sonyps4.ru

Язык питон для чего. Краткий обзор языка Python

Когда-то давным давно, на одном закрытом форуме я пытался проводить обучение Пайтону. В общем дело там заглохло. Мне стало жалко написанных уроков, и я решил их выложить для широкой общественности. Пока самый первый, самый простой. Дальше идет интереснее, но может быть это будет не интересно. В общем, этот пост будет пробным шаром, если понравится, буду выкладывать дальше.

Python для начинающих. Глава первая. «О чем это мы»

На всякий случай, немного скучного «evangelism». Кому он надоел, можно пропустить несколько абзацев.
Python (читается как «Пайтон» а не «питон») - скриптовый язык, разработанный Гвидо ван Россумом в качестве простого языка, легкого в изучении новичку.
В наше время Пайтон – широко распространенный язык, который используется во многих областях:
- Разработка прикладного ПО (например linux-утилиты yum, pirut, system-config-*, IM-клиент Gajim и многие другие)
- Разработка web-приложений (мощнейший Application-сервер Zope и разработанная на его основе CMS Plone, на основе которой работает например сайт ЦРУ, и масса фреймворков для быстрой разработки приложений Plones, Django, TurboGears и многие другие)
- Использование в качестве встраиваемого скриптового языка во многих играх, и не только (в офисном пакете OpenOffice.org, 3d редакторе Blender, СУБД Postgre)
- Использование в научных рассчетах (с пакетами SciPy и numPy для расчетов и PyPlot для рисования графиков Пайтон становится практически сравним с пакетами типа MatLab)

И это конечно далеко не полный список проектов, использующих этот замечательный язык.

1. Сам интерпретатор, его можно взять тут (http://python.org/download/).
2. Среда разработки. Она для начала необязательна, да и идущий в дистрибутиве IDLE подойдет новичку, но для серъезных проектов нужно что-то посерьезней.
Для Windows я использую замечательный легковесный PyScripter (http://tinyurl.com/5jc63t), для Linux – Komodo IDE.

Хотя для первого урока достаточно будет просто интерактивной оболочки самого Пайтона.

Просто запустите python.exe. Приглашение ввода не заставит себя долго ждать, оно выглядит так:

Также можно записывать программы в файлы с расширением py, в вашем любимом текстовом редакторе, который не добавляет к тексту своих символов разметки (нет Word не подойдет). Также желательно чтобы этот редактор умел делать «умные табуляторы» и не заменял пробелы знаком табуляции.
Для запуска файлов на исполнение по ним можно щелкать 2 раза. Если консольное окно закрывается слишком быстро, вставьте в конце программы следующую строку:

Тогда интерпретатор будет в конце программы ждать нажатия enter.

Или ассоциируйте py-файлы в Far с Пайтоном и открывайте нажимая enter.

Наконец можно воспользоваться одной из многих удобных IDE для Пайтона, которые предоставляют и возможности отладки и подсветку синтаксиса и многие другие «удобства».

Немного теории.

Для начала, Пайтон – язык со строгой динамической типизацией. Что это означает?

Есть языки со строгой типизацией (pascal, java, c и т.п.), у которых тип переменной определяется заранее и не может быть изменен, и есть языки с динамической типизацией (python, ruby, vb), в которых тип переменной трактуется в зависимости от присвоенного значения.
Языки с динамической типизацией можно разделить еще на 2 вида. Строгие, которые не допускают неявного преобразования типа (Пайтон) и нестрогие, которые выполняют неявные преобразования типа (например VB, в котором можно легко сложить строку "123" и число 456).
Разобравшись с классификацией Пайтона, попробуем немного «поиграть» с интерпретатором.

>>> a = b = 1 >>> a, b (1, 1) >>> b = 2 >>> a, b (1, 2) >>> a, b = b, a >>> a, b (2, 1)

Таким, образом мы видим что присваивание осуществляется с помощью знака =. Присвоить значение можно сразу нескольким переменным. При указании интерпретатору имени переменной в интерактивном режиме, он выводит ее значение.

Следующее, что необходимо знать – как строятся базовые алгоритмические единицы – ветвления и циклы. Для начала, необходима небольшая справка. В Пайтоне нет специального ограничителя блоков кода, их роль выполняют отступы. То есть то что написано с одинаковым отступом – является одним командным блоком. Поначалу это может показаться странным, но после легкого привыкание, понимаешь что эта «вынужденная» мера позволяет получать очень читабельный код.
Итак условия.

Условие задается с помощью оператора if, который заканчивается «:». Альтернативные условия которые будут выполняться если первая проверка «не прошла» задаются оператором elif. Наконец else задает ветку, которая будет выполнена если ни одно из условий не подошло.
Обратите внимание, что после ввода if интерпретатор с помощью приглашения «...» показывает что он ожидает продолжения ввода. Чтобы сообщить ему что мы закончили, необходимо ввести пустую строку.

(Пример с ветвлениями почему-то рвет разметку на хабре, не смотря на танцы с тегами pre и code. Простите за неудобство, я его кинул сюда pastebin.com/f66af97ba , если кто-то подскажет что не так - буду очень признателен)

Циклы.

Простейшим случаем цикла является цикл while. В качестве параметра он принимает условие и выполняется до тех пор, пока оно истино.
Вот маленький пример.

>>> x = 0 >>> while x<=10: ... print x ... x += 1 ... 0 1 2 ........... 10

Обратите внимание что поскольку и print x и x+=1 написаны с одинаковым отступом, они считаются телом цикла (помните что я говорил про блоки? ;-)).

Второй вид циклов в Пайтон – цикл for. Он аналогичен циклу foreach других языков. Его синтаксис условно таков.

For переменная in список:
команды

Переменной будут присваиваться по очереди все значения из списка (на самом деле там может быть не только список, но и любой другой итератор, но не будем пока этим забивать голову).

Вот простой пример. В роли списка будет выступать строка, которая является ничем иным как списком символов.

>>> x = "Hello, Python!" >>> for char in x: ... print char ... H e l ........... !

Таким образом мы можем разложить строку по символам.
Что же делать если нам нужен цикл, повторяющийся определенное число раз? Очень просто, на помощь придет функция range.

На входе она принимает от одного до трех параметров, на выходе возвращает список чисел, по которому мы можем «пройтись» оператором for.

Вот несколько примеров использования функции range, которые объясняют роль ее параметров.

>>> range(10) >>> range(2, 12) >>> range(2, 12, 3) >>> range(12, 2, -2)

И маленький пример с циклом.

>>> for x in range(10): ... print x ... 0 1 2 ..... 9

Ввод-вывод

Последнее, что следует знать перед тем как начать использовать Пайтон полноценно – это как осуществляется в нем ввод-вывод.

Для вывода используется команда print, которая выводит на печать все свои аргументы в удобочитаемом виде.

Для ввода с консоли используется функция raw_input(приглашение), которая выводит на экран приглашение и ожидает ввода пользователя, возвращая то что ввел пользователь в виде своего значения.

X = int(raw_input ("Введи число:")) print "Квадрат этого числа составляет ", x * x

Внимание! Несмотря на существование функции input() схожего действия, использовать ее в программах не рекомендуется, так как интерпретатор пытается выполнить вводимые с ее помощью синтаксические выражения, что является серьезной дырой в безопасности программы.

Вот и все для первого урока.

Домашнее задание.

1. Составить программу расчета гипотенузы прямоугольного треугольника. Длина катетов запрашивается у пользователя.
2. Составить программу нахождения корней квадратного уравнения в общем виде. Коэффициенты запрашиваются у пользователя.
3. Составить программу вывода таблицы умножения на число M. Таблица составляется от M * a, до M * b, где M, a, b запрашиваются у пользователя. Вывод должен осуществляется в столбик, по одному примеру на строку в следующем виде (например):
5 х 4 = 20
5 х 5 = 25
И так далее.

Существует множество областей применения Python, но в некоторых он особенно хорош. Разбираемся, что же можно делать на этом ЯП.

Основные отличия:

  • Flask обеспечивает простоту, гибкость и полный контроль над проектом. Он позволяет пользователю самостоятельно решать, как реализовывать те или иные вещи.
  • Django – это сервис типа «все включено». Из коробки в нем уже есть админ-панель, интерфейсы баз данных, ORM (объектно-реляционное отображение) и структура каталогов для ваших проектов.

Что выбрать?

  • Выбирайте Flask, если хотите получить больше опыта и возможностей для обучения. Или в том случае, если вам нужен максимальный контроль над всеми используемыми компонентами, например, базами данных.
  • Выбирайте Django, если вас интересует конечный продукт. Особенно, если вы работаете с простыми приложениями, такими как новостной сайт, магазин, блог, и хотите, чтобы каждая задача решалась одним предельно ясным способом.

Другими словами, Flask – это, возможно, лучший выбор для начинающего разработчика, так как он содержит меньше компонентов. Кроме того, его стоит выбрать, если необходима тонкая настройка проекта.

Flask из-за своей гибкости лучше подходит для создания REST API .

С другой стороны, если стоит задача сделать что-то просто и быстро, вероятно, стоит выбрать Django.

Data Science: машинное обучение, анализ данных и визуализация

Прежде всего, следует разобраться, что такое .

Предположим, что вы хотите разработать программу, которая будет автоматически определять, что изображено на картинке.

Например, предлагая ей это изображение, вы хотите, чтобы программа опознала собаку.

А здесь она должна увидеть стол.

Возможно, вы думаете, что для решения этой задачи можно просто написать код анализа изображения. Например, если на картинке много светло-коричневых пикселей, делаем вывод, что это собака.

Или вы можете научиться определять на изображении края и границы. Тогда картинка с большим количеством прямых границ, вероятно, окажется столом.

Однако это довольно сложный и непродуманный подход. Что делать, если на фотографии изображена белая собака без коричневых пятен? Или если на картинке круглый стол?

Здесь вступает в игру машинное обучение. Обычно оно реализует некоторый , который позволяет автоматически обнаруживать знакомый шаблон среди входных данных.

Вы можете предложить алгоритму машинного обучения, скажем, 1000 изображений собаки и 1000 снимков столов. Он выучит разницу между этими объектами. Затем, когда вы дадите ему новую картинку со столом или собакой, он сможет определить, что именно на ней изображено.

  • scikit-learn из коробки имеет несколько встроенных популярных алгоритмов обучения;
  • TensorFlow – это более низкоуровневая библиотека. Она позволяет создавать пользовательские алгоритмы.

Новичкам в машинном обучении лучше начать со scikit-learn. Более опытным разработчикам, которые столкнулись с проблемами эффективности, стоит присмотреться к TensorFlow.

Как изучать машинное обучение?

Настоящие аналитики, например, в Google или Microsoft, делают то же самое, только их работа более сложная и комплексная.

Они используют язык запросов SQL, чтобы извлекать данные из баз. Затем для анализа и визуализации применяются специальные инструменты, например, Mathplotlib (для Python) или D3.js (для JavaScript).

Способы применения Python для анализа и визуализации данных

Одна из самых популярных библиотек для визуализации – Mathplotlib .

Новичкам следует начинать обучение с нее по двум причинам:

  • низкий порог вхождения;
  • освоение Mathplotlib позволит в будущем быстрее разобраться в более сложных библиотеках, основанных на ней, например, seaborn .

Как изучать анализ данных на Python?

С недавних пор некоторые компании начали использовать для создания настольных приложений JavaScript. Например, десктопное приложение Slack было создано с помощью JavaScript-фреймворка Electron .

Преимущество написания настольных приложений на JavaScript заключается в том, что можно повторно использовать код веб-версии.

Python 3 или Python 2

Python 3 – это более современный и популярный выбор.

Пояснение о backend- и frontend-коде

Предположим, вы хотите сделать нечто, напоминающее Инстаграм.

Перейдем к теоретически-практической части и начнем с того что из себя представляет интерпретатор.

Интерпретатор

Интерпретатор - это такая программа, которая выполняет другие программы. Когда вы пишете программу на языке Python, интерпретатор читает вашу программу и выполняет содержащиеся в ней инструкции. В действительности, интерпретатор - это слой программной логики между вашим программным кодом и аппаратурой вашего компьютера.

В зависимости от используемой версии Python сам интерпретатор может быть реализован как программа на языке C, как набор классов Java и в каком-либо другом виде, но об этом позже.

Запуск сценария в консоли

Давайте запустите в консоле интерпретатор:

Теперь он ожидает ввода комманд, введите туда следующую инструкцию:

Print "hello world!"

ура, наша первая программа! :D

Запуск сценария из файла

Создайте файл "test.py", с содержимым:

# вывести "hello world" print "hello world" # вывести 2 в 10 степени print 2 ** 10

и выполните этот файл:

# python /path/to/test.py

Динамическая компиляция и байт-код

После того, как запустите сценарий, сначала компилирует исходный текст сценария в байт-код для виртуальной машины. Компиляция - это просто этап перевода, а байт-код это низкоуровневое платформонезависимое представление исходного текста программы. Python транслирует каждую инструкцию в исходном коде сценария в группы инструкций байт-кода для повышения скорости выполнения программы, так как байт-код выполняется намного быстрее. После компиляции в байт-код, создается файл с расширением ".pyc" по соседству с исходным текстом сценария.

В следующий раз, когда вы запустите свою программу интерпретатор минует этап компиляции и отдаст на выполнение откомпилированный файл с расширением ".pyc". Однако, если вы изменили исходные тексты вашей программы, то снова произойдет этап компиляции в байт-код, так как Python автоматически следит за датой изменения файла с исходным кодом.

Если Python окажется не в состоянии записать файл с байт-кодом, например из-за отсутствия прав на запись на диск, то программа не пострадает, просто байт-код будет собран в памяти и при завершении программы оттуда удален.

Виртуальная машина Python (PVM)

После того как пройдет процесс компиляции, байт-код передается механизму под названием виртуальная машина , которая и выполнит инструкции из байт-кода. Виртуальная машина - это механизм времени выполнения, она всегда присутствует в составе системы Python и это крайняя составляющая системы под названием "Интерпретатор Python".

Для закрепления пройденного еще раз проясним ситуацию, компиляция в байт-код производится автоматически, а PVM - это всего лишь часть системы Python, которую вы установили вместе с интерпретатором и компилятором. Все происходит прозрачно для программиста, и вам не надо выполнять эти операции вручную.

Производительность

Программисты имеющие опыт работы с такими языками как C и C++, могут заметить некоторые отличия в модели выполнения Python. Первое - это отсутствие этапа сборки или вызова утилиты "make", программы на Python могут быть сразу же запущены после написания исходного кода. Второе отличие - байт-код не является двоичным машинным кодом (например инструкции для микропроцессора Intel), он является внутренним представлением программы на языке Python.

По этим причинам программы на Python не могут выполняться также быстро как на C/C++. Обход инструкций выполняет виртуальная система, а не микропроцессор, и чтобы выполнить байт-код, необходима дополнительная интерпретация, инструкции которой требуют большего времени, чем машинные инструкции микропроцессора.

Однако, с другой стороны, в отличии от традиционных интерпретаторов, например как в PHP, здесь присутствует дополнительный этап компиляции - интерпретатору не требуется каждый раз анализировать исходный текст программы.

В итоге, Python по производительности находится между традиционными компилирующими и традиционными интерпретирующими языками программирования.

Альтернативные реализации Python

То что было сказано выше о компиляторе и виртуальной машине, характерно для стандартной реализации Python, так называемой CPython (реализации на ANSI C). Однако также существует альтернативные реализации, такие как Jython и IronPython, о которых пойдет сейчас речь.

Это стандартная и оригинальная реализация Python, названа так, потому что написана на ANSI C. Именно ее мы установили, когда выбрали пакет ActivePython или установили из FreeBSD портов. Поскольку это эталонная реализация, она как правило работает быстрее, устойчивее и лучше , чем альтернативные реализации.

Jython

Первоначальное название JPython, основная цель - тесная интеграция с языком программирования Java . Реализация Jython состоит из Java-классов, которые выполняют компиляцию программного кода на языке Python в байт-код Java и затем передают полученный байт-код виртуальной машине Java (JVM) .

Цель Jython состоит в том, чтобы позволить программам на языке Python управлять Java-приложениями, точно также как CPython может управлять компонентами на языках C/C++. Эта реализация имеет беcшовную интеграцию с Java. Поскольку программный код на Python транслируется в байт-код Java, во время выполнения он ведет себя точно также, как настоящая программа на языке Java. Программы на Jython могут выступать в качестве апплетов и сервлетов, создавать графический интерфейс с использованием механизмов Java и т.д. Более того, Jython обеспечивает поддержку возможности импортировать и использовать Java-классы в программном коде Python.

Тем не менее, поскольку реализация Jython обеспечивает более низкую скорость выполнения и менее устойчива по сравнению с CPython, она представляет интерес скорее для разработчиков программ на языке Java, которым необходим язык сценариев в качестве интерфейса к Java-коду.

Реализация предназначена для обеспечения интеграции программ Python с приложениями, созданными для работы в среде Microsoft .NET Framework операционной системы Windows, а также в Mono - открытом эквиваленте для Linux. Платформа.NET и среда выполнения языка C# предназначены для обеспечения взаимодействия между программными объектами - независимо от используемого языка программирования, в духе более ранней модели COM компании Microsoft.

IronPython позволяет программам на языке Python играть роль как клиентских, так и серверных компонентов, доступных из других языков программирования.NET. Поскольку разработка ведется компанией Microsoft , от IronPython, помимо прочего, можно было бы ожидать существенной оптимизации производительности.

Средства оптимизации скорости выполнения

Существуют и другие реализации, включая динамический компилятор Psyco и транслятор Shedskin C++, которые пытаются оптимизировать основную модель выполнения.

Динамический компилятор Psyco

Система Psyco - это компонент, расширяющий модель выполнения байт-кода, что позволяет программам выполняться быстрее. Psyco является расширением PVM , которое собирает и использует информацию о типах, чтобы транслировать части байт-кода программы в истинный двоичный машинный код, который выполняется гораздо быстрее. Для такой трансляции не требуется вносить изменения в исходный код или производить дополнительную компиляцию в ходе разработки.

Во время выполнения программы, Psyco собирает информацию о типах объектов, и затем эта информация используется для генерации высокоэффективного машинного кода, оптимизированного для объектов этого типа. После этого произведенный машинный код заменяет соответствующие участки байт-кода, тем самым увеличивается скорость выполнения.

В идеале некоторые участки программного кода под управление Psyco могут выполняться также быстро, как скомпилированный код на языке Си .

Psyco обеспечивает увеличение скорости от 2 до 100 раз, но обычно в 4 раза, при использовании немодифицированного интерпретатора Python. Единственный минус у Psyco, это то обстоятельство, что в настоящее время он способен генерировать машинный код только для архитектуры Intel x86 .

Psyco не идет в стандартной поставке, его надо скачать и установить отдельно. Еще есть проект PyPy , который представляет собой попытку переписать PVM с целью оптимизации кода как в Psyco , проект PyPy собирается поглотить в большей мере проект Psyco .

Транслятор Shedskin C++

Shedskin - это система, которая преобразует исходный код на языке Python в исходный код на языке C++, который затем может быть скомпилирован в машинный код. Кроме того, система реализует платформонезависемый подход к выполнению программного кода Python.

Фиксированные двоичные файлы (frozen binaries)

Иногда необходимо из своих программ на Python создавать самостоятельные исполняемые файлы. Это необходимо скорее для упаковки и распространения программ.

Фиксированные двоичные файлы объединяют в единый файл пакета байт-код программ, PVM и файлы поддержки, необходимые программам. В результате получается единственный исполняемый файл, например файл с расширение ".exe" для Windows.

На сегодняшний день существует три основных инструмента создания "frozen binaries":

  • py2exe - он может создавать автономные программы для Windows, использующие библиотеки Tkinter, PMW, wxPython и PyGTK для создания графического интерфейса, программы использующие программные средства создания игр PyGame, клиентские программы win32com и многие другие;
  • PyInstaller - напоминает py2exe, но также работает в Linux и UNIX и способен производить самоустанавливающиеся исполняемые файлы;
  • freeze - оригинальная версия.

Вам надо загружать эти инструменты отдельно от Python, они распространяются бесплатно.

Фиксированные двоичные файлы имеют немалый размер, ибо они содержат в себе PVM, но по современным меркам из все же нельзя назвать необычно большими. Так как интерпретатор Python встроен непосредственно в фиксированные двоичные файлы, его установка не является обязательным требованием для запуска программ на принимающей стороне.

Резюме

На сегодня всё, в следующей статье расскажу о стандартных типах данные в Python, ну и в последующих статьях рассмотрим каждый тип в отдельности, а также функции и операторы для работы с этими типами.

(Перевод)

На сайте Poromenos" Stuff была опубликована статья, в которой, в сжатой форме, рассказывают об основах языка Python. Я предлагаю вам перевод этой статьи. Перевод не дословный. Я постарался подробнее объяснить некоторые моменты, которые могут быть непонятны.

Если вы собрались изучать язык Python, но не можете найти подходящего руководства, то эта статья вам очень пригодится! За короткое время, вы сможете познакомиться с основами языка Python. Хотя эта статья часто опирается на то, что вы уже имеете опыт программирования, но, я надеюсь, даже новичкам этот материал будет полезен. Внимательно прочитайте каждый параграф. В связи с сжатостью материала, некоторые темы рассмотрены поверхностно, но содержат весь необходимый метриал.

Основные свойства

Python не требует явного объявления переменных, является регистро-зависим (переменная var не эквивалентна переменной Var или VAR - это три разные переменные) объектно-ориентированным языком.

Синтаксис

Во первых стоит отметить интересную особенность Python. Он не содержит операторных скобок (begin..end в pascal или {..}в Си), вместо этого блоки выделяются отступами : пробелами или табуляцией, а вход в блок из операторов осуществляется двоеточием. Однострочные комментарии начинаются со знака фунта «#», многострочные - начинаются и заканчиваются тремя двойными кавычками «"""».

Чтобы присвоить значение пременной используется знак «=», а для сравнения - «==». Для увеличения значения переменной, или добавления к строке используется оператор «+=», а для уменьшения - «-=». Все эти операции могут взаимодействовать с большинством типов, в том числе со строками. Например

>>> myvar = 3

>>> myvar += 2

>>> myvar -= 1

"""Это многострочный комментарий

Строки заключенные в три двойные кавычки игнорируются"""

>>> mystring = "Hello"

>>> mystring += " world."

>>> print mystring

Hello world.

# Следующая строка меняет

Значения переменных местами. (Всего одна строка!)

>>> myvar, mystring = mystring, myvar

Структуры данных

Python содержит такие структуры данных как списки (lists), кортежи (tuples) и словари (dictionaries ). Списки - похожи на одномерные массивы (но вы можете использовать Список включающий списки - многомерный массив), кортежи - неизменяемые списки, словари - тоже списки, но индексы могут быть любого типа, а не только числовыми. "Массивы" в Python могут содержать данные любого типа, то есть в одном массиве может могут находиться числовые, строковые и другие типы данных. Массивы начинаются с индекса 0, а последний элемент можно получить по индексу -1 Вы можете присваивать переменным функции и использовать их соответственно.

>>> sample = , ("a", "tuple")] #Список состоит из целого числа, другого списка и кортежа

>>> mylist = ["List item 1", 2, 3.14] #Этот список содержит строку, целое и дробное число

>>> mylist = "List item 1 again" #Изменяем первый (нулевой) элемент листа mylist

>>> mylist[-1] = 3.14 #Изменяем последний элемент листа

>>> mydict = {"Key 1": "Value 1", 2: 3, "pi": 3.14} #Создаем словарь, с числовыми и целочисленным индексами

>>> mydict["pi"] = 3.15 #Изменяем элемент словаря под индексом "pi".

>>> mytuple = (1, 2, 3) #Задаем кортеж

>>> myfunction = len #Python позволяет таким образом объявлять синонимы функции

>>> print myfunction(mylist)

Вы можете использовать часть массива, задавая первый и последний индекс через двоеточие «:». В таком случае вы получите часть массива, от первого индекса до второго не включительно. Если не указан первый элемент, то отсчет начинается с начала массива, а если не указан последний - то масив считывается до последнего элемента. Отрицательные значения определяют положение элемента с конца. Например:

>>> mylist = ["List item 1", 2, 3.14]

>>> print mylist[:] #Считываются все элементы массива

["List item 1", 2, 3.1400000000000001]

>>> print mylist #Считываются нулевой и первый элемент массива.

["List item 1", 2]

>>> print mylist[-3:-1] #Считываются элементы от нулевого (-3) до второго (-1) (не включительно)

["List item 1", 2]

>>> print mylist #Считываются элементы от первого, до последнего

Строки

Строки в Python обособляются кавычками двойными «"» или одинарными «"» . Внутри двойных ковычек могут присутствовать одинарные или наоборот. К примеру строка «Он сказал "привет"!» будет выведена на экран как «Он сказал "привет"!». Если нужно использовать строку из несколько строчек, то эту строку надо начинать и заканчивать тремя двойными кавычками «"""». Вы можете подставить в шаблон строки элементы из кортежа или словаря. Знак процента «%» между строкой и кортежем, заменяет в строке символы «%s» на элемент кортежа. Словари позволяют вставлять в строку элемент под заданным индексом. Для этого надо использовать в строке конструкцию «%(индекс)s». В этом случае вместо «%(индекс)s» будет подставлено значение словаря под заданным индексом.

>>>print "Name: %s\nNumber: %s\nString: %s" % (myclass.name, 3, 3 * "-")

Name: Poromenos

Number: 3

String: ---

strString = """Этот текст расположен

на нескольких строках"""

>>> print "This %(verb)s a %(noun)s." % {"noun": "test", "verb": "is"}

This is a test.

Операторы

Операторы while, if , for составляют операторы перемещения. Здесь нет аналога оператора select, так что придется обходиться if . В операторе for происходит сравнение переменной и списка . Чтобы получить список цифр до числа - используйте функцию range(). Вот пример использования операторов

rangelist = range(10) #Получаем список из десяти цифр (от 0 до 9)

>>> print rangelist

for number in rangelist: #Пока переменная number (которая каждый раз увеличивается на единицу) входит в список...

# Проверяем входит ли переменная

# numbers в кортеж чисел (3, 4, 7, 9)

If number in (3, 4, 7, 9): #Если переменная number входит в кортеж (3, 4, 7, 9)...

# Операция «break» обеспечивает

# выход из цикла в любой момент

Break

Else:

# «continue» осуществляет "прокрутку"

# цикла. Здесь это не требуется, так как после этой операции

# в любом случае программа переходит опять к обработке цикла

Continue

else:

# «else» указывать необязательно. Условие выполняется

# если цикл не был прерван при помощи «break».

Pass # Ничего не делать

if rangelist == 2:

Print "The second item (lists are 0-based) is 2"

elif rangelist == 3:

Print "The second item (lists are 0-based) is 3"

else:

Print "Dunno"

while rangelist == 1:

Pass

Функции

Для объявления функции служит ключевое слово «def» . Аргументы функции задаются в скобках после названия функции. Можно задавать необязательные аргументы, присваивая им значение по умолчанию. Функции могут возвращать кортежи, в таком случае надо писать возвращаемые значения через запятую. Ключевое слово «lambda » служит для объявления элементарных функций.

# arg2 и arg3 - необязательые аргументы, принимают значение объявленное по умолчни,

# если не задать им другое значение при вызове функци.

def myfunction(arg1, arg2 = 100, arg3 = "test"):

Return arg3, arg2, arg1

#Функция вызывается со значением первого аргумента - "Argument 1", второго - по умолчанию, и третьего - "Named argument".

>>>ret1, ret2, ret3 = myfunction("Argument 1", arg3 = "Named argument")

# ret1, ret2 и ret3 принимают значения "Named argument", 100, "Argument 1" соответственно

>>> print ret1, ret2, ret3

Named argument 100 Argument 1

# Следующая запись эквивалентна def f(x): return x + 1

functionvar = lambda x: x + 1

>>> print functionvar(1)

Классы

Язык Python ограничен в множественном наследовании в классах. Внутренние переменные и внутренние методы классов начинаются с двух знаков нижнего подчеркивания «__» (например «__myprivatevar»). Мы можем также присвоить значение переменной класса извне. Пример:

class Myclass:

Common = 10

Def __init__(self):

Self.myvariable = 3

Def myfunction(self, arg1, arg2):

Return self.myvariable

# Здесь мы объявили класс Myclass. Функция __init__ вызывается автоматически при инициализации классов.

>>> classinstance = Myclass() # Мы инициализировали класс и переменная myvariable приобрела значение 3 как заявлено в методе инициализации

>>> classinstance.myfunction(1, 2) #Метод myfunction класса Myclass возвращает значение переменной myvariable

# Переменная common объявлена во всех классах

>>> classinstance2 = Myclass()

>>> classinstance.common

>>> classinstance2.common

# Поэтому, если мы изменим ее значение в классе Myclass изменятся

# и ее значения в объектах, инициализированных классом Myclass

>>> Myclass.common = 30

>>> classinstance.common

>>> classinstance2.common

# А здесь мы не изменяем переменную класса. Вместо этого

# мы объявляем оную в объекте и присваиваем ей новое значение

>>> classinstance.common = 10

>>> classinstance.common

>>> classinstance2.common

>>> Myclass.common = 50

# Теперь изменение переменной класса не коснется

# переменных объектов этого класса

>>> classinstance.common

>>> classinstance2.common

# Следующий класс является наследником класса Myclass

# наследуя его свойства и методы, ктому же класс может

# наследоваться из нескольких классов, в этом случае запись

# такая: class Otherclass(Myclass1, Myclass2, MyclassN)

class Otherclass(Myclass):

Def __init__(self, arg1):

Self.myvariable = 3

Print arg1

>>> classinstance = Otherclass("hello")

hello

>>> classinstance.myfunction(1, 2)

# Этот класс не имеет совйтсва test, но мы можем

# объявить такую переменную для объекта. Причем

# tэта переменная будет членом только classinstance.

>>> classinstance.test = 10

>>> classinstance.test

Исключения

Исключения в Python имеют структуру try -except :

def somefunction():

Try:

# Деление на ноль вызывает ошибку

10 / 0

Except ZeroDivisionError:

# Но программа не "Выполняет недопустимую операцию"

# А обрабатывает блок исключения соответствующий ошибке «ZeroDivisionError»

Print "Oops, invalid."

>>> fnexcept()

Oops, invalid.

Импорт

Внешние библиотеки можно подключить процедурой «import », где - название подключаемой библиотеки. Вы так же можете использовать команду «from import », чтобы вы могли использовать функцию из библиотеки :

import random #Импортируем библиотеку «random»

from time import clock #И заодно функцию «clock» из библиотеки «time»

randomint = random.randint(1, 100)

>>> print randomint

Работа с файловой системой

Python имеет много встроенных библиотек. В этом примере мы попробуем сохранить в бинарном файле структуру списка, прочитать ее и сохраним строку в текстовом файле. Для преобразования структуры данных мы будем использовать стандартную библиотеку «pickle»:

import pickle

mylist = ["This", "is", 4, 13327]

# Откроем файл C:\binary.dat для записи. Символ «r»

# предотвращает замену специальных сиволов (таких как \n, \t, \b и др.).

myfile = file(r"C:\binary.dat", "w")

pickle.dump(mylist, myfile)

myfile.close()

myfile = file(r"C:\text.txt", "w")

myfile.write("This is a sample string")

myfile.close()

myfile = file(r"C:\text.txt")

>>> print myfile.read()

"This is a sample string"

myfile.close()

# Открываем файл для чтения

myfile = file(r"C:\binary.dat")

loadedlist = pickle.load(myfile)

myfile.close()

>>> print loadedlist

["This", "is", 4, 13327]

Особенности

  • Условия могут комбинироваться. 1 < a < 3 выполняется тогда, когда а больше 1, но меньше 3.
  • Используйте операцию «del » чтобы очищать переменные или элементы массива .
  • Python предлагает большие возможности для работы со списками . Вы можете использовать операторы объявлении структуры списка. Оператор for позволяет задавать элементы списка в определенной последовательности, а if - позволяет выбирать элементы по условию.

>>> lst1 =

>>> lst2 =

>>> print

>>> print

# Оператор «any» возвращает true, если хотя

# бы одно из условий, входящих в него, выполняется.

>>> any(i % 3 for i in )

True

# Следующая процедура подсчитывает количество

# подходящих элементов в списке

>>> sum(1 for i in if i == 3)

>>> del lst1

>>> print lst1

>>> del lst1

  • Глобальные переменные объявляются вне функций и могут быть прочитанны без каких либо объявлений. Но если вам необходимо изменить значение глобальной переменной из функции, то вам необходимо объявить ее в начале функции ключевым словом «global », если вы этого не сделаете, то Python объявит переменную, доступную только для этой функции.

number = 5

def myfunc():

# Выводит 5

Print number

def anotherfunc():

# Это вызывает исключение, поскольку глобальная апеременная

# не была вызванна из функции. Python в этом случае создает

# одноименную переменную внутри этой функции и доступную

# только для операторов этой функции.

Print number

Number = 3

def yetanotherfunc():

Global number

# И только из этой функции значение переменной изменяется.

Number = 3

Эпилог

Разумеется в этой статье не описываются все возможности Python. Я надеюсь что эта статья поможет вам, если вы захотите и в дальнейшем изучать этот язык программирования.

Преимущества Python

  • Скорость выполнения программ написанных на Python очень высока. Это связанно с тем, что основные библиотеки Python
    написаны на C++ и выполнение задач занимает меньше времени, чем на других языках высокого уровня.
  • В связи с этим вы можете писать свои собственные модули для Python на C или C++
  • В стандартныx библиотеках Python вы можете найти средства для работы с электронной почтой, протоколами
    Интернета, FTP, HTTP, базами данных, и пр.
  • Скрипты, написанные при помощи Python выполняются на большинстве современных ОС. Такая переносимость обеспечивает Python применение в самых различных областях.
  • Python подходит для любых решений в области программирования, будь то офисные программы, вэб-приложения, GUI-приложения и т.д.
  • Над разработкой Python трудились тысячи энтузиастов со всего мира. Поддержкой современных технологий в стандартных библиотеках мы можем быть обязаны именно тому, что Python был открыт для всех желающих.

Python - мощный и простой для изучения язык программирования. В нём предоставлены удобные высокоуровневые структуры данных и простой, но эффективный подход к объектно-ориентированному программированию. Python интерпретируемый язык. Для запуска написанных программ требуется наличие интерпретатора CPython . Интерпретатор python и большая стандартная библиотека находятся в свободном доступе в виде исходных и бинарных файлов для всех основных платформ на официальном сайте Python http://www.python.org и могут распространяться без ограничений. Кроме этого на сайте содержатся дистрибутивы и ссылки на многочисленные модули третьих сторон и подробная документация.
Язык обладает чётким и последовательным синтаксисом, продуманной модульностью и масштабируемостью, благодаря чему исходный код написанных на Python программ легко читаем. Разработчики языка Python придерживаются определённой философии программирования, называемой «The Zen of Python». Её текст выдаётся интерпретатором по команде import this:

>>> import this The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren"t special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you"re Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it"s a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let"s do more of those!

В переводе это звучит так:

  • Красивое лучше, чем уродливое.
  • Явное лучше, чем неявное.
  • Простое лучше, чем сложное.
  • Сложное лучше, чем запутанное.
  • Плоское лучше, чем вложенное.
  • Разреженное лучше, чем плотное.
  • Читаемость имеет значение.
  • Особые случаи не настолько особые, чтобы нарушать правила.
  • При этом практичность важнее безупречности.
  • Ошибки никогда не должны замалчиваться.
  • Если не замалчиваются явно.
  • Встретив двусмысленность, отбрось искушение угадать.
  • Должен существовать один - и, желательно, только один - очевидный способ сделать это.
  • Хотя он поначалу может быть и не очевиден, если вы не голландец.
  • Сейчас лучше, чем никогда.
  • Хотя никогда зачастую лучше, чем прямо сейчас.
  • Если реализацию сложно объяснить - идея плоха.
  • Если реализацию легко объяснить - идея, возможно, хороша.
  • Пространства имён - отличная штука! Будем делать их побольше!

Python - активно развивающийся язык программирования, новые версии выходят примерно раз в два с половиной года. Вследствие этого и некоторых других причин на Python отсутствуют стандарт ANSI, ISO или другие официальные стандарты, их роль выполняет CPython.

История создания языка

Разработка языка Python была начата в конце 1980-х годов сотрудником голландского института CWI . Распределённой ОС Amoeba требовался расширяемый скриптовый язык для которой Гвидо ван Россум и создал Python. Новый язык позаимствовал некоторые наработки для языка ABC, который был ориентирован на обучение программированию. В феврале 1991 года Гвидо опубликовал исходный текст в ньюсгруппе alt.sources. Название языка произошло не от вида пресмыкающихся. Автор назвал язык в честь популярного британского комедийного телешоу 1970-х «Летающий цирк Монти Пайтона». Тем не менее эмблему языка изображают змеиные головы. После длительного тестирования, вышла первая версия Python 3.0. На сегодня поддерживаются обе ветви развития (Python 3.x и 2.x).

Python создавался под влиянием множества языков программирования: Modula-3, С, C++, Smalltalk, Lisp, Fortran, Java, Miranda, Icon. Несмотря на то, что Python обладает достаточно самобытным синтаксисом, одним из принципов дизайна этого языка является принцип наименьшего удивления.

Стандартная библиотека

Богатая стандартная библиотека является одной из привлекательных сторон Python. Здесь имеются средства для работы со многими сетевыми протоколами и форматами Интернета. Существуют модули для работы с регулярными выражениями, текстовыми кодировками, мультимедийными форматами, криптографическими протоколами, архивами. Помимо стандартной библиотеки существует множество библиотек, предоставляющих интерфейс ко всем системным вызовам на разных платформах.
Для Python принята спецификация программного интерфейса к базам данных DB-API 2 и разработаны соответствующие этой спецификации пакеты для доступа к различным СУБД: Oracle, MySQL, PostgreSQL, Sybase, Firebird (Interbase), Informix, Microsoft SQL Server и SQLite.
Библиотека NumPy для работы с многомерными массивами позволяет достичь производительности научных расчётов, сравнимой со специализированными пакетами. SciPy использует NumPy и предоставляет доступ к обширному спектру математических алгоритмов. Numarray специально разработан для операций с большими объёмами научных данных.
Python предоставляет простой и удобный программный интерфейс Си API для написания собственных модулей на языках Си и C++. Такой инструмент как SWIG позволяет почти автоматически получать привязки для использования C/C++ библиотек в коде на Python. Инструмент стандартной библиотеки ctypes позволяет программам Python напрямую обращаться к динамическим библиотекам, написанным на Си. Существуют модули, позволяющие встраивать код на С/C++ прямо в исходные файлы Python, создавая расширения «на лету».
Python и подавляющее большинство библиотек к нему бесплатны и поставляются в исходных кодах. Более того, в отличие от многих открытых систем, лицензия никак не ограничивает использование Python в коммерческих разработках и не налагает никаких обязательств кроме указания авторских прав.

Сферы применения

Python - стабильный и распространённый язык. Он используется во многих проектах и в различных качествах: как основной язык программирования или для создания расширений и интеграции приложений. На Python реализовано большое количество проектов, также он активно используется для создания прототипов будущих программ. Python используется во многих крупных компаниях.
Python с пакетами NumPy, SciPy и MatPlotLib активно используется как универсальная среда для научных расчётов в качестве замены распространенным специализированным коммерческим пакетам Matlab, IDL и др.
В профессиональных программах трехмерной графики, таких как Houdini и Nuke, Python используется для расширения стандартных возможностей программ.

Источники

Презентации

Домашнее задание

Подготовить сообщения:

  • Python как инструмент ученых
  • Python и Ruby (сравнение)
  • Python и WEB
  • Создание оконных приложений с помощью Python и графических библиотек (wxPython, PyQt, PyGTK и др.)


Загрузка...