sonyps4.ru

Язык ассемблер. Команды и основы ассемблера

После многих лет занятия чем не попадя, решил вернуться к истокам. К программированию. Опять же, ввиду множества «современных достижений» в этой области было трудно определиться, чего же на самом деле не хватет, за что взяться чтобы было и приятно и полезно. Попробовав много чего понемногу, все же решил вернуться туда, куда тянуло с первых дней знакомства с компьютером (еще с копией творения сэра Синклера) – к программированию на ассемблере. На самом деле, в свое время Ассемблер я знал достаточно неплохо (в данном случае говорю про x86), но почти 15 лет ничего на нем не писал. Таким образом это своеобразное возвращение «блудного сына».
Но тут поджидало первое разочарование. Найденные на просторах Интернета книги, руководства и прочие справочники по ассемблеру, к моему глубокому сожалению, содержат минимум информации о том, как надо программировать на ассемблере, почему именно так, и что это дает.

Пример из другой области

Если брать в качестве примера бокс, то все подобные руководства учат исполнять удар, перемещаться стоя на полу, но абсолютно отсуствует то, что делает бокс - боксом, а не «разрешенным мордобитием». То есть комбинационная работа, особенности использования ринга, защитные действия, тактическое построение боя и, тем более, стратегия боя не рассматриваются вообще. Научили человека бить по «груше» и сразу на ринг. Это в корне неверно. Но именно так построены практически все «учебники» и «руководства» по программированию на ассемблере.


Однако нормальные книги должны быть, скорее всего под горой «шлака» я их просто не нашел. Поэтому прежде чем восполнять знания глобальным описание архитектуры, мнемоники и всяческих фокусов «как слепить фигу из 2х пальцев», подойдем к вопросу программирования на ассемблере с «идеологической» точки зрения.

Идилия?

Маленькое замечание, далее по тексту будет использована классификация, отличающаяся от распространненной в настоящее время. Однако это не является поводом для «споров о цвете истины», просто в данном виде проще объяснить точку зрения автора на программирование.

Итак, на сегодняшний день, казалось бы, для программистов наступила эпоха счастья. Огромный выбор средств на все случаи жизни и пожелания. Тут тебе и миллионы «фреймворков»/«паттернов»/«шаблонов»/«библиотек» и тысячи средств «облегчающих» программирование, сотни языков и диалектов, десятки методологий и различные подходы у программированию. Бери – нехочу. Но не «берется». И дело не в религиозных убеждениях, а в том, что это все выглядит как попытка питаться чем-то невкусным. При желании и усердии можно приноровиться и к этому, конечно. Но, возвращаясь к программированию, в большинстве из предлагаемого не видно технической красоты – видно лишь множество «костылей». Как результат, при использовании этих «достижения», из-под «кисти художников» вместо завораживающих пейзажей выходит сплошная «абстракция», или лубки - если повезет. Неужели большинство программистов такие бездари, неучи и имеют проблемы на уровне генетики? Нет, не думаю. Так в чем же причина?
На сегодняшний день имеется множество идей и способов программирования. Рассмотрим наиболее «модные» из них.

  • Императивное программирование – в данном подходе программист задает последовательность действий, приводящих к решению задачи. В основе лежит разделение программы на части, выполняющие логически независимые операции (модули, функции, процедуры). Но в отличии от типизированного подхода (см. ниже) тут есть важная особенность – отсутствие «типизации» переменных. Иными словами отсутствует понятие «тип переменной», вместо него используется понимание, что значения у одной и той же переменной могут иметь различный тип. Яркими представителем данного подхода являются Basic, REXX, MUMPS.
  • Типизированное программирование – модификация императивного программирования, когда программист и система ограничивают возможные значения переменных. Из наиболее известных языков - это Pascal, C.
  • Функциональное программирование – это более математический способ решения задачи, когда решение состоит в «конструировании» иерархии функций (и соответственно создание отсутствующих из них), приводящей к решению задачи. Как примеры: Lisp, Forth.
  • Автоматное программирование – подход, где программист строит модель/сеть, состоящую из обменивающихся сообщениями объектов/исполнительных элементов, как изменяющих/хранящих свое внутреннее «состояние» так и могущих взаимодействовать с внешним миром. Иными словами это то, что обычно называют «объектное программирование» (не объектно-ориентированное). Этот способ программирования представлен в Smalltalk.
А как-же множество других языков? Как правило, это уже «мутанты». Например, смешение типизированного и автоматного подхода дало «объектно-ориентированное программирование».

Как видим, каждый из подходов (даже без учета ограничений конкретных реализаций) накладывает собственные ограничения на саму технику программирования. Но иначе и быть не может. К сожалению, эти ограничения зачастую созданы искуственно для «поддержания чистоты идеи». В итоге, программисту приходится «извращать» изначально найденное решение в вид, хоть как-то соответствующий идеологии используемого языка или используемому «шаблону». Это даже без учета новомодных методик и способов проектирования и разработки.

Казалось бы, программируя на ассемблере, мы вольны делать все и так, что и как пожелаем и позволяет нам «железо». Но как только нам захочется использовать «универсальный драйвер» для какого-либо типа оборудования, мы вынуждены менять свободу «творчества» на предписанные (стандартизированные) подходы и способы использования драйвера. Как только нам понадобилась возможность использовать наработки других коллег или дать им возможность делать тоже самое с плодами нашего труда - мы вынуждены менять свободу выбора взаимодействия между частями программы на некие обговоренные/стандартизированные способы.

Таким образом та «свобода», за которой часто рвутся в ассемблер зачастую оказывается «мифом». И этому (пониманию ограничений, и способам их организации), на мой взгляд, должно уделяться повышенное внимание. Программист должен понимать причину вносимых ограничений, и, что отличает ассемблер от многих языков высокого уровня, иметь возможность менять их, при возникновении такой необходимость. Однако сейчас программист на ассемблере вынужден мириться с ограничениями, вводимыми языками высокого уровня, не имея «пряников» доступных программирующими на них. С одной стороны, операционные системы предоставляют множество уже реализованных функций, есть готовые библиотеки и много многое другое. Но способы их использования, как специально, реализованы без учета вызова их из программ, написанных на ассемблере, а то и вообще наперекор логике программирования для x86 архитектуры. В результате, сейчас программирование на ассемблере с вызовом функций ОС или внешних библиотек языков высокого уровня – это «страх» и «ужас».

Чем дальше в лес, тем толще

Итак, мы осознали, что хотя ассемблер очень прост, но пользоваться им надо уметь. И основная слажность - это необходимость взаимодействия со средой исполнения, где запускается наша программа. Если программисты на языках высокого уровня уже имеют доступ к необходимым библиотекам, функциям, подпрограммам на многие случаи жизни и им доступны способы взаимодействия с внешним миром, в виде, согласованном с идеей языка, то программисту на ассемблере приходится продираться сквозь чащу всевозможных препонов, водруженных на пустом месте. Когда смотришь на то, что генерируют языки высокого уровня при компиляции, то складывает ощущение, что, те, кто писал компиляторы, либо понятия не имеют, как работает процессор с архитектурой x86, «или одно из двух» (ц).

Итак, давайте по-порядку. Программирование - это в первую очередь инженерия, то есть научное творчество, направленное на эффективное (по показателям надежности, использования доступных ресурсов, сроков реализации и удобства применения) решение практических задач. И, в основе любой инженерии лежит системный подход. То есть нельзя рассматривать любое решение как некий «неразборный» черный ящик, функционирующий в полном и идеальном вакууме.

Еще один пример из другой области

Как яркий пример системного подхода можно привести производство грузовиков в США. В данном случае, производитель грузовика – это просто изготовитель рамы и кабины + сборщик конструктора. Все остальное (двигатель, трансмиссия, подвеска, электрооборудование и т.д.) берется исходя из пожеланий заказчика. Захотел один заказчик получиться себе некий Kenworth с двигателем от Detroit Diesel, ручной коробкой Fuller, рессорной подвеской от какой-нибудь Dana – пожалуйста. Понадобилась другу этого заказчика та же модель Kenworth, но с «родным» двигателем Paccar, коробкой-автоматом Allison и пневмоподвеской от другого производителя – легко! И так делают все сборщики грузовиков в США. То есть грузовик – это система, в котором каждый модуль может быть заменен на другой, того же назначения и безпроблемно состыкован с уже имеющимися. Причем способ стыковки модулей сделан с максимально доступной универсальностью и удобством дальнейшего расширения функционала. Вот к чему должен стремиться инженер.

К сожалению, нам придется жить с тем, что есть, но в дальнейшем подобного следует избегать. Итак, программа – это, по сути, набор модулей (невожно как они называются, и как себя «ведут»), компонуя которые мы добиваемся решения стоящей задачи. Для эффективности крайне желательно, чтобы можно было эти модули использовать повторно. Причем не просто использовать любой ценой, а использовать удобным способом. И вот тут нас ждет очередной неприятный «сюрприз». Большинство языков высокого уровня оперируют такими структурными единицами как «фунция» и «процедура». И, как способ взяимодействия с ними, применяется «передача параметров». Это вполне логично, и тут никаких вопросов не возникает. Но как всегда, «важно не то, что делается – важно как делается» (ц). И вот тут начинается самое непонятное. На сегодня распространены 3 способа организации передачи параметров: cdecl , stdcall , fastcall . Так вот, ни один из этих способов не является «родным» для x86. Более того, все они ущербны с точки зрения расширения функционала вызываемых подпрограмм. То есть, увеличив количество передаваемых параметров, мы вынуждены менять все точки вызова этой функции/подпрограммы, или же плодить новую подпрограмму с похожим функционалом, которая будет вызываться немного иным способом.

Указанные выше методы передачи параметров относительно неплохо работают на процессорах с 2мя раздельными стеками (стеком данных, и стеком адресов/управления) и развитыми командами манипулирования стеком (хотя бы индексное обращение к элементам стека). Но при программировании на x86 приходится сначала извращаться при передаче/получении параметров, а потом не забыть «структурное» их удаление из стека. Попутно стараясь угадать/рассчитать максимальную глубину стека. Напомним, что x86 (16/32 битный режим), это процессор, у которого:

  • специализированные регистры (РОНы – регистры общего назначения – как таковые отсутствуют: то есть, мы не можем одной командой умножить содержимое регистра GS на значение из EDI и результат получить в паре EDX:ECX, или же разделить значение из пары регистров EDI:ESI на содержимое регистра EAX);
  • регистров мало;
  • один стек;
  • ячейка памяти не дает никакой информации от типа хранящегося там значения.
Иначе говоря, методы программирования, используемые для процессоров с большим регистровым файлом, с поддержкой нескольких независимых стеков и т.д. в большинстве своем не применимы при программировании на x86.

Следующая особенность взамиодействия с готовыми модулями, написанными на «языках высокого уровня»- это «борьба» с «типами переменных». С одной стороны, причина появления типов переменных ясна – программист знает какие значения используются внутри его подпрограммы / модуля. Исходя из этого, видится вполне логичным, что, задав тип значений переменной, мы можем «упростить» написание программы, возложив контроль типов/пределов значений на транслятор языка. Но и тут с водой выплеснули младенца. Потому как любая программа пишется не для генерации сферических коней в вакууме, а для практической работы с пользовательскими данными. То есть очевидное нарушение системного подхода – как будто разработчики языков высокого уровня рассматривали свои системы без учета взаимодействия с внешним миром. В итоге, программируя на типизированном языке разработчик должен предсматривать все возможные виды «неправильных» входных данных, и искать способы обхода неопределенностей. И вот тут на сцену выходят монструозные системы поддержки регулярных выражений, обработки исключительных ситуаций, сигнатуры методов/процедур для разных типов значений и прочая прочая генерация костылей.

Как было уже указано выше, для архитектуры x86 само значение, хранимое в ячейке памяти, не обладает никаким типом. Программист на ассемблере получает привилегию и ответственность за определение способа обработки этого самого значение. А уж каким образом определять тип значения и как его обрабатывать – тут на выбор множество вариантов. Но, подчеркнем еще раз, все они касаются только значений, получаемых от пользователя. Как верно заметили разработчики типизированных языков: типы значений внутренних и служебных переменных практически всегда известны заранее.

Эта причина (извращенная передача параметров в модули, написанные на языках высого уровня и необходимость строго следить за типами передаваемых параметров в теже самые модули) видится основной, из-за которой программирование на ассемблере неоправданно затруднено. И большинство предпочитает разбираться в дебрях «языков высокого уровня», чтобы воспользоваться тем, что уже наработано другими, чем мучиться, вставляю одни и те же «типовые» костыли, для исправления того, чего они не делали. И редкий транслятор ассемблера хоть как-то «разгружает» программиста от этой рутины.

Что делать?

Предварительные выводы с учетом 15ти летного перерыва в программировании на ассемблере.
Во-первых, по поводу модулей или частей программы. В общем случае стоит выделить два вида исполнительных модулей программы на языке ассемблера – «операция» и «подпрограмма».
  • «Операцией» будем называть модуль, выполняющий «атомарное» действие и не требующий для своего выполнения множества параметров (например, операция очистки всего экрана, или операция расчета медианы числового ряда и т.п.).
  • «Подпрограммой» же стоит назвать фунциональный модуль, требующий, для корректного функционирования, множество входных параметров (больше 2х-3х).
И тут стоит оценить опыт императивных и функциональных языков. Они нам подарили 2 ценных инструмента, которыми стоит воспользоваться: «структура данных» (или, на примере REXX – составные/дополняемые переменные) и «немутабельность данных».

Полезно также следовать правилу немутабельности – то есть неизменности передаваемых параметров. Подпрограмма не может (не должна) менять значения в передаваемой ей структуре и результат возврашает либо в регистрах (не более 2х-3х параметров), либо также в новой, создаваемой структуре. Таким образом мы избавлены от необходимости делать копии структур, на случай «забытого» изменения данных подпрограммами, и можем использовать уже созданную структуру целиком или основную ее часть для вызова нескольких подпрограмм, оперирующих одним/схожим набором параметров. Более того, практически «автоматом» приходим к очередному «функциональному» правилу – внутренней контексто-независимости подпрограмм и операций. Иными словами - к разделению состояния/данных от метода/подпрограммы их обработки (в отличие от автоматной модели). В случаях параллельного программирования, а также совместного использования одной подпрограммы мы избавляемся как от необходимости плодить множество контекстов исполнения и следить за их «непересечением», так и от создания множества экземляров одной подпрограмм с разными «состояниями», в случае нескольких ее вызовов.

Что касается «типов» данных, то тут можно как оставить «все как есть», а можно тоже не изобретать велосипеда и воспользоваться тем, что давно используют разработчики трансляторов императивных языков – «идентификатор типа значения». То есть все данные, поступающие из внешнего мира анализируются и каждому полученному значению присваивается идентификатор обрабатываемого типа (целое, с плавающей точкой, упакованное BCD, код символа и т.д.) и размер поля/значения. Имея эту информацию, программист, с одной стороны, не загоняет пользователя в излишне узкие рамки «правил» ввода значений, а с другой - имеет возможность в процессе работы выбрать наиболее эффективный способ обработки данных пользователя. Но, повторюсь еще раз, это касается только работы с пользовательскими данными.

Это были общие соображения о программировании на ассемблере, не касающиеся вопросов проектирования, отладки и обработки ошибок. Надеюсь что разработчикам ОС, которые пишут их с 0-ля (а тем более на ассемблере), будет о чем подумать и они выберут (пусть не описанные выше, а любые иные) способы сделать программирование на ассемблере более систематизированным, удобным и приятным, а не будут слепо копировать чужие, зачастую безнадежно «кривые» варианты.

Написание ОС-загрузчиков, драйверов, переписывание области памяти и другие задачи по работе с ЭВМ реализовываются с помощью ассемблера. Выбранные книги по ассемблеру помогут понять принцип работы машинно-ориентированного языка и освоить его.

1. Ревич Ю. – Практическое программирование микроконтроллеров Atmel AVR на языке ассемблера, 2014 г.

«Свежая кровь» в области программирования микроконтроллеров. Подробно изложены особенности Atmel AVR, есть перечень команд и готовые рецепты – ассемблер на примерах. Хорошая вещь для радиолюбителей и инженерно-технических работников, хотя подойдет и начинающим кодерам: затронуты история, семейства и возможности МК AVR. Стоит отметить, что введение лаконичное, быстро перетекающее в суть, поэтому сетовать на лирику не придется.

2. Калашников О. – Ассемблер – это просто. Учимся программировать, 2011 г.

Настоящее раздолье для новичков, которые еще гуглят базовую терминологию и ищут ассемблер учебник. Это он и есть. Помимо ознакомления с языком и первых программ, также затронуты болевые точки – прерывания: штука несложная, но поначалу тяжелая для восприятия. С каждой главой ассемблер уроки усложняются, и на выходе читатель сможет писать программы на ассемблере, оптимизировать их, работать с вирусами, антивирусами, памятью и файловыми системами.

3. Аблязов Р. – Программирование на ассемблере на платформе x86-64, 2011 г.

Акцент делается на работе процессора в защищенном режиме и long mode. Это незаменимая база для программирования в Win32 и Win64, которая затрагивает команды ассемблера, прерывания, механизмы трансляции и защиты с учетом режимных отличий. Рассматривается разработка оконных приложений и драйверов. Данный ассемблер учебник подойдет начинающим кодерам и тем, кто сразу перешел к программированию на ассемблере, но плохо разобрался в аппаратной платформе x86-64.

4. Столяров А. – Программирование на языке ассемблера NASM для ОС Unix, 2011 г.

Начиная терминологией и заканчивая взаимодействием с ОС, это без преувеличений одно из лучших учебных пособий. Для тех, кто стремится освоить программирование на ассемблере, но при этом не хочет перегружать книжные полки, достаточно этого учебника. Подробно расписан синтаксис языка ассемблера NASM, затронуты регистры и память, операции различной сложности, команды, а также приведены примеры.

В современных операционных система задания по ВССиТ выполнять, мягко говоря проблематично. Для написания контрольных, да и просто освоения начальных навыков необходимо разобраться с компилятором MASM или TASM которые работают из под DOS.
Сами компиляторы, линковщики и все другие приблуды можно найти, например, на http://kalashnikoff.ru/ или http://www.wasm.ru/ . А тут будет рассказываться о том, что ближе к телу.

Необходимые инструменты и их настройка.

И так, что нам нужно. Нам нужен эмулятор DOS-терминала и компилятор. Компилятор я выбрал MASM 6.11, так как им до этого пользовался, и кое что в моей памяти уже было.Как DOS-эмулятор я советую DOSBox. Версии есть и под Windows и под Linux. Под Linux его можно установить из стандартного репозитория. Для Ubuntu:
$sudo apt-get install dosbox или из Центра приложений.
После запуска вы увидите экран с приглашением:
Z:\> Смонтируйте диск C:\ для этого наберите:
Z:\>mount c /home/user/folder_prodject И перейдите в неё:
Z:\>c: командой dir вы сможете посмотреть содержание директории, а командой cd имя_директории перейти в другую папку находящуюся в точке монтирования или в её подпапках.
Пример на моем проекте:


Если вы работаете много в DOS-эмуляторе, то такой способ может оказаться не очень удобным. Но моно настроить автоматическое монтирование диска C:\
Открываем /home/user/.dosbox/dosbox-0.74.conf в редакторе, и ищем строки:
# Lines in this section will be run at startup. # Yju can put your MOUNT lines here. и пишем тут что-то типа:
mount C /home/user/asm PATH=%PATH%;C:\masm611\bin\ C: При старте будет монтироваться C:\ диск в /home/user/asm, при этом эта директория должна существовать. PATH назначает пути поиска программ, это нужно что бы нам не мусорить в одной директории, а была возможность разнести компилятор и проект в разные. В конце стоит C: что бы DOSBox самостоятельно переводил нас на диск C:\ и берег наши телодвижения.


На последнем рисунке показана команда cd и dir, обратите внимание на то как отражаются имена файлов написанных русскими буквами. Возможно это и лечиться, но нужно ли это нам? И не забывайте, что MS-DOS использовал название файлов в формате 8.3. То есть, на имя отводилось 8 символов, потом шла точка (.), а затем расширение файла. При других названиях тоже могут возникнуть проблемы.

Как использовать MASM 6.11.

Теперь разберем как нам компилировать код, который мы напишем.
C:\>ml /с имя_файла.asm получим файл имя_файла.obj Ключ /c говорит компилятору не проводить линковку.
C:\>link имя_файла.obj получим исполняемый файл.
Но можно сделать всё быстрее:
C:\>ml имя_файла.asm /AT При этом мы получим и.obj файл и исполняемый.com. Флаг /AT говорит компилятору вызвать линковщик и передает ему флаг /T который обозначает модель TINY.
Ещё часто бывает нужен файл листинга программы, для этого используйте ключ /Fl:
C:\>ml имя_файла.asm /Fl Файл листинга будет записан в имя_файла.lst

Пишем программку.

Всё, на этом самое сложное закончилось. Теперь начинаем писать программу на ассемблере.
Так как в задачах часто просят вывести решение формул на экран, то и будем разбирать подобный пример. Сумма делений с x= от 1 до 10:

Основные команды которые будем использовать

Регистры, ох уж эти регистры. Краткий экскурс.

Сейчас, что бы начать читать код, достаточно знать регистры общего назначения:
Они могут быть 8 битные (например, al, ah), 16 битные (например, ax) и 32 битные (например, eax).
Все 16 битные регистры делятся на на младший и старший, например, ax делиться на al и ah. Делиться значит состоит, а не математическое действие.
eax, ax, al - очень часто выступают как приёмник значений, например, при умножении и делении.
ebx, bx. bl, bh - свободный регистр, который можно использовать в хвост и гриву.
edx, dx - часто используется для пересылки дополнительной информации или остатка от деления.
ecx, cx - называется счетчик, используется в циклах.
Всё остальное в комментариях программы. Кстати точка с запятой (;) используется как команда начать комментарий, и всё что написано за ней в строке не интерпретируется компилятором

Тренируемся

Первое что нам нужно - это разложить наш пример на простые составляющие, что бы составить алгоритм. К примеру: x в кубе - это x*x*x. Вспоминаем: умножение это mul, то есть мы можем это записать:
mov ax,1 ; присвоили значение mul ax ; умножили первый раз, то есть возвели в квадрат mul ax ; умножили второй раз, то есть возвели в куб Вот, так пошагово это и происходит.

А теперь сам листинг решения примера:

.MODEL tiny ; задаём модель в данном случае.com .CODE .486 ; указываем модель процессора org 100h ; выделяем память start: mov ecx,10 ; задаём количество циклов. 10 потому, что у нас x от 1 до 10 Lb1: ; устанавливаем метку для цикла mov eax,11 ; находим х sub eax,ecx ; x=11-число циклов (1, 2, 3... 11-1=10) push ecx ; сохраним в стеке сх для использования в цикле push eax ; сохраним в стеке ax что бы больше не высчитывать его mul eax ; x^2 (^ - будет означать "в степени") mov ecx,eax ; сохраним eax в ecx потом отнимать нужно будет mov ebx,3 ; ebx = 3 mul ebx ; 3x^2 sub eax,1 ; 3x^2-1 mov ebx,eax ; сохраняем eax в ebx потом понадобиться pop eax ; восстанавливаем eax так как уже нужен eax опять = x push ebx ; и сохраняем ebx так как потом понадобиться mov ebx,eax ; ebx = eax mov eax,ecx ; помните ecx=x^2, теперь eax = ecx, но можно было просто перемножать mul ebx ; eax = x^3 mov ebx,4 ; ebx = 4 mul ebx ; eax = 4x^3 sub eax,ecx ; eax = 4x^3-x^2 add eax,2 ; eax = 4x^3-x^2+2 pop ebx ; восстанавливаем ebx mov a,eax ; делимое (a - это переменная) mov z,ebx ; делитель (z - это тоже переменная) описаны в конце программы finit ; инициализируем сопроцессор fld a ; делимое в сопроцессор fdiv z ; проводим деление в сопроцессоре call tEnter ; это вызов функции которая переводит строку call pFloat ; выводим результат деления в консоль @4: fadd t ; добавляем предыдущий результат деления, для получения суммы; значений функции (t - это переменная) fst t ; запоминаем сумму в переменной pop ecx ; вынимаем ecx из памяти для корректной работы цикла loop Lb1 ; переходим на метку Lb1 пока ecx не станет равным нулю call pEnter ; это вызов функции которая переводит строку call pFloat ; выводим sum((4x^3-x^2+2)/(3x^2-1)) при x от 1 до 10 с шагом 1 int 20h ; Завершение работы программы (это называется; вызвать прерывание 20h) ret ; конец блока; дальше начинается настоящее колдовство;выводит целое число pInt: pushad ; сохраняем все регистры mov bx,sp ; bx = sp mov byte ptr ss:,"$" ; символ конца строки @1:cdq ; метка цикла. и команда cdq копирует знаковый бит регистра eax на; все биты регистра edx div ecx ; делим число на основание edx - остаток, eax - частное add dl,"0" ; преобразование в ASCII dec bx ; уменьшаем bx на 1 mov ss:,dl ; добавляем в стоку перед предыдущим test eax,eax ; проверяем есть ли в eax ещё что-нибудь jne @1 ; если есть повторяем цикл mov ax,ss ; выводим строку на экран mov ds,ax ; ds = ax dec bx ; уменьшаем bx на 1 mov dx,bx ; dx = bx xchg sp,bx ; если не обменять вылезет мусор mov ah,9 ; номер функции прерывания int 21h ; вызываем прерывание xchg sp,bx ; если не обменять программа завершиться popad ; восстанавливаем данные из стека ret ;выводит число pFloat: pushad ; сохраняем все регистры mov ecx,10 ; задаём основание системы счисления push ecx ; сохраняем основание mov bp,sp ; bp = sp fst dword ptr ss: ; выводим из сопроцессора как двойное слово в регистр ss xor eax,eax ; обнуляем eax (xor бинарное или) mov edx,ss: ; edx = ss: shl edx,1 ; сдвигаем в edx все биты на 1 влево mov ecx,edx ; ecx = edx shr ecx,24 ; сдвигаем в ecx все биты в право на 24 sub cx,126 ; вычитаем их cx 126 - Порядок (экспонента) shl edx,7 ; сдвигаем edx влево на 7 or edx,80000000h ; значащие биты (мантисса) shld eax,edx,cl ; eax - целая часть shl edx,cl ; edx - дробная часть pop ecx ; сохраняем ecx call pInt ; выводим на экран целую часть;выводим на экран дробную часть xchg eax,edx ; обмениваемся значениями cdq ; преобразуем двойное слово в четверное sub bp,28 ; вычитаем из bp 28 mov byte ptr ss:,"." ; добавляем разделитель десятичной дроби @2:mul ecx ; умножаем на основание 10 add dl,"0" ; преобразование в ASCII inc bp ; увеличиваем bp на единицу mov ss:,dl ; добавляем в строку test eax,eax ; проверяем есть ли ещё знаки после запятой jne @2 ; да? повторяем цикл mov byte ptr ss:,"$" ; нет? добавляем знак конца строки, иначе выведет мусор sub sp,32 ; приводим строку в нормальное состояние push ss pop ds mov dx,sp ; помещаем в dx откуда её и будем печатать mov ah,9 ; функция прерывания прерывания int 21h ; вызов прерывания call nEnter ; вызов функции перевода строки add sp,32 ; восстанавливаем sp popad ; восстанавливаем регистры ret ;вспомогательная функция - переводит строку nEnter: pushad mov dx,offset str0 mov ah,9 int 21h popad ret ;вспомогательная функция, печатает строку "Temp rezult:" tEnter: pushad mov dx,offset str1 mov ah,9 int 21h popad ret ;вспомогательная функция, печатает строку "Result:" pEnter: pushad mov dx,offset strE mov ah,9 int 21h popad ret ;переменные a dd ? z dd ? t dd 0 str0 db 10,13,"$" str1 db "Temp result: ","$" strE db 10,13,"Result: ","$" end start ; конец программы

Программирование на языке ассемблера

В данной части курса рассматриваются основы программирования на языке ассемблера для архитектуры Win32.

Все процессы в машине на самом низком, аппаратном уровне приводятся в действие только командами (инструкциями) машинного языка. Язык ассемблера – это символическое представление машинного языка . Ассемблер позволяет писать короткие и быстрые программы. Однако этот процесс чрезвычайно трудоёмкий. Для написания максимально эффективной программы необходимо хорошее знание особенностей команд языка ассемблера, внимание и аккуратность. Поэтому реально на языке ассемблера пишутся в основном программы, которые должны обеспечить эффективную работу с аппаратной частью. Также на языке ассемблера пишутся критичные по времени выполнения или расходованию памяти участки программы. Впоследствии они оформляются в виде подпрограмм и совмещаются с кодом на языке высокого уровня.

1. Регистры

Регистры – это специальные ячейки памяти, расположенные непосредственно в процессоре. Работа с регистрами выполняется намного быстрее, чем с ячейками оперативной памяти, поэтому регистры активно используются как в программах на языке ассемблера, так и компиляторами языков высокого уровня.

Регистры можно разделить на регистры общего назначения ,указатель команд ,регистр флагов и сегментные регистры .

1.1. Регистры общего назначения

К регистрам общего назначения относится группа из 8 регистров, которые можно использовать в программе на языке ассемблера. Все регистры имеют размер 32 бита и могут быть разделены на 2 или более частей.

Как видно из рисунка, регистры ESI, EDI, ESP и EBP позволяют обращаться к младшим 16 битам по именам SI, DI, SP и BP соответственно, а регистры EAX, EBX, ECX и EDX позволяют обращаться как к младшим 16 битам (по именам AX, BX, CX и DX), так и к двум младшим байтам по отдельности (по именам AH/AL, BH/BL, CH/CL и

Названия регистров происходят от их назначения:

EAX/AX/AH/AL (accumulator register) – аккумулятор;

EBX/BX/BH/BL (base register ) –регистр базы;

ECX/CX/CH/CL (counter register) – счётчик;

EDX/DX/DH/DL (data register ) – регистр данных;

ESI/SI (source index register ) – индекс источника;

EDI/DI (destination index register ) – индекс приёмника (получателя);

ESP/SP (stack pointer register ) – регистр указателя стека;

EBP/BP (base pointer register ) – регистр указателя базы кадра стека.

Несмотря на существующую специализацию, все регистры можно использовать в любых машинных операциях. Однако надо учитывать тот факт, что некоторые команды работают только с определёнными регистрами. Например, команды умножения и деления используют регистры EAX и EDX для хранения исходных данных и результата операции. Команды управления циклом используют регистр ECX в качестве счётчика цикла.

Ещё один нюанс состоит в использовании регистров в качестве базы , т.е. хранилища адреса оперативной памяти. В качестве регистров базы можно использовать любые регистры, но желательно использовать регистры EBX, ESI, EDI или EBP. В этом случае размер машинной команды обычно бывает меньше.

К сожалению, количество регистров катастрофически мало, и зачастую бывает трудно подобрать способ их оптимального использования.

1.2. Указатель команд

Регистр EIP (указатель команд ) содержит смещение следующей подлежащей выполнению команды. Этот регистр непосредственно недоступен программисту, но загрузка и изменение его значения производятся различными командами управления, к которым относятся команды условных и безусловных переходов, вызова процедур и возврата из процедур.

1.3. Регистр флагов

Флаг – это бит, принимающий значение 1 («флаг установлен»), если выполнено некоторое условие, и значение 0 («флаг сброшен») в противном случае. Процессор имеетрегистр флагов , содержащий набор флагов, отражающий текущее состояние процессора.

Обозначение

Название

Флаг перено

Зарезервиро

Флаг чётност

Зарезервиро

Auxiliary Carry Flag

Вспомогател

Зарезервиро

Флаг нуля

Флаг знака

Флаг трассир

Interrupt Enable Flag

Флаг разреш

Флаг направ

Флаг перепо

I/O Privilege Level

Уровень при

Флаг вложен

Зарезервиро

Флаг возобн

Virtual-8086 Mode

Режим вирту

Проверка вы

Virtual Interrupt Flag

Виртуальны

Virtual Interrupt Pending

Ожидающее

Проверка на

Зарезервиро

Значение флагов CF, DF и IF можно изменять напрямую в регистре флагов с помощью специальных инструкций (например, CLD для сброса флага направления), но нет инструкций, которые позволяют обратиться к регистру флагов как к обычному регистру. Однако можно сохранять

регистр флагов в стек или регистр AH и восстанавливать регистр флагов из них с помощью инструкций LAHF ,SAHF ,PUSHF ,PUSHFD ,POPF иPOPFD .

1.3.1. Флаги состояния

Флаги состояния (биты 0, 2, 4, 6, 7 и 11) отражают результат выполнения арифметических инструкций, таких как ADD ,SUB ,MUL ,DIV .

Флаг переноса CF устанавливается при переносе из старшего значащего бита/заёме в старший значащий бит и показывает наличие переполнения в беззнаковой целочисленной арифметике. Также используется в длинной арифметике.

Флаг чётности PF устанавливается, если младший значащий байт результата содержит чётное число единичных битов. Изначально этот флаг был ориентирован на использование в коммуникационных программах: при передаче данных по линиям связи для контроля мог также передаваться бит чётности и инструкции для проверки флага чётности облегчали проверку целостности данных.

Вспомогательный флаг переноса AF устанавливается при переносе из бита 3-го результата/заёме в 3-ий бит результата. Этот флаг ориентирован на использование в двоично-десятичной (binary coded decimal, BCD) арифметике.

Флаг нуля ZF устанавливается, если результат равен нулю.

Флаг знака SF равен значению старшего значащего бита результата, который является знаковым битом в знаковой арифметике.

Флаг переполнения OF устанавливается, если целочисленный результат слишком длинный для размещения в целевом операнде (регистре или ячейке памяти). Этот флаг показывает наличие переполнения в знаковой целочисленной арифметике.

Из перечисленных флагов только флаг CF можно изменять напрямую с помощью инструкций STC ,CLC иCMC .

Флаги состояния позволяют одной и той же арифметической инструкции выдавать результат трёх различных типов: беззнаковое, знаковое и двоично-десятичное (BCD) целое число. Если результат считать беззнаковым числом, то флаг CF показывает условие переполнения (перенос или заём), для знакового результата перенос или заём показывает флаг OF, а для BCD-результата перенос/заём показывает флаг AF. Флаг SF отражает знак знакового результата, флаг ZF отражает и беззнаковый, и знаковый нулевой результат.

В длинной целочисленной арифметике флаг CF используется совместно с инструкциями сложения с переносом (ADC ) и вычитания с заёмом (SBB ) для распространения переноса или заёма из одного вычисляемого разряда длинного числа в другой.

Инструкции

условного

перехода Jcc (переход

условию cc ),SETcc (установить

значение

байта-результата

зависимости

условия cc ),LOOPcc (организация

и CMOVcc (условное

копирование)

используют

один или несколько

флагов состояния для проверки условия. Например, инструкция перехода JLE (jump if less or equal – переход, если «меньше или равно») проверяет условие «ZF = 1 или SF ≠ OF».

Флаг PF был введён для совместимости с другими микропроцессорными архитектурами и по прямому назначению используется редко. Более распространено его использование совместно с остальными флагами состояния в арифметике с плавающей запятой: инструкции сравнения (FCOM ,FCOMP и т. п.) в математическом сопроцессоре устанавливают в нём флаги-условия C0, C1, C2 и C3, и эти флаги можно скопировать в регистр флагов. Для этого рекомендуется использовать инструкциюFSTSW AX для сохранения слова состояния сопроцессора в регистре AX и инструкциюSAHF для последующего копирования содержимого регистра AH в младшие 8 битов регистра флагов, при этом C0 попадает во флаг CF, C2 – в PF, а C3 – в ZF. Флаг C2 устанавливается, например, в случае несравнимых аргументов (NaN или неподдерживаемый формат) в инструкции сравненияFUCOM .

1.3.2. Управляющий флаг

Флаг направления DF (бит 10 в регистре флагов) управляет строковыми инструкциями (MOVS ,CMPS ,SCAS ,LODS иSTOS ) – установка флага заставляет уменьшать адреса (обрабатывать строки от старших адресов к младшим), обнуление заставляет увеличивать адреса. ИнструкцииSTD иCLD соответственно устанавливают и сбрасывают флаг DF.

1.3.3. Системные флаги и поле IOPL

Системные флаги и поле IOPL управляют операционной средой и не предназначены для использования в прикладных программах.

Флаг разрешения прерываний IF – обнуление этого флага запрещает отвечать на маскируемые запросы на прерывание.

Флаг трассировки TF – установка этого флага разрешает пошаговый режим отладки, когда после каждой выполненной

инструкции происходит прерывание программы и вызов специального обработчика прерывания.

Поле IOPL показывает уровень приоритета ввода-вывода исполняемой программы или задачи: чтобы программа или задача могла выполнять инструкции ввода-вывода или менять флаг IF, её текущий уровень приоритета (CPL) должен быть ≤ IOPL.

Флаг вложенности задач NT – этот флаг устанавливается, когда текущая задача «вложена» в другую, прерванную задачу, и сегмент состояния TSS текущей задачи обеспечивает обратную связь с TSS предыдущей задачи. Флаг NT проверяется инструкцией IRET для определения типа возврата – межзадачного или внутризадачного.

Флаг возобновления RF используется для маскирования ошибок отладки.

VM – установка этого флага в защищённом режиме вызывает переключение в режим виртуального 8086.

Флаг проверки выравнивания AC – установка этого флага вместе с битом AM в регистре CR0 включает контроль выравнивания операндов при обращениях к памяти: обращение к невыравненному операнду вызывает исключительную ситуацию.

VIF – виртуальная копия флага IF; используется совместно с флагом VIP.

VIP – устанавливается для указания наличия отложенного прерывания.

ID – возможность программно изменить этот флаг в регистре флагов указывает на поддержку инструкции CPUID.

1.4. Сегментные регистры

Процессор имеет 6 так называемых сегментных регистров: CS, DS, SS, ES, FS и GS. Их существование обусловлено спецификой организации и использования оперативной памяти.

16-битные регистры могли адресовать только 64 Кб оперативной памяти, что явно недостаточно для более или менее приличной программы. Поэтому память программе выделялась в виде несколькихсегментов , которые имели размер 64 Кб. При этомабсолютные адреса были 20-битными, что позволяло адресовать уже 1 Мб оперативной памяти. Возникает вопрос – как имея 16-битные регистры хранить 20-битные адреса? Для решения этой задачи адрес разбивался набазу исмещение . База – это адрес начала сегмента, а смещение – это номер байта внутри сегмента. На адрес начала сегмента накладывалось ограничение – он должен был быть кратен 16. При этом последние 4 бита были равны 0 и не хранились, а подразумевались. Таким образом, получались две 16-битные части адреса. Для получения

абсолютного адреса к базе добавлялись четыре нулевых бита, и полученное значение складывалось со смещением.

Сегментные регистры использовались для хранения адреса начала сегмента кода (CS – code segment),сегмента данных (DS – data segment) исегмента стека (SS – stack segment). Регистры ES, FS и GS были добавлены позже. Существовало несколько моделей памяти, каждая из которых подразумевала выделение программе одного или нескольких сегментов кода и одного или нескольких сегментов данных:tiny ,small ,medium ,compact ,large иhuge . Для команд языка ассемблера существовали определённые соглашения: адреса перехода сегментировались по регистру CS, обращения к данным сегментировались по регистру DS, а обращения к стеку – по регистру SS. Если программе выделялось несколько сегментов для кода или данных, то приходилось менять значения в регистрах CS и DS для обращения к другому сегменту. Существовали так называемые «ближние» и «дальние» переходы. Если команда, на которую надо совершить переход, находилась в том же сегменте, то для перехода достаточно было изменить только значение регистра IP. Такой переход называлсяближним . Если же команда, на которую надо совершить переход, находилась в другом сегменте, то для перехода необходимо было изменить как значение регистра CS, так и значение регистра IP. Такой переход называлсядальним и осуществлялся дольше.

32-битные регистры позволяют адресовать 4 Гб памяти, что уже достаточно для любой программы. Каждую Win32-программу Windows запускает в отдельном виртуальном пространстве. Это означает, что каждая Win32-программа будет иметь 4-х гигабайтовое адресное пространство, но вовсе не означает, что каждая программа имеет 4 Гб физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. А Windows сделает все необходимое, чтобы память, к которой программа обращается, «существовала». Конечно, программа должна придерживаться правил, установленных

Windows, иначе возникает ошибка General Protection Fault.

Под архитектурой Win32 отпала необходимость в разделении адреса на базу и смещение, и необходимость в моделях памяти. На 32-

используются по-другому1 . Раньше необходимо было связывать отдельные части программы с тем или иным сегментным регистром и сохранять/восстанавливать регистр DS при переходе к другому сегменту данных или явно сегментировать данные по другому регистру. При 32-битной архитектуре необходимость в этом отпала, и в простейшем случае про сегментные регистры можно забыть.

1.5. Использование стека

Каждая программа имеет область памяти, называемую стеком . Стек используется для передачи параметров в процедуры и для хранения локальных данных процедур. Как известно,стек – это область памяти, при работе с которой необходимо соблюдать определённые правила, а именно: данные, которые попали в стек первыми, извлекаются оттуда последними. С другой стороны, если программе выделена некоторая память, то нет никаких физических ограничений на чтение и запись. Как же совмещаются два этих противоречивых принципа?

Пусть у нас есть функция f1 , которая вызывает функциюf2 , а функцияf2 , в свою очередь, вызывает функциюf3 . При вызове функцииf1 ей отводится определённое место в стеке под локальные данные. Это место отводится путём вычитания из регистра ESP значения, равного размеру требуемой памяти. Минимальный размер отводимой памяти равен 4 байтам, т.е. даже если процедуре требуется 1 байт, она должна занять 4 байта.

Функция f1 выполняет некоторые действия, после чего вызывает

функция f2 вызывает функциюf3 , которая также отводит себе место в стеке. Функцияf3 других функций не вызывает и при завершении работы должна освободить место в стеке, прибавив к регистру ESP значение, которые было вычтено при вызове функции. Если функцияf3 не восстановит значение регистра ESP, то функцияf2 , продолжив работу, будет обращаться не к своим данным, т.к. она ищет

которое было до её вызова.

Таким образом, на уровне процедур необходимо соблюдать правила работы со стеком – процедура, которая заняла место в стеке последней, должна освобождать его первой. При несоблюдении этого правила, программа будет работать некорректно. Но каждая процедура может обращаться к своей области стека произвольным образом. Если бы мы были вынуждены соблюдать правила работы со стеком внутри каждой процедуры, пришлось бы перекладывать данные из стека в другую область памяти, а это было бы крайне неудобно и чрезвычайно замедлило бы выполнение программы.

Каждая программа имеет область данных, где размещаются глобальные переменные. Почему же локальные данные хранятся именно в стеке? Это делается для уменьшения объёма памяти занимаемого программой. Если программа будет последовательно вызывать несколько процедур, то в каждый момент времени будет отведено место только под данные одной процедуры, т.к. стек занимается и освобождается. Область данных существует всё время работы программы. Если бы локальные данные размещались в области данных, пришлось бы отводить место под локальные данные длявсех процедур программы.

Локальные данные автоматически не инициализируются. Если в вышеприведённом примере функция f2 после функцииf3 вызовет функциюf4 , то функцияf4 займёт в стеке место, которое до этого было занято функциейf3 , таким образом, функцииf4 «в наследство» достанутся данные функцииf3 . Поэтому каждая процедура обязательно должна заботиться об инициализации своих локальных данных.

2. Основные понятия языка ассемблера

2.1. Идентификаторы

Понятие идентификатора в языке ассемблера ничем не отличается от понятия идентификатора в других языках. Можно использовать латинские буквы, цифры и знаки _ . ? @ $ , причём точка может быть только первым символом идентификатора. Большие и маленькие буквы считаются эквивалентными.

2.2. Целые числа

В программе на языке ассемблера целые числа могут быть записаны в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Для задания системы счисления в конце числа



Загрузка...