sonyps4.ru

Жесткие диски и их устройство. Жесткий диск: принцип работы и основные характеристики

Жесткие диски

Выполнил студент
группы 40-101Б.
Каримов К.Р.
Преподаватель:
Усов П.А.

1. Принцип работы жесткого диска.. 3

2. Устройство диска.. 5

3. Работа жесткого диска.. 10

4. Объем, скорость и время доступа.. 12

5. Интерфейсы жестких дисков.. 14

6. Внешние жесткие диски.. 16

Принцип работы жесткого диска

Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного персонального компьютера. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью. В то время, как почти все элементы компьютера работают бесшумно, жесткий диск ворчит и поскрипывает, что позволяет отнести его к тем немногим компьютерным устройствам, которые содержат как механические, так и электронные компоненты.

Основные принципы работы жесткого диска мало изменились со дня его создания. Устройство винчестера очень похоже на обыкновенный проигрыватель грампластинок. Только под корпусом может быть несколько пластин, насаженных на общую ось, и головки могут считывать информацию сразу с обеих сторон каждой пластины. Скорость вращения пластин (у некоторых моделей она доходит до 15000 оборотов в минуту) постоянна и является одной из основных характеристик. Головка перемещается вдоль пластины на некотором фиксированном расстоянии от поверхности. Чем меньше это расстояние, тем больше точность считывания информации, и тем больше может быть плотность записи информации. Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя. Кроме того, корпус экранирует накопитель от электромагнитных помех. Внутри корпуса находятся все механизмы и некоторые электронные узлы. Механизмы - это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение. Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из керамики или стекла, покрытую тонким ферромагнитным слоем. Диски изготовлены. Во многих накопителях используется слой оксида железа (которым покрывается обычная магнитная лента), но новейшие модели жестких дисков работают со слоем кобальта толщиной порядка десяти микрон. Такое покрытие более прочно и, кроме того, позволяет значительно увеличить плотность записи. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.

Количество дисков может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить". Магнитное покрытие диска представляет собой множество мельчайших областей самопроизвольной (спонтанной) намагниченности. Для наглядности представьте себе, что диск покрыт слоем очень маленьких стрелок от компаса, направленных в разные стороны. Такие частицы-стрелки называются доменами. Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Теперь о работе головок. Они перемещаются с помощью прецизионного шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. На поверхности дисков в результате записи информации образуются намагниченные участки, в форме концентрических окружностей. Они называются магнитными дорожками. Перемещаясь, головки останавливаются над каждой следующей дорожкой. Совокупность дорожек, расположенных друг под другом на всех поверхностях, называют цилиндром. Все головки накопителя перемещаются одновременно, осуществляя доступ к одноименным цилиндрам с одинаковыми номерами.

Устройство диска

Типовой винчестер состоит из гермоблока и платы электроники. В гермоблоке размещены все механические части, на плате - вся управляющая электроника, за исключением предусилителя, размещенного внутри гермоблока в непосредственной близости от головок.

Под дисками расположен двигатель - плоский, как во floppy-дисководах, или встроенный в шпиндель дискового пакета. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока и постоянно очищается фильтром, установленным на одной из его сторон.

Ближе к разъемам, с левой или правой стороны от шпинделя, находится поворотный позиционер, несколько напоминающий по виду башенный кран: с одной стороны оси, находятся обращенные к дискам тонкие, длинные и легкие несущие магнитных головок, а с другой - короткий и более массивный хвостовик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией дисков. Угол между осями позиционера и шпинделя подобран вместе с расстоянием от оси позиционера до головок так, чтобы ось головки при поворотах как можно меньше отклонялась от касательной дорожки.

В более ранних моделях коромысло было закреплено на оси шагового двигателя, и расстояние между дорожками определялось величиной шага. В современных моделях используется так называемый линейный двигатель, который не имеет какой-либо дискретности, а установка на дорожку производится по сигналам, записанным на дисках, что дает значительное увеличение точности привода и плотности записи на дисках.

Обмотку позиционера окружает статор, представляющий собой постоянный магнит. При подаче в обмотку тока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением; динамически изменяя ток в обмотке, можно устанавливать позиционер в любое положение. Такая система привода получила название Voice Coil (звуковая катушка) - по аналогии с диффузором громкоговорителя.

На хвостовике обычно расположена так называемая магнитная защелка - маленький постоянный магнит, который при крайнем внутреннем положении головок (landing zone - посадочная зона) притягивается к поверхности статора и фиксирует коромысло в этом положении. Это так называемое парковочное положение головок, которые при этом лежат на поверхности диска, соприкасаясь с нею. В ряде дорогих моделей (обычно SCSI) для фиксации позиционера предусмотрен специальный электромагнит, якорь которого в свободном положении блокирует движение коромысла. В посадочной зоне дисков информация не записывается.

В оставшемся свободном пространстве размещен предусилитель сигнала, снятого с головок, и их коммутатор. Позиционер соединен с платой предусилителя гибким ленточным кабелем, однако в отдельных винчестерах (в частности - некоторые модели Maxtor AV) питание обмотки подведено отдельными одножильными проводами, которые имеют тенденцию ломаться при активной работе. Гермоблок заполнен обычным обеспыленным воздухом под атмосферным давлением. В крышках гермоблоков некоторых винчестеров специально делаются небольшие окна, заклеенные тонкой пленкой, которые служат для выравнивания давления внутри и снаружи. В ряде моделей окно закрывается воздухопроницаемым фильтром. У одних моделей винчестеров оси шпинделя и позиционера закреплены только в одном месте - на корпусе винчестера, у других они дополнительно крепятся винтами к крышке гермоблока. Вторые модели более чувствительны к микродеформации при креплении - достаточно сильной затяжки крепежных винтов, чтобы возник недопустимый перекос осей. В ряде случаев такой перекос может стать труднообратимым или необратимым совсем. Плата электроники - съемная, подключается к гермоблоку через один - два разъема различной конструкции. На плате расположены основной процессор винчестера, ПЗУ с программой, рабочее ОЗУ, которое обычно используется и в качестве дискового буфера, цифровой сигнальный процессор (DSP) для подготовки записываемых и обработки считанных сигналов, и интерфейсная логика. На одних винчестерах программа процессора полностью хранится в ПЗУ, на других определенная ее часть записана в служебной области диска. На диске также могут быть записаны параметры накопителя (модель, серийный номер и т.п.). Некоторые винчестеры хранят эту информацию в электрически репрограммируемом ПЗУ (EEPROM).

Многие винчестеры имеют на плате электроники специальный технологический интерфейс с разъемом, через который при помощи стендового оборудования можно выполнять различные сервисные операции с накопителем - тестирование, форматирование, переназначение дефектных участков и т.п. У современных накопителей марки Conner технологический интерфейс выполнен в стандарте последовательного интерфейса, что позволяет подключать его через адаптер к алфавитно-цифровому терминалу или COM-порту компьютера. В ПЗУ записана так называемая тест-мониторная система (ТМОС), которая воспринимает команды, подаваемые с терминала, выполняет их и выводит результаты обратно на терминал. Ранние модели винчестеров, как и гибкие диски, изготовлялись с чистыми магнитными поверхностями; первоначальная разметка (форматирование) производилась потребителем по его усмотрению, и могла быть выполнена любое количество раз. Для современных моделей разметка производится в процессе изготовления; при этом на диски записывается сервоинформация - специальные метки, необходимые для стабилизации скорости вращения, поиска секторов и слежения за положением головок на поверхностях. Не так давно для записи сервоинформации использовалась отдельная поверхность (dedicated - выделенная), по которой настраивались головки всех остальных поверхностей. Такая система требовала высокой жесткости крепления головок, чтобы между ними не возникало расхождений после начальной разметки. Ныне сервоинформация записывается в промежутках между секторами (embedded - встроенная), что позволяет увеличить полезную емкость пакета и снять ограничение на жесткость подвижной системы. В некоторых современных моделях применяется комбинированная система слежения - встроенная сервоинформация в сочетании с выделенной поверхностью; при этом грубая настройка выполняется по выделенной поверхности, а точная - по встроенным меткам.

Поскольку сервоинформация представляет собой опорную разметку диска, контроллер винчестера не в состоянии самостоятельно восстановить ее в случае порчи. При программном форматировании такого винчестера возможна только перезапись заголовков и контрольных сумм секторов данных.

При начальной разметке и тестировании современного винчестера на заводе почти всегда обнаруживаются дефектные сектора, которые заносятся в специальную таблицу переназначения. При обычной работе контроллер винчестера подменяет эти сектора резервными, которые специально оставля- ются для этой цели на каждой дорожке, группе дорожек или выделенной зоне диска. Благодаря этому новый винчестер создает видимость полного отсутствия дефектов поверхности, хотя на самом деле они есть почти всегда.

При включении питания процессор винчестера выполняет тестирование электроники, после чего выдает команду включения шпиндельного двигателя. При достижении некоторой критической скорости вращения плотность увлекаемого поверхностями дисков воздуха становится достаточной для преодоления силы прижима головок к поверхности и поднятия их на высоту от долей до единиц микрон над поверхностями дисков - головки "всплывают". С этого момента и до снижения скорости ниже критической головки "висят" на воздушной подушке и совершенно не касаются поверхностей дисков.

После достижения дисками скорости вращения, близкой к номинальной (обычно - 3600, 4500, 5400 или 7200 об/мин) головки выводятся из зоны парковки и начинается поиск сервометок для точной стабилизации скорости вращения. Затем выполняется считывание информации из служебной зоны - в частности, таблицы переназначения дефектных участков.

В завершение инициализации выполняется тестирование позиционера путем перебора заданной последовательности дорожек - если оно проходит успешно, процессор выставляет на интерфейс признак готовности и переходит в режим работы по интерфейсу.

Во время работы постоянно работает система слежения за положением головки на диске: из непрерывно считываемого сигнала выделяется сигнал рассогласования, который подается в схему обратной связи, управляющую током обмотки позиционера. В результате отклонения головки от центра дорожки в обмотке возникает сигнал, стремящийся вернуть ее на место.

Для согласования скоростей потоков данных - на уровне считывания/записи и внешнего интерфейса - винчестеры имеют промежуточный буфер, часто ошибочно называемый кэшем, объемом обычно в несколько десятков или сотен килобайт. В ряде моделей (например, Quantum) буфер размещается в общем рабочем ОЗУ, куда вначале загружается оверлейная часть микропрограммы управления, отчего действительный объем буфера получается меньшим, чем полный объем ОЗУ (80-90 кб при ОЗУ 128 кб у Quantum). У других моделей (Conner, Caviar) ОЗУ буфера и процессора сделаны раздельными.

При отключении питания процессор, используя энергию, оставшуюся в конденсаторах платы либо извлекая ее из обмоток двигателя, который при этом работает как генератор, выдает команду на установку позиционера в парковочное положение, которая успевает выполниться до снижения скорости вращения ниже критической. В некоторых винчестерах (Quantum) этому способствует помещенное между дисками подпружиненное коромысло, постоянно испытывающее давление воздуха. При ослаблении воздушного потока коромысло дополнительно толкает позиционер в парковочное положение, где тот фиксируется защелкой. Движению головок в сторону шпинделя способствует также центростремительная сила, возникающая из-за вращения дисков.

Работа жесткого диска

Теперь - собственно о процессе работы винчестера. После начальной настройки электроники и механики микрокомпьютер винчестера переходит в режим ожидания команд от контроллера, расположенного на системной плате или интерфейсной карте. Получив команду, он включает нужную головку, по сервоимпульсам отыскивает нужную дорожку, дожидается, пока до головки "доедет" нужный сектор, и выполняет считывание или запись информации. Если контроллер запросил чтение/запись не одного сектора, а нескольких - винчестер может работать в так называемом блочном режиме, используя ОЗУ в качестве буфера и совмещая чтение/запись с передачей информации к контроллеру или от него.

Для оптимального использования поверхности дисков применяется так называемая зоновая запись (Zoned Bit Recording - ZBR), принцип которой состоит в том, что на внешних дорожках, имеющих большую длину (а следовательно - и информационную емкость), информация записывается с большей плотностью, чем на внутренних. Таких зон с постоянной плотностью записи в пределах всей поверхности образуется до десятка и более; соответственно, скорость чтения и записи на внешних зонах выше, чем на внутренних. Благодаря этому файлы, расположенные ближе к "началу" винчестера, в целом будут обрабатываться быстрее файлов, расположенных ближе к его "концу".

Теперь о том, откуда берутся неправдоподобно большие количества головок, указанные в параметрах винчестеров. Когда-то эти числа - число цилиндров, головок и секторов на дороже - действительно обозначали реальные физические параметры (геометрию) винчестера. Однако при использовании ZBR количество секторов меняется от дорожки к дорожке, и для каждого винчестера эти числа различны - поэтому стала использоваться так называемая логическая геометрия, когда винчестер сообщает контроллеру некие условные параметры, а при получении команд сам преобразует логические адреса в физические. При этом в винчестере с логической геометрией, например, в 520 цилиндров, 128 головок и 63 сектора (общий объем - 2 Гб) находится, скорее всего, два диска - и четыре головки чтения/записи.

В винчестерах последнего поколения используются технологии PRML (Partial Response, Maximum Likelihood - максимальное правдоподобие при неполном отклике) и S.M.A.R.T. (Self Monitoring Analysis and Report Technology - технология самостоятельного следящего анализа и отчетности). Первая разработана по причине того, что при существующих плотностях записи уже невозможно четко и однозначно считывать сигнал с поверхности диска - уровень помех и искажений очень велик. Вместо прямого преобразования сигнала используется его сравнение с набором образцов, и на основании максимальной похожести делается заключение о приеме того или иного кодового слова - примерно так же мы читаем слова, в которых пропущены или искажены буквы.

Винчестер, в котором реализована технология S.M.A.R.T., ведет статистику своих рабочих параметров (количество старт/стопов и наработанных часов, время разгона шпинделя, обнаруженные/исправленные ошибки и т.п.), которая регулярно сохраняется в перепрограммируемом ПЗУ или в служебных зонах диска. Эта информация накапливается в течение всей жизни винчестера и может быть в любой момент затребована программами анализа; по ней можно судить о состоянии механики, условиях эксплуатации или примерной вероятности выхода из строя.


Похожая информация.


Многих пользователей интересует устройство жесткого диска. И неспроста, ведь на сегодняшний день самым распространенным накопителем информации на компьютере является HDD. Далее будут разобраны принципы его работы и структура.


Винчестер по своей сути напоминает проигрыватель на пластинках. В нем также содержатся пластинки и считывающие головки. Однако устройство HDD сложнее. Если мы разберем жесткий диск, то увидим, что в основном пластины металлические и покрыты магнитным слоем. Именно на него производится запись данных. В зависимости от объема винчестера пластин от 4 до 9. Они крепятся на валу, который называется «шпиндель» и имеет высокую скорость вращения от 3600 до 10000 оборотов/мин для изделий массового потребления.

Рядом с блоком пластин находится блок считывающих головок. Количество головок определяется количеством магнитных дисков, а именно по одной на каждую поверхность диска. В отличие от проигрывателя на жестких дисках головка не касается поверхности пластин, а зависает над ней. Это позволяет исключить механический износ. Поскольку пластины имеют высокую скорость вращения, а головки должны находиться на крайне малом постоянном расстоянии над ними, очень важно, чтобы во внутрь корпуса ничего не смогло попасть. Ведь малейшая пылинка может нанести физические повреждения. Именно поэтому механическую часть герметично закрывают кожухом, а электронную выносят на наружу.

Некоторые пользователи интересуются тем, как разобрать жесткий диск. Нужно понимать, что разбор рабочего накопителя предусматривает нарушение его герметичности. А это, в свою очередь, приведет его в негодность. Поэтому не стоит этого делать, если вы не готовы потерять все данные на носителе информации. Если у вас нет острой необходимости открывать накопитель, а всего лишь мучает любопытство, из чего состоит жесткий диск, вы можете посмотреть фото разобранного HDD.

Именно поэтому жесткие диски на магнитных дисках при ремонте разбирают и собирают в специальном ламинарном боксе. В нем при помощи системы подачи воздуха высокой очистки и герметичности поддерживается необходимая для проведения таких работ окружающая среда. Разобрав свой диск в домашних условиях Вы однозначно его приведете в неработоспособное состояние.

Считывающие головки в нерабочем состоянии находятся рядом с блоком пластин. Еще это называется «парковочное положение». Специальное устройство выносит головки в рабочую зону только тогда, когда диск разогнался до необходимой скорости. Все они перемещаются вместе, а не каждая отдельно. Это позволяет иметь быстрый доступ ко всем данным.

Электронная плата, или контроллер, как правило, крепится снизу винчестера. Ее ничего не защищает, и от этого она достаточно уязвима для механических и термических повреждений. Именно она осуществляет управление механикой. Винчестер от ноутбука отличается от стандартного 3,5-дюймового только размером. Принцип работы жесткого диска точно такой же. Отличаться они могут только количеством магнитных блинов и емкостью накопителя.

Как можно проследить, устройство жесткого диска подвержено ударам, встряскам, царапинам, значительным изменениям температур и скачкам напряжения. А это делает его не совсем надежным носителем информации. Именно из-за этого жесткий диск на ноутбуке выходит из строя чаще, чем на стационарном ПК. Ведь портативные устройства постоянно подвергают встряскам, порой падениям, выносят на холод или ставят на солнце. А это, в свою очередь, негативно сказывается на винчестере.

Чтобы продлить срок работы HDD, не подвергайте его падениям и ударам, следите за тем, чтобы была достаточная вентиляция корпуса, любые манипуляции с диском производите только при отключенном питании. Эти недостатки привели к появлению нового типа винчестеров SSD. Постепенно они теснят HDD, когда-то выглядевших великолепными носителями.

Логическое устройство


Мы узнали, как выглядит жесткий диск внутри. Теперь будем разбирать его логическое структурирование. Данные пишутся на жесткий диск компьютера на дорожки, которые делятся на определенные сектора. Объем каждого сектора составляет 512 байт. Последовательные сектора объединяются в кластер.

При установке нового HDD нужно произвести форматирование, иначе компьютер попросту не увидит свободное место на накопителе. Форматирование бывает физическое и логическое. Первое подразумевает разбивку диска на сектора. Некоторые из них могут определиться как «плохие», то есть непригодные к записи данных. В большинстве случаев накопитель уже имеет такое форматирование перед продажей.

Логическое форматирование подразумевает создание логического раздела жесткого диска. Это позволяет значительно упростить и оптимизировать работу с информацией. Под логический раздел (или, как еще называют, «логический диск») отводится определенная область накопителя. С ней можно работать как с отдельным винчестером. Чтобы понять, как работает жесткий диск со своими разделами, достаточно визуально разделить винчестер на 2-4 части в зависимости от количества логических томов. К каждому тому можно применить свою систему форматирования: FAT32, NTFS или exFAT.

Технические данные


Друг от друга HDD отличаются по таким данным:

  • объемом;
  • скоростью вращения шпинделя;
  • интерфейсом.

На сегодняшний день средний объем винчестера 500-1000 Гб. Он определяет количество информации, которое вы можете записать на носитель. От скорости вращения шпинделя будет зависеть, как быстро вы сможете иметь доступ к данным, то есть чтение и запись информации. Самым распространенным интерфейсом является SATA, который пришел на смену уже морально устаревшему и медленному IDE. Друг от друга они отличаются пропускной способностью и типом разъема подключения к материнской плате. Отметим, что диск современного ноутбука может иметь только интерфейс SATA или SATA2.

В данной статье было рассмотрено, как устроен жесткий диск, его принципы работы, техданные и логическая структура.

Во время запуска компьютера, набор микропрограмм, записанных в микросхеме BIOS, производит проверку оборудования. Если все в порядке, он передает управление загрузчику операционной системы. Дальше ОС загружается и вы начинаете пользоваться компьютером. При этом — где до включения компьютера хранилась операционная система? Каким образом ваш реферат, который вы писали всю ночь, остался цел после отключения питания ПК? Снова же — где он хранится?

Ладно, вероятно я слишком загнул и вы все прекрасно знаете, что данные компьютера хранятся на жестком диске. Тем не менее что он из себя представляет и как работает не все знают, и поскольку вы здесь, делаем вывод, что хотели бы узнать. Что же, давайте разбираться!

Что такое жесткий диск

По традиции, давайте подсмотрим определение жесткого диска в Википедии:

Жесткий диск (винт, винчестер, накопитель на жестких магнитных дисках, НЖМД, HDD, HMDD) — запоминающее устройство произвольного доступа, основанное на принципе магнитной записи.

Используются в подавляющем большинстве компьютеров, а также как отдельно подключаемые устройства для хранения резервных копий данных, в качестве файлового хранилища и т.п.

Чуть-чуть разберемся. Мне нравится термин «накопитель на жестких магнитных дисках «. Эти пять слов передают всю суть. HDD — устройство, предназначение которого длительное время хранить записанные на него данные. Основой HDD являются жесткие (алюминиевые) диски со специальным покрытием, на которое при помощи специальных головок записывается информация.

Не буду рассматривать в деталях сам процесс записи — по сути это физика последних классов школы, и вникать в это, уверен, у вас желания нет, да и статья совсем не о том.

Также обратим внимание на фразу: «произвольного доступа » что, грубо говоря, означает, что мы (компьютер) можем в любое время считать информацию с любого участка ЖД.

Важным является тот факт, что память HDD не энергозависима, то есть не важно подключено питание или нет, записанная на устройство информация никуда не исчезнет. Это важное отличие постоянной памяти компьютера, от временной ().

Взглянув на жесткий диск компьютера в жизни, вы не увидите ни дисков, ни головок, так как все это скрыто в герметичном корпусе (гермозона). Внешне винчестер выглядит так:

Для чего компьютеру нужен жесткий диск

Рассмотрим что такое HDD в компьютере, то есть какую роль он играет в ПК. Понятно, что он хранит данные но, как и какие. Здесь выделим такие функции НЖМД:

  • Хранение ОС, пользовательского ПО и их настроек;
  • Хранение файлов пользователя: музыка, видео, изображения, документы и т.д;
  • Использование части объема жесткого диска, для хранения данных не помещающихся в ОЗУ (файл подкачки) или хранение содержимого оперативной памяти во время использования режима сна;

Как видим, жесткий диск компьютера не просто свалка из фотографий, музыки и видео. На нем хранится вся операционная система, и помимо этого ЖД помогает справляться с загруженностью ОЗУ, беря на себя часть ее функций.

Из чего состоит жесткий диск

Мы частично упоминали о составных жесткого диска, сейчас разберемся с этим детальнее. Итак, основные составляющие HDD:

  • Корпус — защищает механизмы жесткого диска от пыли и влаги. Как правило, является герметичным, дабы внутрь та самая влага и пыль не попадали;
  • Диски (блины) — пластины из определенного сплава металлов, с нанесенным с обеих сторон покрытием, на которое и записываются данные. Количество пластин может быть разным — от одной (в бюджетных вариантах), до нескольких;
  • Двигатель — на шпинделе которого закреплены блины;
  • Блок головок — конструкция из соединенных между собой рычагов (коромысел), и головок. Часть ЖД, которая считывает и записывает на него информацию. Для одного блина используется пара головок, поскольку и верхняя, и нижняя часть у него рабочая;
  • Устройство позиционирования (актуатор ) — механизм приводящий в действие блок головок. Состоит из пары постоянных неодимовых магнитов и катушки, находящейся на конце блока головок;
  • Контроллер — электронная микросхема управляющая работой HDD;
  • Парковочная зона — место внутри винчестера рядом с дисками либо на их внутренней части, куда опускаются (паркуются) головки во время простоя, чтобы не повредить рабочую поверхность блинов.

Такое вот незамысловатое устройство жесткого диска. Сформировалось оно много лет назад, и никаких принципиальных изменений в него уже давно не вносились. А мы идем дальше.

Как работает жесткий диск

После того, как на HDD подается питание двигатель, на шпинделе которого закреплены блины, начинает раскручиваться. Набрав скорость, при которой у поверхности дисков образовывается постоянный поток воздуха, начинают двигаться головки.

Данная последовательность (сначала раскручиваться диски, а затем начинают работать головки) необходима для того, чтобы за счет образовавшегося потока воздуха, головки парили над пластинами. Да, они никогда не касаются поверхности дисков, иначе последние были бы моментально повреждены. Тем не менее, расстояние от поверхности магнитных пластин до головок настолько маленькое (~10 нм), что вы не увидите его невооруженным глазом.

После запуска, в первую очередь происходит считывание служебной информации о состоянии жесткого диска и других необходимых сведениях о нем, находящихся на так называемой нулевой дорожке. Только затем начинается работа с данными.

Информация на жестком диске компьютера записывается на дорожки которые, в свою очередь, разбиты на сектора (такая себе разрезанная на кусочки пицца). Для записи файлов несколько секторов объединяют в кластер, он и является наименьшим местом, куда может быть записан файл.

Кроме такого «горизонтального» разбиения диска, есть еще условное «вертикальное». Поскольку все головки объединены, они всегда позиционируются над одной и той же по номеру дорожкой, каждая над своим диском. Таким образом, во время работы HDD головки как бы рисуют цилиндр:

Пока HDD работает, по сути он выполняет две команды: чтение и запись. Когда необходимо выполнить команду записи, происходит вычисление области на диске куда она будет производится, затем позиционируются головки и, собственно, выполняется команда. Затем результат проверяется. Кроме записи данных прямо на диск, информация также попадает в его кеш.

Если контроллеру поступает команда на чтение, в первую очередь происходит проверка наличия требуемой информации в кеше. Если ее там нет, снова происходит вычисление координат для позиционирования головок, дальше, головки позиционируется и считывают данные.

После завершения работы, когда питание винчестера исчезает, происходит автоматическая парковка головок в парковочных зоне.

Вот так в общих чертах и работает жесткий диск компьютера. В действительности же все намного сложнее, но обычному пользователю, скорее всего, такие подробности не нужны, поэтому закончим с этим разделом и пойдем дальше.

Виды жестких дисков и их производители

На сегодняшний день, на рынке существует фактически три основных производителя жестких дисков: Western Digital (WD), Toshiba, Seagate. Они полностью покрывают спрос на устройства всех видов и требований. Остальные компании либо разорились, либо были поглощены кем-то из основной тройки, или перепрофилировались.

Если говорить о видах HDD, их можно разделить таким образом:

  1. Для ноутбуков — основной параметр — размер устройства в 2,5 дюйма. Это позволяет им компактно размещаться в корпусе лептопа;
  2. Для ПК — в этом случае также возможно использование 2,5″ жестких дисков, но как правило, используются 3,5 дюйма;
  3. Внешние жесткие диски — устройства, отдельно подключаемые к ПК/ноутбуку, чаще всего выполняющие роль файлового хранилища.

Также выделяют особый тип жестких дисков — для серверов. Они идентичны обычным ПКшным, но могут отличаются интерфейсами для подключения, и большей производительностью.

Все остальные разделения HDD на виды происходят от их характеристик, поэтому рассмотрим их.

Характеристики жестких дисков

Итак, основные характеристики жесткого диска компьютера:

  • Объем — показатель максимально возможного количества данных, которые можно будет вместить на диске. Первое на что обычно смотрят при выборе HDD. Данный показатель может достигать 10 Тб, хотя для домашнего ПК чаще выбирают 500 Гб — 1 Тб;
  • Форм-фактор — размер жестокого диска. Самые распространенные — 3,5 и 2,5 дюйма. Как говорилось выше, 2,5″ в большинстве случаев, устанавливаются в ноутбуки. Также их используют во внешних HDD. В ПК и на сервера устанавливают 3,5″. Форм фактор влияет и на объем, так как на больший диск может поместиться больше данных;
  • Скорость вращения шпинделя — с какой скоростью вращаются блины. Наиболее распространены 4200, 5400, 7200 и 10000 об/мин. Эта характеристика напрямую влияет на производительность, а так же и цену устройства. Чем выше скорость — тем больше оба значения;
  • Интерфейс — способ (тип разъема) подключения HDD к компьютеру. Самым популярным интерфейсом для внутренних ЖД сегодня является SATA (в старых компьютерах использовался IDE). Внешние жесткие диски подключаются, как правило, по USB или FireWire. Кроме перечисленных, существуют еще такие интерфейсы как SCSI, SAS;
  • Объем буфера (кеш-память) — тип быстрой памяти (по типу ОЗУ) установленный на контроллере ЖД, предназначенный для временного хранения данных, к которым чаще всего обращаются. Объем буфера может составлять 16, 32 или 64 Мб;
  • Время произвольного доступа — то время, за которое HDD гарантированно выполнить запись или чтение с любого участка диска. Колеблется от 3 до 15 мс;

Кроме приведенных характеристик также можно встретить такие показатели как.

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL-метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Для этого метода (рис. 14.2), если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается «0 », а предыдущий бит был «1 », то синхросигнал также не записывается, как и бит данных. Но если перед «0 » стоит бит «0 », то синхросигнал записывается.

В настоящее время существуют 3 вида записи:

Метод параллельной записи

На данный момент это самая распространённая технология записи информации на НЖМД. Биты информации записываются с помощью маленькой головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей - доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности. На сегодняшний день, домены становятся настолько малы, что остро встаёт вопрос о их стабильности. Дальнейшее развитие этой технологии под вопросом, многие считают этот метод исчерпавшим себя. Плотность записи, при использовании этого метода, на данный момент равна 150 Гбит/дюйм² (23Гбит/см²).

Метод перпендикулярной записи

Для того чтобы решить проблему с дальнейшим увеличением плотности, многие производители рассматривают технологию, при которой биты информации сохранялись бы в вертикальных доменах. Это позволит использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у экспериментального прототипа - 200 Гбит/дюйм² (31 Гбит/см²), в дальнейшем планируется довести плотность до 400-500 Гбит/дюйм² (60-75 Гбит/см²).

Метод тепловой магнитной записи

Метод тепловой магнитной записи (англ. Heat assisted magnetic recording - HAMR) на данный момент активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». Именно этот метод собираются использовать компании Seagate и IBM для достижения плотности в 4 Тбит на кв. дюйм (620 Гбит на кв. см). Это позволит изготовить 3,5-дюймовый винчестер объемом 25 Тб. В качестве максимальной отметки плотности пока названо значение 100 Тбит на кв. дюйм (около 15 Тб на кв. см), что соответствует 0,65-Пб (петабайт) объема в форм-факторе 3,5 дюйма.

Формат записи информации на жестком магнитном диске

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Конкретный формат данных определяется внутренней программной конфигурацией ПЭВМ и техническими характеристиками адаптера накопителя. Структура формата (рис. 14.3) подобна структуре, применяемой в НГМД.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В отличие от НГМД в НЖМД в идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число, с помощью которого осуществляется правильность считывания идентификатора. Байт флага содержит флаг - указатель состояния дорожки (основная или запасная, исправная или дефектная).

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты в НЖМД предназначены не только для определения, но и для коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды; использование конкретных кодов зависит от схемной реализации адаптера.

Перед использованием НЖМД производится его начальное форматирование - процедура, выполняемая под управлением специальной программы, при работе которой на дисковый пакет записывается служебная информация и проверяется пригодность полей данных.

В последнее время компании используют адаптивное форматирование . Его суть заключается в том, что каждый экземпляр накопителя индивидуально настраивается на заводе таким образом, чтобы обеспечить лучшую производительность и надежность. Для этого каждая пара «головка-поверхность пластины» собранного диска тестируется на определение характеристик быстродействия, и затем каждая сторона магнитной пластины индивидуально форматируется (размечается на дорожки и сектора) так, чтобы обеспечить наилучшие характеристики при работе именно с данной головкой. В результате, линейная плотность записи на каждой стороне каждой пластины может не совпадать с соседними

Пять различных интервалов в НЖМД используются для синхронизации электронных процессов чтения-записи и управления работы электромеханических узлов накопителя.

В результате начального форматирования определяется расположение секторов, и устанавливаются их логические номера. Поскольку скорость вращения диска очень большая, для обеспечения минимального числа оборотов диска при обращении к последовательным секторам, секторы с последовательными номерами размещаются через N физических секторов друг от друга (рис. 14.4).

Кратность расположения секторов задается при форматировании диска. Коэффициенты чередования бывают 6:1, 3:1, и 1:1. Новейшие модели НЖМД используют коэффициенты 1:1, а их контроллеры считывают с диска за одно его обращение информацию с целой дорожки и затем хранят ее в буферной памяти. При запросе из буферной памяти передается информация уже из требуемых секторов.

Каждая дорожка диска разделяется на одинаковое число секторов, поэтому сектора на дорожках, которые находятся ближе к нулевой дорожке, имеют меньший размер. Для записи таких секторов

используются магнитные поля большей интенсивности (компенсация записи ). Число поверхностей диска (головок), число цилиндров (дорожек) и точка, с которой начинается компенсация записи, являются параметрами для настройки контроллера НЖМД.

Среднее время доступа к информации на НЖМД составляет

t ср =t n +0,5/F+t обм, (14.1)

где t n - среднее время позиционирования; F - скорость вращения диска; t обм - время обмена. Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

Накопитель на жестком магнитном диске (НЖМД) \ HDD (Hard Disk Drive) \ винчестер (носитель) – материальный объект, способный хранить информацию.

Накопители информации могут быть классифицированы по следующим признакам:

  • способу хранения информации: магнитоэлектрические, оптические, магнитооптические;
  • виду носителя информации: накопители на гибких и жестких магнитных дисках, оптических и магнитооптических дисках, магнитной ленте, твердотельные элементы памяти;
  • способу организации доступа к информации - накопители прямого, последовательного и блочного доступа;
  • типу устройства хранения информации - встраиваемые (внутренние), внешние, автономные, мобильные (носимые) и др.


Значительная часть накопителей информации, используемых в настоящее время, создана на базе магнитных носителей.

Устройство жесткого диска

Винчестер содержит набор пластин, представляющих чаще всего металлические диски, покрытые магнитным материалом – платтером (гамма-феррит-оксид, феррит бария, окись хрома…) и соединенные между собой при помощи шпинделя (вала, оси).
Сами диски (толщина примерно 2мм.) изготавливаются из алюминия, латуни, керамики или стекла. (см. Рис)

Для записи используются обе поверхности дисков. Используется 4-9 пластин . Вал вращается с высокой постоянной скоростью (3600-7200 оборотов/мин.)
Вращение дисков и радикальное перемещение головок осуществляется с помощью 2-х электродвигателей .
Данные записываются или считываются с помощью головок записи/чтения по одной на каждую поверхность диска. Количество головок равно количеству рабочих поверхностей всех дисков.

Запись информации на диск ведется по строго определенным местам — концентрическим дорожкам (трекам) . Дорожки делятся на сектора . В одном секторе 512 байт информации.

Обмен данными между ОЗУ и НМД осуществляется последовательно целым числом (кластером). Кластер — цепочки последовательных секторов (1,2,3,4,…)

Специальный двигатель с помощью кронштейна позиционирует головку чтения/записи над заданной дорожкой (перемещает ее в радиальном направлении).
При повороте диска головка располагается над нужным сектором. Очевидно, что все головки перемещаются одновременно и считывают инфоголовки перемещаются одновременно и считывают информацию с одинаковых дорожек разныхрмацию с одинаковых дорожек разных дисков.

Дорожки винчестера с одинаковым порядковым номером на разных дисках винчестера называется цилиндром .
Головки чтения записи перемещаются в вдоль поверхности платтера. Чем ближе к поверхности диска находится головка при этом не касаясь ее, тем выше допустимая плотность записи.

Устройство винчестера


Магнитный принцип чтения и записи информации

магнитный принцап записи информации

Физические основы процессов записи и воспроизведения информации на магнитных носителях заложены в работах физиков М.Фарадея (1791 - 1867) и Д. К. Максвелла (1831 - 1879).

В магнитных носителях информации цифровая запись производится на магнито чувствительный материал. К таким материалам относятся некоторые разновидности оксидов железа, никель, кобальт и его соединения, сплавы, а также магнитопласты и магнитоэласты со вязкой из пластмасс и резины, микропорошковые магнитные материалы.

Магнитное покрытие имеет толщину в несколько микрометров. Покрытие наносится на немагнитную основу, в качестве которой для магнитных лент и гибких дисков используются различие пластмассы, а для жестких дисков - алюминиевые сплавы и композиционные материалы подложки. Магнитное покрытие диска имеет доменную структуру, т.е. состоит из множества намагниченных мельчайших частиц.

Магнитный домен (от лат. dominium - владение) - это микроскопическая, однородно намагниченная область в ферромагнитных образцах, отделенная от соседних областей тонкими переходными слоями (доменными границами).

Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с направлением магнитных силовых линий. После прекращения воздействия внешнего поля на поверхности домена образуются зоны остаточной намагниченности. Благодаря этому свойству на магнитном носителе сохраняется информация, действовавшем магнитном поле.

При записи информации внешнее магнитное поле создается с помощью магнитной головки. В процессе считывания информации зоны остаточной намагниченности, оказавшись напротив магнитной головки, наводят в ней при считывании электродвижущую силу (ЭДС).

Схема записи и чтения с магнитного диска дана на рис.3.1 Изменение направления ЭДС в течение некоторого промежутка времени отождествляется с двоичной единицей, а отсутствие этого изменения - с нулем. Указанный промежуток времени называется битовым элементом .

Поверхность магнитного носителя рассматривается как последовательность точечных позиций, каждая из которых ассоциируется с битом информации. Поскольку расположение этих позиций определяется неточно, для записи требуются заранее нанесенные метки, которые помогают находить необходимые позиции записи. Для нанесения таких синхронизирующих меток должно быть произведено разбиение диска на дорожки
и секторы - форматирование .

Организация быстрого доступа к информации на диске является важным этапом хранения данных. Оперативный доступ к любой части поверхности диска обеспечивается, во-первых, за счет придания ему быстрого вращения и, во-вторых, путем перемещения магнитной головки чтения/записи по радиусу диска.
Гибкий диск вращается со скоростью 300-360 об/мин, а жесткий диск - 3600- 7200 об/мин.


Логическое устройство винчестера

Магнитный диск первоначально к работе не готов. Для приведения его в рабочее состояние он должен быть отформатирован , т.е. должна быть создана структура диска.

Структура (разметка) диска создается в процессе форматирования.

Форматирование магнитных дисков включает 2 этапа:

  1. физическое форматирование (низкого уровня)
  2. логическое (высокого уровня).

При физическом форматировании рабочая поверхность диска разбивается на отдельные области, называемые секторами , которые расположены вдоль концентрических окружностей – дорожек.

Кроме того, определяются сектора, непригодные для записи данных, они помечаются как плохие для того, чтобы избежать их использования. Каждый сектор является минимальной единицей данных на диске, имеет собственный адрес для обеспечения прямого доступа к нему. Адрес сектора включает номер стороны диска, номер дорожки и номер сектора на дорожке. Задаются физические параметры диска.

Как правило, пользователю не нужно заниматься физическим форматированием, так как в большинстве случаев жесткие диски поступают в отформатированном виде. Вообще говоря, этим должен заниматься специализированный сервисный центр.

Форматирование низкого уровня нужно производить в следующих случаях:

  • если появился сбой в нулевой дорожке, вызывающий проблемы при загрузке с жесткого диска, но сам диск при загрузке с дискеты доступен;
  • если вы возвращаете в рабочее состояние старый диск, например, пе¬реставленный со сломавшегося компьютера.
  • если диск оказался отформатированным для работы с другой операционной системой;
  • если диск перестал нормально работать и все методы восстановления не дали положительных результатов.

Нужно иметь в виду, что физическое форматирование является очень сильнодействующей операцией — при его выполнении данные, хранившиеся на диске будут полностью стерты и восстановить их будет совершенно невозможно! Поэтому не приступайте к форматированию низкого уровня, если вы не уверены в том, что сохранили все важные данные вне жесткого диска!

После того, как вы выполните форматирование низкого уровня, следует очередной этап — создание разбивки жесткого диска на один или несколько логических дисков — наилучший способ справиться с путаницей каталогов и файлов, разбросанных по диску.

Не добавляя никаких аппаратных элементов в вашу систему, Вы получаете возможность работать с несколькими частями одного жесткого диска, как с несколькими накопителями.
При этом емкость диска не увеличивается, однако можно значительно улучшить его организацию. Кроме того, различные логические диски можно использовать для различных операционных систем.

При логическом форматировании происходит окончательная подготовка носителя к хранению данных путем логической организации дискового пространства.
Диск подготавливается для записи файлов в сектора, созданные при низкоуровневом форматировании.
После создания таблицы разбивки диска следует очередной этап — логическое форматирование отдельных частей разбивки, именуемых в дальнейшем логическими дисками.

Логический диск — это некоторая область жесткого диска, работающая так же, как отдельный накопитель.

Логическое форматирование представляет собой значительно более простой процесс, чем форматирование низкого уровня.
Для того, чтобы выполнить его, загрузитесь с дискеты, содержащей утилиту FORMAT.
Если у вас несколько логических дисков, последовательно отформатируйте все.

В процессе логического форматирования на диске выделяется системная область , которая состоит из 3-х частей:

  • загрузочного сектора и таблица разделов (Boot reсord)
  • таблицы размещения файлов (FAT) , в которых записываются номера дорожек и секторов, хранящих файлы
  • корневой каталог (Root Direсtory).

Запись информации осуществляется частями через кластер. В одном и том же кластере не может быть 2-х разных файлов.
Кроме того, на данном этапе диску может быть присвоено имя.

Жесткий диск может быть разбит на несколько логических дисков и наоборот 2 жестких диска может быть объединены в один логический.

Рекомендуется на жеском диске создавать как минимум два раздела(два логических диска): один из них отводится под операционную систему и программное обеспечение, второй диск исключительно выделяется под данные пользователя. Таким образом данные и системные файлы хранятся отдельно друг от друга и в случае сбоя операционной системы гораздо больше вереятность сохранения данных пользователя.


Характеристики винчестеров

Жесткие диски (винчестеры) отличаются между собой следующими характеристиками:

  1. емкостью
  2. быстродействием – временем доступа к данным, скоростью чтения и записи информации.
  3. интерфейсом (способ подключения) — типом контролера, к которому должен присоединяться винчестер (чаще всего IDE/EIDE и различные варианты SСSI).
  4. другие особенности

1. Емкость — количество информации, помещающееся на диске (определяется уровнем технологии изготовления).
На сегодня емкость составляет 500 -2000 и более Гб. Места на жестком диске никогда не бывает много.


2. Скорость работы (быстродействие)
диска характеризуется двумя показателями: временем доступа к данным на диске и скоростью чтения/записи на диске .

Время доступа – время необходимое для перемещения (позиционирования) головок чтения/записи на нужную дорожку и нужный сектор.
Среднее характерное время доступа между двумя случайно выбранными дорожками примерно 8-12мс(миллисекунд), более быстрые диски имеют время 5-7мс.
Время перехода на соседнюю дорожку (соседний цилиндр) меньше 0.5 — 1.5мс. Для поворота в нужный сектор тоже нужно время.
Полное время оборота диска для сегодняшних винчестеров 8 – 16мс, среднее время ожидания сектора составляет 3-8мс.
Чем меньше время доступа, тем быстрее будет работать диск.

Скорость чтения/записи (пропускная способность ввода/вывода) или cкорость передачи данных (трансферт) – время передачи последовательно расположенных данных, зависит не только от диска, но и от его контроллера, типы шины, быстродействие процессора. Скорость медленных дисков 1.5-3 Мб/с, у быстрых 4-5Мб/с, у самых последних 20Мб/с.
Винчестеры со SСSI–интерфейсом поддерживают частоту вращение 10000 об./мин. и среднее время поиска 5мс, скорость передачи данных 40-80 Мб/с.


3. Стандарт интерфейса подключения винчестера
— т.е. тип контроллера, к которому должен подключаться жесткий диск. Он находится на материнской плате.
Различают три основных интерфейса подключения

  1. IDE и его различные варианты


IDE(Integrated Disk Eleсtroniс) или (ATA) Advanсed Teсhnology Attaсhment

Достоинства — простота и невысокая стоимость

Скорость передачи:8.3, 16.7, 33.3, 66.6, 100 Мб/с. По мере развития данных интерфейс поддерживает расширение списка устройств: жесткий диск, супер-флоппи, магнитооптика,
НМЛ, СD-ROM, СD-R, DVD-ROM, LS-120, ZIP.

Вводятся некоторые элементы распараллеливания (gneuing и disсonneсt/reсonneсt), контроля за целостностью данных при передаче. Главный недостаток IDE — небольшое количество подключаемых устройств (не больше 4), что для ПК высокого класса явно мало.
Сегодня IDE-интерфейсы перешли на новые протоколы обмена Ultra ATA. Значительно увеличив свою пропускную способность
Mode 4 и DMA (Direсt Memory Aссess) Mode 2 позволяет передавать данные со скоростью 16,6Мб/с, однако реальная скорость передачи данных была бы намного меньше.
Стандарты Ultra DMA/33 и Ultra DMA/66, разработанные в феврале 98г. компанией Quantum имеют 3 режима работы 0,1,2 и 4,соответствено во втором режиме носитель поддерживает
скорость передачи 33Мб/с. (Ultra DMA/33 Mode 2) Для обеспечения такой высокой скорости можно достичь только при обмене с буфером накопителя. Для того, чтобы воспользоваться
стандартами Ultra DMA необходимо выполнить 2 условия:

1. аппаратная поддержка на материнской плате (чипсета) и со стороны самого накопителя.

2. для поддержания режима Ultra DMA, как и другой DMA (direсt memory Aссess-прямой доступ к памяти).

Требуется специальный драйвер для разных наборов микросхем различных. Как правило, они входят в комплект системной платы, в случаи необходимости ее можно «скачать»
из Internet со страницы фирмы-изготовителя материнской платы.

Стандарт Ultra DMA обладает обратной совместимостью с предыдущими контроллерами, работающих в более медленном варианте.
Сегодняшний вариант: Ultra DMA/100 (конец 2000г.) и Ultra DMA/133 (2001г.).

SATA
Замена IDE (ATA) не другую высокоскоростную последовательную шину Fireware (IEEE-1394). Применение новой технологии позволит довести скорость передачи равной 100Мб/с,
повышается надежность системы, это позволит устанавливать устройства не включая ПК, что категорически нельзя в ATA-интерфейсе.


SСSI (Small Сomputer System Interfaсe)
— устройства дороже обычных в 2 раза, требуют специального контроллера на материнской плате.
Используются для серверов, издательских системах, САПР. Обеспечивают более высокое быстродействие (скорость до 160Мб/с), широкий диапазон подключаемых устройств хранения данных.
SСSI- контроллер необходимо покупать вместе с соответствующим диском.

SСSI преимущество перед IDE- гибкость и производительность.
Гибкость заключается большим количеством подключаемых устройств (7-15), а у IDE (4 максимально), большей длиной кабеля.
Производительность — высокая скорость передачи и возможность одновременной обработки нескольких транзакций.

1. Ultra Sсsi 2/3(Fast-20) до 40Мб/с 16-разрядный вариант Ultra2- стандарт SСSI до 80Мб/с

2. Другая технология SСSI-интерфейса названа Fibre Сhannel Arbitrated Loop (FС-AL) позволяет подключать до 100Мбс, длина кабеля при этом до 30 метров. Технология FС-AL позволяет выполнить «горячие» подключение, т.е. на «ходу», имеет дополнительные линии для контроля и коррекции ошибок (технология дороже обычного SСSI).

4. Другие особенности современных винчестеров

Огромное разнообразие моделей винчестера затрудняет выбор подходящего.
Кроме нужной емкости, очень важно и производительность, которая определяется в основном его физическими характеристиками.
Такими характеристиками и является среднее время поиска, скорость вращения, внутренняя и внешняя скорость передачи, объем Кэш-памяти.

4.1 Среднее время поиска.

Жесткий диск затрачивает какое-то время для того, чтобы переместить магнитную головку текущего положения в новое, требуемое для считывания очередной порции информации.
В каждой конкретной ситуации это время разное, в зависимости от расстояния, на которое должна переместиться головка. Обычно в спецификациях приводится только усредненные значения, причем применяемые разными фирмами алгоритмы усреднения, в общем случае различаются, так что прямое сравнение затруднено.

Так, фирмы Fujitsu, Western Digital проводят по всем возможным парам дорожек, фирмы Maxtor и Quantum применяют метод случайного доступа. Получаемый результат может дополнительно корректироваться.

Значение времени поиска для записи часто несколько выше, чем для чтения. Некоторые производители в своих спецификациях приводят только меньшее значение (для чтения). В любом случае кроме средних значений полезно учитывать и максимальное (через весь диск),
и минимальное (то есть с дорожки на дорожку) время поиска.

4.2 Скорость вращения

С точки зрения быстроты доступа к нужному фрагменту записи скорость вращения оказывает влияние на величину так называемого скрытого времени, которого для того, чтобы диск повернулся к магнитной головке нужным сектором.

Среднее значение этого времени соответствует половине оборота диска и составляет 8.33 мс при 3600 об/мин, 6.67 мс при 4500 об/мин, 5,56 мс при 5400 об/мин, 4,17 мс при 7200 об/мин.

Значение скрытого времени сопоставимо со средним временем поиска, так что в некоторых режимах оно может оказывать такое же, если не больше, влияние на производительность.

4.3 Внутренняя скорость передачи

— скорость, с которой данные записываются на диск или считываются с диска. Из-за зонной записи она имеет переменное значение – выше на внешних дорожках и ниже на внутренних.
При работе с длинными файлами во многих случаях именно этот параметр ограничивает скорость передачи.

4.4 Внешняя скорость передачи

— скорость (пиковая) с которой данные передаются через интерфейс.

Она зависит от типа интерфейса и имеет чаще всего, фиксированные значения: 8.3; 11.1; 16.7Мб/с для Enhanсed IDE (PIO Mode2, 3, 4); 33.3 66.6 100 для Ultra DMA; 5, 10, 20, 40, 80, 160 Мб/с для синхронных SСSI, Fast SСSI-2, FastWide SСSI-2 Ultra SСSI (16 разрядов) соответственно.

4.5 Наличие у винчестера своей Кэш-памяти и ее объем (дисковый буфер).

Объем и организация Кэш-памяти (внутреннего буфера) может заметно вливать на производительность жесткого диска. Так же как и для обычной Кэш-памяти,
прирост производительности по достижении некоторого объема резко замедляется.

Сегментированная Кэш-память большого объема актуальна для производительных SСSI–дисков, используемых в многозадачных средах. Чем больше КЭШ, тем быстрее работает винчестер (128-256Кб).

Влияние каждого из параметров на общую производительность вычленить довольно трудно.


Требования к жестким дискам

Основное требование к дискам — надежность работы гарантируется большим сроком службы компонентов 5-7 лет; хорошими статистическими показателями, а именно:

  • среднее время наработки на отказ не менее 500 тысяч часов (высшего класса 1 миллион часов и более.)
  • встроенная система активного контроля за состоянием узлов диска SMART /Self Monitoring Analysis and Report Teсhnology.

Технология S.M.A.R.T. (Self-Monitoring Analysis and Reporting Teсhnology) является открытым промышленным стандартом, разработанный в свое время Сompaq, IBM и рядом других производителей жестких дисков.

Смысл этой технологии заключается во внутренней самодиагностике жесткого диска, которая позволяет оценить его текущее состояние и информировать о возможных будущих проблемах, могущих привести к потере данных или к выходу диска из строя.

Осуществляется постоянный мониторинг состояния всех жизненно важных элементов диска:
головок, рабочих поверхностей, электромотора со шпинделем, блока электроники. Скажем, если обнаруживается ослабление сигнала, то информация перезаписывается и происходит дальнейшее наблюдение.
Если сигнал опять ослабляется, то данные переносятся в другое место, а данный кластер помещается как дефектный и недоступный, а вместо него предоставляется в распоряжении другой кластер из резерва диска.

При работе с жестким диском следует соблюдать температурный режим, в котором функционирует накопитель. Изготовители гарантируют безотказную работу винчестера при температуре окружающей их среды в диапазоне от 0С до 50С, хотя, в принципе, без серьезных последствий можно изменить границы по крайней мере градусов на 10 в обе стороны.
При больших отклонениях температуры воздушная прослойка необходимой толщиной может не образовываться, что приведет к повреждению магнитного слоя.

Вообще производители HDD уделяют довольно большое внимание надежности своих изделий.

Основная проблема — попадание внутрь диска посторонних частиц.

Для сравнения: частичка табачного дыма в два раза больше расстояния между поверхностью и головкой, толщина человеческого волоса в 5-10 раза больше.
Для головки встреча с такими предметами обернется сильным ударом и, как следствие, частичным повреждением или же полным выходом из строя.
Внешне это заметно, как появление большого количества закономерно расположенных негодных кластеров.

Опасны кратковременные большие по модулю ускорения (перегрузки), возникающие при ударах, падениях и т.д. Например, от удара головка резко ударяет по магнитному
слою и вызывает его разрушение в соответственном месте. Или, наоборот, сначала движется в противоположную сторону, а затем под действием силы упругости словно пружина бьет по поверхности.
В результате в корпусе появляются частицы магнитного покрытия, которые опять-таки могут повредить головку.

Не стоит думать, что под действием центробежной силы они улетят с диска — магнитный слой
прочно притянет их к себе. В принципе, страшны последствия не самого удара (можно как-нибудь смириться с потерей некоторого количества кластеров), а то, что при этом образуются частицы, которые обязательно вызовут дальнейшую порчу диска.

Для предотвращения таких весьма неприятных случаев различные фирмы прибегают ко всякого рода ухищрениям. Помимо простого повышения механической прочности компонентов диска, применяются также интеллектуальная технология S.M.A.R.T., которая следит за надежностью записи и сохранности данных на носителе (см. выше).

Вообще-то диск всегда отформатирован не на полную емкость, имеется некоторый запас. Связано это главным образом еще и с тем, что практически невозможно изготовить носитель,
на котором абсолютно вся поверхность была бы качественной, обязательно будет иметься bad-кластеры (сбойные). При низкоуровневом форматировании диска его электроника настраивается так,
чтобы она обходила эти сбойные участки, и для пользователя было совершенно не заметно, что носитель имеет дефект. Но вот если они видны (например, после форматирования
утилита выводит их количество, отличное от нуля), то это уже очень плохо.

Если гарантия не истекла (а HDD, на мой взгляд, лучше всего покупать с гарантией), то сразу же отнесите диск к продавцу и потребуйте замены носителя или возврат денег.
Продавец, конечно же, сразу начнет говорить, что парочка сбойных участков – еще не повод для беспокойства, но не верьте ему. Как уже говорилось, это парочка, скорее всего, вызовет еще множество других, а впоследствии вообще возможен полный выход винчестера из строя.

Особенно чувствителен к повреждениям диск в рабочем состоянии, поэтому не следует помещать компьютер в место, где он может быть подвержен различным толчкам, вибрациям и так далее.


Подготовка винчестера к работе

Начнем с самого начала. Предположим, что вы купили накопитель на жестком диске и шлейф к нему отдельно от компьютера.
(Дело в том, что, покупая собранный компьютер, вы получите подготовленный к использованию диск).

Несколько слов об обращении с ним. Накопитель на жестком диске — очень сложное изделие, содержащее кроме электроники прецизионную механику.
Поэтому он требует аккуратного обращения — удары, падения и сильная вибрация могут повредить его механическую часть. Как правило, плата накопителя содержит много малогабаритных элементов, и не закрыта прочными крышками. По этой причине следует позаботиться о ее сохранности.
Первое, что следует сделать, получив жесткий диск — прочитать пришедшую с ним документацию — в ней наверняка окажется много полезной и интересной информации. При этом следует обратить внимание на следующие моменты:

  • наличие и варианты установки перемычек, определяющих настройку (установку) диска, например, определяющую такой параметр, как физическое имя диска (они могут быть, но их может и не быть),
  • количество головок, цилиндров, секторов на дисках, уровень прекомпенсации, а также тип диска. Эти данные нужно ввести в ответ на запрос программы установки компьютера (setup).
    Вся эта информация понадобится при форматировании диска и подготовке машины к работе с ним.
  • В случае если ПК сам не определит параметры вашего винчестера, большей проблемой станет установка накопителя, на который нет никакой документации.
    На большинстве жестких дисков можно найти этикетки с названием фирмы-изготовителя, с типом (маркой) устройства, а также с таблицей недопустимых для использования дорожек.
    Кроме того, на накопителе может быть приведена информация о количестве головок, цилиндров и секторов и об уровне прекомпенсации.

Справедливости ради нужно сказать, что нередко на диске написано только его название. Но и в этом случае можно найти требуемую информацию либо в справочнике,
либо позвонив в представительство фирмы. При этом важно получить ответы на три вопроса:

  • как должны быть установлены перемычки для того, чтобы использовать накопитель как master \ slave?
  • сколько на диске цилиндров, головок, сколько секторов на дорожку, чему равняется значение прекомпенсации?
  • какой тип диска из записанных в ROM BIOS лучше всего соответствует данному накопителю?

Владея этой информацией, можно переходить к установке накопителя на жестком диске.


Для установки жесткого диска в компьютер следует сделать следующее:

  1. Отключить полностью системный блок от питания, снять крышку.
  2. Присоединить шлейф винчестера к контроллеру материнской платы. Если Вы устанавливаете второй диск можно воспользоваться шлейфом от первого при наличии на нем дополнительного разъема, при этом нужно помнить, что ск орость работы разных винчестеров будет сравнена в сторону медленно.
  3. Если требуется, переключить перемычки в соответствии со способом использования жесткого диска.
  4. Установить накопитель на свободное место и присоединить шлейф от контроллера на плате к разъему винчестера красной полосой к питанию, кабель источника питания.
  5. Надежно закрепить жесткий диск четырьмя болтами с двух сторон, акку/spanратно расположить кабели внутри компьютера, так, чтобы при закрывании крышки не перерубить их,
  6. Закрыть системный блок.
  7. Если ПК сам не определил винчестер, то изменить конфигурацию компьютера с помощью Setup, чтобы компьютер знал, что к нему добавили новое устройство.


Фирмы-изготовители винчестеров

Винчестеры одинаковой емкости (но от разных производителей) обычно обладают более-менее сходными характеристиками, а отличия выражаются главным образом в конструкции корпуса, форм-факторе (проще говоря, размерах) и сроке гарантийного обслуживания. Причем о последнем следует сказать особо: стоимость информации на современном винчестере часто во много раз превышает его собственную цену.

Если на вашем диске появились сбои, то пытаться его ремонтировать — зачастую означает лишь подвергать свои данные к дополнительному риску.
Гораздо более разумный путь- замена сбойного устройства на новое.
Львиную долю жестких дисков на российском (да и не только) рынке составляет продукции фирм IBM, Maxtor, Fujitsu, Western Digital (WD), Seagate, Quantum.

название фирмы-изготовителя, производящего данный тип накопителя,

Корпорация Quantum (www. quantum. сom.) , основанная в 1980г.,- одна из ветеранов на рынке дисковых накопителей. Компания известна своими новаторскими техническими решениями, направленными на повышение надежности и производительности жестких дисков, временем доступа к данным на диске и скоростью чтения/записи на диске, возможностью информировать о возможных будущих проблемах, могущих привести к потере данных или к выходу диска из строя.

— Одной из фирменных технологий Quantum является SPS (Shoсk Proteсtion System), призванная защитить диск от ударных воздействий.

— встроенная программа DPS (Data Proteсtion System), предназначенной сохранить самое дорогое — хранящиеся на них данные.

Корпорация Western Digital (www.wdс.сom.) также является одной из старейших компаний-производителей дисковых накопителей, она знала в своей истории и взлеты и падения.
Компания за последние время смогла внедрить в свои диски самые последние технологии. Среди них стоит отметить собственную разработку-технологию Data Lifeguard,которая является дальнейшим развитием системы S.M.A.R.T. В ней сделана попытка логического завершения цепочки.

Согласно этой технологии производится регулярное сканирование поверхности диска в период, когда он незадействован системой. При этом производится чтение данных и проверка их целостности. Если в процессе обращения к сектору отмечаются проблемы, то данные переносятся в другой сектор.
Информация о некачественных секторах заносится во внутренний дефект-лист, что позволяет избежать в будущем записи в будущем записи в дефектные сектора.

Фирма Seagate (www.seagate. Сom) очень известна на нашем рынке. К слову сказать, я рекомендую винчестеры именно этой фирмы, как самык надежные и долговечные.

В 1998 г. она заставила вновь обратить на себя внимание, выпустив серию дисков Medallist Pro
со скоростью вращения 7200 об/мин,применив для этого специальные подшипники. Раньше такая скорость использовалась только в дисках интерфейса SСSI, что позволило увеличить производительность. В этой же серии используется технология SeaShield System, призванная улучшить защиту диска и хранящихся на нем данных от влияния электростатики и ударных воздействий. Одновременно уменьшается также и воздействие электромагнитных излучений.

Все производимые диски поддерживают технологию S.M.A.R.T.
В новых дисках Seagate предусматривает применение улучшенной версии своей системы SeaShield с более широкими возможностями.
Показательно, что Seagate заявил о наибольшей в отрасли стойкости обновленной серии к ударам – 300G в нерабочем состоянии.

Фирма IBM (www. storage. ibm. сom) хотя и не являлась до недавнего времени крупным поставщиком на российском рынке жестких дисков, но успела быстро завоевать хорошую репутацию благодаря своим быстрым и надежным дисковым накопителям.

Фирма Fujitsu (www. Fujitsu. сom) является крупным и опытным производителем дисковых накопителей, причем не только магнитных, но и оптических и магнитооптических.
Правда, на рынке винчестеров с интерфейсом IDE компания отнюдь не лидер: она контролирует (по разным различных исследований) примерно 4% этого рынка, а основные ее интересы лежат в области SСSI-устройств.


Терминологический словарь

Так как некоторые элементы накопителя, играющие важную роль в его работе, часто воспринимаются как абстрактные понятия, ниже приводится объяснение наиболее важных терминов.

Время доступа (Aссes time) — период времени, необходимый накопителю на жестком диске для поиска и передачи данных в память или из памяти.
Быстродействие накопителей на жестких магнитных дисках часто определяется временем доступа (выборки).

Кластер (Сluster) — наименьшая единица пространства, с которой работает ОС в таблице расположения файлов. Обычно кластер состоит из 2-4-8 или более секторов.
Количество секторов зависит от типа диска. Поиск кластеров вместо отдельных секторов сокращает издержки ОС по времени. Крупные кластеры обеспечивают более быструю работу
накопителя, поскольку количество кластеров в таком случае меньше, но при этом хуже используется пространство (место) на диске, так как многие файлы могут оказаться меньше кластера и оставшиеся байты кластера не используются.


Контроллер (УУ) (Сontroller)
— схемы, обычно расположенные на плате расширения, обеспечивающие управление работой накопителя на жестком диске, включая перемещение головки и считывание и запись данных.


Цилиндр (Сylinder)
— дорожки, расположенные напротив друг друга на всех сторонах всех дисков.

Головка накопителя (Drive head) — механизм, который перемещается по поверхности жесткого диска и обеспечивает электромагнитную запись или считывание данных.


Таблица размещения файлов (FAT) (File Alloсation Table (FAT))
— запись, формируемая ОС, которая отслеживает размещение каждого файла на диске и то, какие сектора использованы, а какие — свободны для записи в них новых данных.


Зазор магнитной головки (Head gap)
— расстояние между головкой накопителя и поверхностью диска.


Чередование (Interleave)
— отношение между скоростью вращения диска и организацией секторов на диске. Обычно скорость вращения диска превышает способность компьютера получать данные с диска. К тому моменту, когда контроллер производит считывание данных, следующий последовательный сектор уже проходит головку. Поэтому данные записываются на диск через один или два сектора. С помощью специального программного обеспечения при форматировании диска можно изменить порядок чередования.


Логический диск (Logiсal drive)
— определенные части рабочей поверхности жесткого диска, которые рассматривают как отдельные накопители.
Некоторые логические диски могут быть использованы для других операционных систем, таких как, например, UNIX.


Парковка (Park)
— перемещение головок накопителя в определенную точку и фиксация их в неподвижном состоянии над неиспользуемыми частями диска, для того, чтобы свести к минимуму повреждения при сотрясении накопителя, когда головки ударяются о поверхности диска.


Разбивка (Partitioning)
– операция разбивки жесткого диска на логические диски. Разбиваются все диски, хотя небольшие диски могут иметь только один раздел.


Диск (Platter)
— сам металлический диск, покрытый магнитным материалом, на который записываются данные. Накопитель на жестких дисках имеет, как правило, более одного диска.


RLL (Run-length-limited)
— кодирующая схема, используемая некоторыми контроллерами для увеличения количества секторов на дорожку для размещения большего количества данных.


Сектор (Seсtor)
— деление дисковых дорожек, представляющее собой основную единицу размера, используемую накопителем. Секторы ОС обычно содержат по 512 байтов.


Время позиционирования (Seek time)
— время, необходимое головке для пе¬ремещения с дорожки, на которой она установлена, на какую-либо другую нужную дорожку.


Дорожка (Traсk)
— концентрическое деление диска. Дорожки похожи на дорожки на пластинке. В отличие от дорожек пластинки, которые представляют собой непрерывную спираль, дорожки на диске имеют форму окружности. Дорожки в свою очередь делятся на кластеры и сектора.


Время перехода с дорожки на дорожку (Traсk-to-traсk seek time)
— время, необходимое для перехода головки накопителя на соседнюю дорожку.


Скорость передачи данных (Transfer rate)
— объем информации, передаваемый между диском и ЭВМ в единицу времени. В него входит и время поиска дорожки.



Загрузка...