешнего металлического корпуса.

Литий-железодисульфидные батареи

В отличие от других литий-содержащих батарей, которые имеют выходное напряжение более 3В, у литий-железодисульфидных оно в два раза меньше. Кроме того, их нельзя перезаряжать. Эта технология представляет собой некий компромисс, на который разработчики пошли, чтобы обеспечить совместимость литиевых источников питания с техникой, разработанной для использования щелочных батареек.

Химический состав батарей был специальным образом изменен. В них литиевый анод отделен от железодисульфидного катода прослойкой электролита. Этот сэндвич упаковывается в герметичный корпус с микроклапанами для вентиляции, как и никель-кадмиевые батареи.

Этот тип элементов был задуман как конкурент щелочным батарейкам. По сравнению с ними литий-железодисульфидные весят на треть меньше, имеют большую емкость, а, кроме того, еще и хранятся дольше. Даже после десяти лет хранения они сохраняют почти весь свой заряд.

Превосходство над конкурентами проявляется наилучшим образом при большой нагрузке. В случае высоких токов нагрузки литий-железодисульфидные элементы могут работать в 2,5 раза дольше, чем алкалиновые батареи того же размера. Если же на выходе не требуется высокая сила тока, то эта разница заметна гораздо меньше. К примеру, один из производителей элементов питания заявил следующие характеристики двух типов своих батарей размера AA: при нагрузке 20 мА щелочная батарейка проработает 122 часа против 135 часов у литий-железодисульфидной. Если же нагрузку увеличить до 1А, то продолжительность работы составит 0,8 и 2,1 часа соответственно. Как говорится, результат налицо.

Такие мощные батареи нет смысла ставить в устройства, потребляющие относительно немного энергии в течение длительного времени. Они были специально созданы для использования в фотоаппаратах, мощных фонарях, а в будильник или радиоприемник лучше поставить щелочные батарейки.

Технологии подзарядки

Современные устройства для подзарядки - это довольно сложные электронные приборы с различными степенями защиты - как вашей, так и ваших батареек. В большинстве случаев для каждого типа элементов существует своё собственное зарядное устройство. При неправильном использовании зарядного устройства можно испортить не только батарейки, но и само устройство, или даже системы, питаемые батарейками.

Существует два режима работы зарядных устройств - с постоянным напряжением и с постоянным током.

Самыми простыми являются устройства с постоянным напряжением. Они всегда производят одно и то же напряжение, и подают ток, зависящий от уровня заряда батарейки (и от других окружающих факторов). По мере зарядки батареи, ее напряжение увеличивается, поэтому уменьшается разница между потенциалами зарядного устройства и батареи. В результате по цепи протекает меньший ток.

Всё что нужно для такого устройства - трансформатор (для уменьшения напряжения зарядки до уровня, требуемого батарейкой) и выпрямитель (для выпрямления переменного тока в постоянный, используемый для заряда батареи). Такими простыми устройствами подзарядки пользуются для заряда автомобильных и корабельных аккумуляторов.

Как правило, подобными же устройствами заряжаются свинцовые батареи для источников бесперебойного питания. Кроме того, устройства с постоянным напряжением используются и для подзарядки литий-ионных элементов. Только там добавлены схемы для защиты батареек и их хозяев.

Второй вид зарядных устройств обеспечивает постоянную силу тока и изменяет напряжение для обеспечения требуемой величины тока. Как только напряжение достигает уровня полного заряда, зарядка прекращается. (Помните, напряжение, создаваемое элементом, падает по мере разряда). Обычно такими устройствами заряжают никель-кадмиевые и никель-металлгидридные элементы.

Кроме нужного уровня напряжения, зарядные устройства должны знать, сколько времени нужно подзаряжать элемент. Батарейку можно испортить, если слишком долго подзаряжать её. В зависимости от вида батареи и от "интеллекта" зарядного устройства для определения времени подзарядки используется несколько технологий.

В самых простых случаях для этого используется напряжение, вырабатываемое батарейкой. Зарядное устройство следит за напряжением батарейки и выключается в тот момент, когда напряжение в батарейке достигает порогового уровня. Но такая технология подходит далеко не для всех элементов. Например, для никель-кадмиевых она не приемлема. В этих элементах кривая разряда близка к прямой, и определить уровень порогового напряжения бывает очень сложно.

Более "изощренные" зарядные устройства определяет время подзарядки по температуре. То есть устройство следит за температурой элемента, и выключается, или уменьшает ток заряда, когда батарея начинает нагреваться (что означает избыточность заряда). Обычно в такие элементы питания встраиваются термометры, которые следят за температурой элемента и передают зарядному устройству соответствующий сигнал.

"Интеллектуальные" устройства используют оба этих метода. Они могут перейти с большого тока заряда на малый, или же могут поддерживать постоянный ток с помощью специальных датчиков напряжения и температуры.

Стандартные зарядные устройства дают меньший ток заряда, чем ток разряда элемента. А зарядные устройства с большим значением тока дают больший ток, чем номинальный ток разряда батарейки. Устройство для непрерывной подзарядки малым током используют настолько небольшой ток, что он разве что не даёт батарейке саморазрядиться (по определению такие устройства и используются для компенсации саморазрядки). Обычно ток заряда в таких устройствах составляет одну двадцатую, или одну тридцатую номинального тока разряда батарейки. Современные устройства зарядки часто могут работать на нескольких значениях токов заряда. Сначала они используют более высокие значения тока и постепенно переключаются на низкие, по мере приближения к полному заряду. Если используется батарейка, выдерживающая подзарядку малым током (никель-кадмиевые, например, не выдерживают), то в конце цикла подзарядки устройство переключится в этот режим. Большинство зарядных устройств для ноутбуков и сотовых телефонов разработаны так, что могут быть постоянно подключены к элементам и не причинять им вреда.

История аккумулятора.

Если проследить историю аккумуляторов, то очевидно, что первым сделал шаг к их созданию Алессендро Вольта, но он не догадался, как сделать полученный им гальванический элемент перезаряжаемым. Другой ученый немец Вильгельм Зинстеден наблюдал эффект получения постоянного тока при погружении свинцовых пластин в серную кислоту, но не сделал из этого выводов, которые можно применить на практике.

Созданием аккумулятора мы обязаны французам. Именно французский ученый Гастон Плант создал в 1859 году его прототип - свинцово-кислотную батарею, которую можно было в отличие от гальванической перезаряжать.

Американский изобретатель лампочки Томас Эдисон заинтересовался свойствами аккумулирующей батареи, способной к перезарядке. Он первым придумал использовать аккумуляторы для нужд транспорта и способствовал началу производства автомобильных аккумуляторов. Эдисон был не только великим ученым, но еще и практически мыслящим человеком. Благодаря ему электричество действительно стало на службу человечеству.

С тех пор суть процесса аккумулирования энергии в свинцово-кислотной батарее ничуть не изменилась, изменились только материалы, используемые при ее производстве. Старые эбонитовые корпуса аккумуляторов сменили современные полипропиленовые. Эбонит менее ударопрочный материал, к тому же полипропилен гораздо дешевле.

Современный автомобильный аккумулятор.

Современный автомобильный аккумулятор - это прежние решетчатые пористые свинцовые пластины (одна - свинцовая, вторая - двуокись свинца), опущенные в электролит, приготовленный из смеси дистиллированной воды и серной кислоты со множеством улучшающих его свойства добавок. Но новейшие технологии, применяемые при изготовлении аккумуляторных автомобильных батарей, существенно улучшают их характеристики. Они снижают коррозию, повышают срок службы аккумуляторов, улучшают прием и отдачу электрозаряда, снижают потерю воды и осыпание активной массы, увеличивают температурный режим путем увеличения морозоустойчивости. Некоторые дополнительные устройства вроде индикаторов позволяют следить за степенью заряженности аккумулятора.

Самым главным преимуществом современных аккумуляторов можно назвать повышение значений стартерного тока, которое обеспечивает стабильный запуск двигателя в любых температурных условиях, и более долгий срок службы за счет снижения саморазряда.

Современная жизнь проходит под знаком электричества, которое повсюду. Страшно даже подумать, что будет, если вдруг все электрические приборы разом исчезнут или выйдут из строя. Электростанции различных типов, разбросанные по всему миру, исправно подают ток в электрические сети, питающие приборы на производстве и в быту. Однако человек устроен так, что никогда не бывает доволен тем, что имеет. Быть привязанным проводом к электрической розетке слишком неудобно. Спасением в этой ситуации являются устройства, питающие током электрические фонарики, мобильные телефоны, фотоаппараты и другие приборы, которые используются в отдалении от источника электричества. Даже маленьким детям известно их название это батарейки.

Строго говоря, обиходное название «батарейка» является не совсем корректным. Оно объединяет сразу несколько видов источников электричества, предназначенных для автономного питания устройства. Это может быть одиночный гальванический элемент, аккумулятор или соединение нескольких таких элементов в батарею для увеличения снимаемого напряжения. Именно это соединение и породило привычное для нашего уха название.

Батарейки и гальванические элементы, и аккумуляторы представляют собой химический источник электрического тока. Первый такой источник был изобретен как это часто бывает в науке случайно итальянским врачом и физиологом Луиджи Гальвани в конце XVIII в.

Хотя электричество как явление знакомо человечеству с древнейших времен, многие века эти наблюдения не имели никакого практического применения. Лишь в 1600 г. английский физик Уильям Гилберт выпустил в свет научный труд «О магните, магнитных телах и о большом магните Земле», где были обобщены известные на тот момент данные об электричестве и магнетизме, а в 1650 г. Отто фон Герике создал электростатическую машину, представлявшую собой серный шар, насаженный на металлический стержень. Спустя столетие голландцу Питеру ван Мушенбруку впервые удалось накопить с помощью «лейденской банки» первого конденсатора небольшое количество электричества. Однако оно было слишком мало для проведения серьезных экспериментов. Исследованиями «природного» электричества занимались такие ученые, как Бенджамин Франклин, Георг Рихман, Джон Уолш. Именно труд последнего об электрических скатах заинтересовал Гальвани.

Настоящую цель знаменитого эксперимента Гальвани, совершившего революцию в физиологии и навсегда вписавшего свое имя в науку, теперь уже никто и не вспомнит. Гальвани препарировал лягушку и поместил ее на стол, где стояла электростатическая машина. Его помощник случайно дотронулся острием скальпеля до открытого бедренного нерва лягушки и мертвая мышца неожиданно сократилась. Другой помощник заметил, что такое происходит только тогда, когда из машины извлекается искра.

Вдохновленный открытием, Гальвани начал методично исследовать обнаруженное явление способность мертвого препарата демонстрировать жизненные сокращения под влиянием электричества. Проведя целую серию опытов, Гальвани получил особенно интересный результат, использовав медные крючки и серебряную пластинку. Если крючок, державший лапку, прикасался к пластинке, лапка, дотронувшись до пластинки, немедленно сокращалась и поднималась. Потеряв контакт с пластинкой, мышцы лапки немедленно расслаблялись, она вновь опускалась на пластинку, снова сокращалась и поднималась.

Луиджи Гальвани. Журнальная иллюстрация. Франция. 1880 г.

Так в результате серии кропотливых опытов и был открыт новый источник электричества. Сам Гальвани, впрочем, не думал о том, что причина открытого им явления контакт разнородных металлов. По его мнению, источником тока служила сама мышца, которая возбуждалась действием мозга, передаваемым по нервам. Открытие Гальвани произвело сенсацию и повлекло за собой множество экспериментов в различных отраслях науки. Среди последователей итальянского физиолога оказался его соотечественник физик Алессандро Вольта.

В 1800 г. Вольта не только дал правильное объяснение открытому Гальвани явлению, но и сконструировал устройство, ставшее первым в мире искусственным химическим источником электрического тока, прародителем всех современных батареек. Оно состояло из двух электродов анода, содержащего окислитель, и катода, содержащего восстановитель, контактирующих с электролитом (раствором соли, кислоты или щелочи). Разность потенциалов, возникавшая между электродами, соответствовала в этом случае свободной энергии окислительно-восстановительной реакции (электролиза), в ходе которой катионы электролита (положительно заряженные ионы) восстанавливаются, а анионы (отрицательно заряженные ионы) окисляются на соответствующих электродах. Реакция может начаться только в том случае, если электроды соединены внешней цепью (Вольта соединял их обыкновенной проволокой), по которой свободные электроны переходят от катода к аноду, создавая таким образом разрядный ток. И хотя современные батарейки имеют мало общего с устройством Вольты, принцип их работы остается неизменным: это два электрода, погруженные в раствор электролита и соединенные внешней цепью.

Изобретение Вольты дало значительный толчок исследованиям, связанным с электричеством. В том же году ученые Уильям Никольсон и Энтони Карлайл с помощью электролиза разложили воду на водород и кислород, чуть позднее Хэмфри Дэви таким же образом открыл металлический калий.

Эксперименты Гальвани с лягушкой. Гравюра 1793 г.

Но в первую очередь гальванические элементы это, несомненно, важнейший источник электрического тока. С середины XIX в., когда появились первые электроприборы, начался массовый выпуск химических элементов питания.

Все эти элементы можно разделить на два основных типа: первичные, в которых химическая реакция является необратимой, и вторичные, которые можно перезарядить.

То, что мы привыкли называть батарейкой, является первичным химическим источником тока, иными словами неперезаряжаемым элементом. Первыми батарейками, запущенными в массовое производство, стали изобретенные в 1865 г. французом Жоржем Лекланше марганцево-цинковые элементы питания с солевым, а затем с загущенным электролитом. Вплоть до начала 1940-х годов это был практически единственный вид используемых гальванических элементов, который вследствие невысокой стоимости широко распространен до сих пор. Такие батарейки называют сухими или угольно-цинковыми элементами.

Гигантская электрическая батарея, сконструированная У. Уолластоном для экспериментов X. Дэви.

Схема работы искусственного химического источника тока А. Вольты.

В 1803 г. Василий Петров создал самый мощный в мире вольтов столб, использовав 4200 металлических кругов. Ему удалось развить напряжение 2500 вольт, а также открыть такое важное явление, как электрическая дуга, которое позднее стало использоваться в электросварке, а также для электрических запалов взрывчатки.

Но настоящим технологическим прорывом стало появление щелочных батареек. Хотя по химическому составу они не особенно отличаются от элементов Лекланше, а их номинальное напряжение по сравнению с сухими элементами увеличено незначительно, за счет принципиального изменения конструкции щелочные элементы могут прослужить в четыре-пять раз дольше сухих, правда, при соблюдении определенных условий.

Важнейшей задачей при разработке батарей является увеличение удельной емкости элемента при уменьшении его размера и веса. Для этого постоянно ведется поиск новых химических систем. Самыми высокотехнологичными первичными элементами на сегодняшний день являются литиевые. Их емкость в два раза выше емкости сухих элементов, а срок службы существенно дольше. Кроме того, если сухие и щелочные батарейки разряжаются постепенно, литиевые держат напряжение в течение практически всего срока службы и лишь затем резко теряют его. Но даже самая лучшая батарейка не может сравниться по эффективности с перезаряжаемым аккумулятором, принцип действия которого основан на обратимости химической реакции.

О возможности создания такого устройства начали задумываться еще в XIX в. В 1859 г. француз Гастон Планте изобрел свинцово-кислотный аккумулятор. Электрический ток в нем возникает в результате реакций свинца и диоксида свинца в сернокислотной среде. Во время генерации тока разряжаемый аккумулятор расходует серную кислоту, образуя сульфат свинца и воду. Чтобы зарядить его, необходимо ток, получаемый из другого источника, пропустить по цепи в обратную сторону, при этом вода будет использована для образования серной кислоты с высвобождением свинца и диоксида свинца.

Несмотря на то что принцип действия такого аккумулятора был описан довольно давно, его массовое производство началось только в XX в., поскольку для перезарядки устройства требуется ток высокого напряжения, а также соблюдение целого ряда других условий. С развитием электросетей свинцово-кислотные аккумуляторы стали незаменимы и используются по сей день в автомобилях, троллейбусах, трамваях и прочих средствах электротранспорта, а также для аварийного электроснабжения.

Немало небольших бытовых электроприборов также работают на «многоразовых батарейках» перезаряжаемых аккумуляторах, имеющих ту же форму, что и невосстанавливаемые гальванические элементы. Развитие электроники напрямую зависит от достижений в этой области.

Элемент питания Ж. Лекланше.

Сухая аккумуляторная батарея.

Мобильным телефоном, цифровым фотоаппаратом, навигатором, мобильным компьютером и прочими подобными устройствами в XXI в. уже никого не удивишь, однако появление их стало возможным лишь с изобретением качественных компактных аккумуляторов, емкость и срок службы которых с каждым годом стараются увеличить.

Первыми на смену гальваническим элементам пришли никель-кадмиевые и никель-металлгидридные аккумуляторы. Их существенным недостатком был «эффект памяти» снижение емкости, в случае если зарядка производилась при не полностью разряженном аккумуляторе. Кроме того, они постепенно теряли заряд даже при отсутствии нагрузки. Эти проблемы в значительной степени были решены при разработке литий-ионных и литий-полимерных аккумуляторов, которые в настоящее время повсеместно используются в мобильных устройствах. Их емкость значительно выше, они без потерь заряжаются в любой момент и хорошо удерживают заряд в состоянии ожидания.

Несколько лет назад в средства массовой информации просочились слухи о том, что американские ученые близко подошли к изобретению «вечной батарейки» бетавольтаического элемента, источником энергии в котором являются радиоактивные изотопы, излучающие бета-частицы. Предполагается, что такой источник энергии позволит мобильному телефону или ноутбуку работать без подзарядки до 30 лет. Более того, по истечении срока службы нетоксичный и нерадиоактивный элемент питания останется абсолютно безопасным. Появление этого чудо-устройства, которое, без сомнения, произвело бы революцию в промышленности, очень сильно ударило бы по карману производителей традиционных батареек возможно, поэтому его до сих пор нет на прилавках.

Современное устройство для зарядки перезаряжаемых элементов АА.

Предыстория батарейки начинается в далёком 17 веке, а её дедушкой был итальянский врач, анатом, физиолог и физик - Луиджи Гальвани. Этот достойный человек является одним из основоположников учения об электричестве и несомненным первопроходцем в изучении электрофизиологии.

Так называемое "животное электричество" Гальвани обнаружил в ходе одного из своих экспериментов. Он присоединил две металлических полоски к мышцам лягушачьей лапки и обнаружил, что при сокращении мышцы возникает электрический разряд. Впрочем, попытка объяснить данное явление Гальвани не совсем удалась: теоретическая основа, которую он подводил, оказалась неверной, но выяснилось это значительно позже. Результаты опытов, полученные Гальвани, полтора века спустя заинтересовали его соотечественника и коллегу. Это был Алессандро Вольта.

Ещё в молодости заинтересовавшись изучением электрических явлений и познакомившись с работами Б. Франклина, Вольта установил в городе Комо первый громоотвод. Кроме этого, он отправил парижском академику Ж.А. Нолле своё сочинение, в котором рассуждал о различных электрических явлениях. В итоге Вольта заинтересовался работами Гальвани.

Внимательно изучив результаты опытов с лягушкой, Алессандро Вольта отметил одну деталь, на которую не обратил внимания сам Гальвани: если к лягушке присоединяли провода из разнородных металлов, мышечные сокращения становились сильнее.

Не удовлетворившись объяснениями, предложенными предшественником, Вольта сделал чрезвычайно смелое и неожиданное предположение: решил, что два металла, разделенные телом, в котором много воды, хорошо проводящей электрический ток (лягушка, без сомнений, может быть отнесена к таким телам), рождают свою собственную электрическую силу. Чтобы не быть голословным, физик провёл серию дополнительных опытов, подтвердивших его предположение.

В 1800 году, 20 марта, Алессандро Вольта написал президенту Лондонского Королевского Общества сэру Джозефу Бэнксу о своём изобретении - новом источнике электричества, получившем название "вольтов столб". Сам изобретатель не до конца понимал весь механизм работы своего детища и даже всерьёз полагал, что создал вполне рабочую модель вечного двигателя.

Кстати, Алессандро Вольта продемонстрировал всему научному сообществу замечательный пример исследовательской скромности: предложил называть своё изобретение "гальваническим элементом", в честь Луиджи Гальвани, чьи опыты навели его на мысль.

Анатомия батарейки

Как же выглядели первые "батарейки"? Собственно, устройство своего изобретения А. Вольта весьма и весьма подробно описал в своём письме сэру Джозефу Бэнксу. Первый же его опыт выглядел следующим образом: Вольта опустил в банку с кислотой медную и цинковую пластинки, а затем соединил их проволокой. После этого цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. "Вольтов столб" - это, можно сказать, стопка из соединённых между собой пластинок цинка, меди и сукна, пропитанных кислотой и сложенных друг на друга в определённом порядке.

В современных "пальчиковых" и прочих батарейках "начинка" несколько сложнее. В корпусе батарейки упакованы химические реагенты, при взаимодействии которых и выделяется энергия, а также два электрода - анод и катод. Реагенты эти разделены специальной прокладкой, которая не позволяет твердым частям реагентов перемешиваться, но при этом пропускает к ним жидкий электролит.

Жидкий электролит реагирует с твёрдым реагентом, в результате чего возникает заряд. На реагенте анода он отрицательный, а на катодном - положительный. Чтобы не произошло нейтрализации зарядов твёрдые части реагента разделены мембраной.

Чтобы можно было "снять" полученный заряд и передать его на контакты, в анодный реагент вставлен токосниматель, который выглядит очень просто - тоненький не очень длинный штырёк. Есть в батарейке и катодный токосниматель, который располагается под оболочкой батарейки. Саму оболочку называют внешней гильзой.

Оба токоснимателя соприкасаются внутри батарейки с анодом и катодом. Схема работы батарейки в результате такова: химическая реакция, разделение зарядов на реактивах, переход зарядов на токосниматели, далее - на электроды и в питаемое устройство.

Какими бывают батарейки

Существует целых три классификации батареек. Первая - по типоразмеру гальванического элемента. В быту мы чаще всего пользуемся батарейками "пальчиковыми" или "мизинчиковыми", но помимо этого есть ещё средняя и большая батарейки цилиндрической формы, а также два типа батареек, форма которых - параллелепипед: "крона" и просто квадратная. Это - перечень самых распространённых разновидностей формы.

Отличаются автономные источники питания и по типу электролита. Самые дешёвые батарейки, как правило, "солевые" - угольно-цинковые, этот электролит сухой. Ещё один вариант сухого электролита - хлорид цинка. Такие батарейки тоже достаточно дёшевы и широко распространены.

Следующий вариант электролита - щелочной. На этих батарейках написано Alkaline , а внутри - щёлочно-марганцевый, марганцево-цинковый электролит. Их основной недостаток - высокое содержание ртути.

Батарейки с ртутным электролитом на сегодняшний день практически не производятся. Серебряный электролит показывает хорошие эксплуатационные свойства, однако производство таких батареек стоит очень больших денег.

Воздушно-цинковый электролит - самый безопасный для человека и окружающей среды. Стоят они недорого, хранятся долго. Вот только толщина батарейки в 1,5 раза больше обычной щелочной/серебряной. Кроме того, чтобы исключить саморазряд во время её хранения, требуется заклеивать батарейку. Литиевые батареи - довольно дороги, однако их эксплуатационные характеристики значительно превышают показатели прочих батареек.

Ещё один способ поделить батарейки на группы - определить тип химической реакции, который в них происходит. Первичная реакция происходит в гальванических элементах - в самых обыкновенных батарейках. Вторичной зарядке они не поддаются, в отличие от аккумуляторных батарей, в которых происходит вторичная хим.реакция.

Правила использования и утилизации

Батарейки нежелательно применять при крайних температурах - сильно охлаждать или нагревать. Это может привести к весьма неприятным последствиям. Если вам пришлось использовать батарейки в холоде, например, зимой на улице, рекомендуется не менее получаса выдержать их в комнатной температуре.

Случается, что батарейки, особенно щелочные, текут. Такое происходит когда нарушается герметичность корпуса батарейки. Использовать эти батарейки ни в коем случае нельзя - это может привести к повреждениям электроприборов.

Что касается утилизации отработанных батареек или аккумуляторов, то этим должны заниматься специальные организации или предприятия. В крупных городах можно найти специально организованные приёмные пункты, куда можно сдать использованные батарейки для их дальнейшей утилизации. Правда, не в каждом городе такой пункт приёма организован. Вопрос, что делать в этом случае остаётся открытым.

  • А. Вольта. "Об электричестве, возбуждаемом простым соприкосновением различных проводящих веществ".
  • Радовский М.И. "Гальвани и Вольта".
  • Спасский Б.И. "История физики".
  • Свободная электронная энциклопедия Википедия, раздел "Химический источник тока".
  • Свободная электронная энциклопедия Википедия, раздел "Типоразмеры гальванических элементов".

Сегодня представить свою жизнь без электрических устройств очень сложно. Причем, речь идет даже не о крупной бытовой технике, а о малогабаритных приборах, делающих быт значительно комфортнее. Настенные часы, дистанционные пульты, фонарики и многие другие мелкие устройства, к которым мы так привыкли, работают от портативного элемента питания. Чтобы обеспечить их стабильную работу, необходимо просто купить аккумуляторные батарейки . А ведь этот источник питания появился не так и давно!

История создания батарейки

Первый шаг на пути появления батарейки был сделан ученым из Италии Луиджи Гальвани, который исследовал реакции живых организмов на различные воздействия. Суть сделанного им открытия заключалась в том, что через лягушачью лапку проходит ток, когда к ней присоединены две полоски из разных видов металла. Объяснить увиденное ученый так и не смог, зато результаты его работы очень пригодились другому исследователю – Алессандро Вольту.

Этот итальянец смог разгадать суть процесса и понял, что появлению тока способствует химическая реакция, возникающая между различными металлами в определенной среде. Разместив цинковую и медную пластину в соляном растворе, он создал первую в мире батарею первичных элементов, которую после доработки назвал «Вольтов столб». Это было в 1800 году.

Первый аккумулятор появился значительно позже – в 1859 году, когда француз Гастон Плантэ повторил эксперимент своего коллеги, используя слабый раствор серной кислоты и две пластины из свинца. Особенность этого элемента питания заключалась в том, что оно требовало подзарядки от источника постоянного тока, а затем само отдавало полученный заряд на создание электроэнергии.

Другие важные даты в истории развития батареек

1865 год – французский ученый Ж. Л. Лекланше разработал марганцово-цинковый элемент с соляным раствором.

1880 год – Ф. Лаланд усовершенствовал изобретение своего соотечественника, используя загущенный электролит.

40-е года XX века – были разработаны серебряно-цинковые элементы.

50-е года XX века – появились марганцово-цинковый элемент со щелочным раствором, также ртутно-цинковые элементы.

60-е года XX века – началось производство воздушно-цинковых батареек.

70-е года XX века – впервые были использованы литиевые источники тока.



Загрузка...