sonyps4.ru

Вся правда о многоядерных процессорах.

Новые процессоры Core 8-го поколения (Coffee Lake). Среди прочего, компания заявила, что новый 6/12-ядерный Core i7-8700K - лучший игровой процессор от Intel (измерено по fps на выборке AAA-игр). Кроме того, компания впервые доукомплектовала семейство Core i5 шестиядерными чипами.

Core i7-8700K - явный флагман среди всех представленных новинок. В игре Gears of War он показывает fps на 25% больше по сравнению с процессором 7-го поколения Core i7-7700K (4 ядра, 8 потоков). Понятно, что наибольший выигрыш в производительности должны получить многопоточные приложения (если уж тут стало 12 потоков). Так и есть: если одновременно играть в Player Unknown: Battlegrounds , при этом вести запись и видеотрансляцию в интернет, то выигрыш в производительности составляет 45%, сообщили представители Intel.

Конечно, выигрыш в производительности получат не только игроки, но и пользователи других многопоточных приложений. Например, существенная разница должна наблюдаться в программах вроде Adobe Premiere Pro для видеомонтажа, хотя Intel не даёт бенчмарков, это просто предположение.

Все новые процессоры изготовлены по техпроцессу, который Intel называет 14-нм++, то есть это третье поколение 14-нанометрового техпроцесса (два плюсика соответствуют двум улучшениям от оригинального варианта).

Основные характеристики процессоров 8-го поколения

CPU Кол-во ядер Частота (базовая) Частота (boost) Кэш L3 TDP
i7-8700K ($359) 6/12 3,8 ГГц 4,7 ГГц 12 МБ 95 Вт
i7-8700 ($303) 6/12 3,2 ГГц 4,6 ГГц 12 МБ 65 Вт
i5-8600K ($257) 6/6 3,6 ГГц 4,3 ГГц 9 МБ 95 Вт
i5-8400 ($182) 6/6 2,8 ГГц 4,0 ГГц 9 МБ 65 Вт
i3-8350K ($168) 4/4 4,0 ГГц нет 6 МБ 91 Вт
i3-8100 ($117) 4/4 3,6 ГГц нет 6 МБ 65 Вт

Процессоры Core i5 и i7 работают с памятью DDR4-2666, а Core i3 - с памятью DDR4-2400.

Увеличив количество ядер по всей линейке процессоров, Intel как будто играет на поле AMD, то есть пытается выстроить стратегию защиты против конкурента. Увеличенное количество ядер на процессорах по той же цене является одной из ключевых стратегий, на которой основано предложение AMD Ryzen. С другой стороны, сама Intel очень редко увеличивает количество ядер в своих CPU. Сделав это сейчас, она не просто предлагает пользователям более лучший продукт, но и наносит удар по конкуренту.

Intel увеличивает количество ядер в своих не-HEDT процессорах впервые с 2006 года, когда вышел Core 2 Extreme QX6700. До настоящего момента, если вы хотели больше четырёх ядер, нужно было переходить на процессоры HEDT (high-end desktop). Теперь более чем 4-ядерные процессоры наконец-то стали стандартными. На такие жертвы приходится идти Intel, чтобы противостоять Ryzen!

В новых процессорах пришлось слегка уменьшить тактовую частоту. У Core i7-8700K базовая тактовая частота на 500 МГц меньше, чем у Kaby Lake i7-7700K. Впрочем, в турбо-режиме частота уже на 200 МГц больше, что довольно странно. По мнению некоторых экспертов, уменьшение базовой тактовой частоты связано с ограничениями на максимальное энергопотребление. На это намекает то, что TDP в i7-8700K по сравнению i7-7700K выросло незначительно: с 91 до 95 Вт.

Пометка “К” в названии чипа означает также, что эти чипы разлочены для оверклокинга. По количеству ядер и объёму кэша L3 они не отличаются от своих собратьев без “К”, но изначально работают на более высокой частоте и выделяют больше тепла, то есть потребляют больше энергии.

Все процессоры работают в сокете LGA 1151 с новым чипсетом Intel Z370, более продвинутом, чем чипсет Z270 для процессоров Kaby Lake. Здесь чуть увеличилась тактовая частота памяти, количество линий PCI 3.0 выросло до 40, есть встроенная поддержка Thunderbolt 3.0. Переход на новые материнские платы в любом случае был необходим, потому что шестиядерные процессоры требуют новых способов подвода энергии с материнской платы, сказал Ананд Шриватса (Anand Srivatsa), генеральный менеджер десктопных платформ в Intel.

Все процессоры также поддерживают технологию ускорения памяти Intel Optane. Сейчас устройство Intel Optane работает как своеобразный аналог SSD для тех данных, которые попали в кэш, даже если на компьютере установлен HDD.

Приём заказов на новые микросхемы начинается 5 октября. Поставки начнутся 20 октября 2017 года.

Многие люди при покупке процессора стараются выбрать что-нибудь покруче, с несколькими ядрами и большой тактовой частотой. Но при этом мало кто знает, на что влияет количество ядер процессора в действительности. Почему, например, обычный и простенький двухъядерник может оказаться быстрее четырехядерника или тот же "проц" с 4 ядрами будет быстрее "проца" с 8 ядрами. Это довольно интересная тема, в которой определенно стоит разобраться более детально.

Вступление

Прежде чем начать разбираться, на что влияет количество ядер процессора, хотелось бы сделать небольшое отступление. Еще несколько лет назад разработчики ЦП были уверены в том, что технологии производства, которые так стремительно развиваются, позволят выпускать "камни" с тактовыми частотами до 10 Ггц, что позволит пользователям забыть о проблемах с плохой производительностью. Однако успех достигнут не был.

Как бы ни развивался техпроцесс, что "Интел", что "АМД" уперлись в чисто физические ограничения, которые попросту не позволяли выпускать "процы" с тактовой частотой до 10 Ггц. Тогда и было принято решение сфокусироваться не на частотах, а на количестве ядер. Таким образом, началась новая гонка по производству более мощных и производительных процессорных "кристаллов", которая продолжается и по сей день, но уже не столь активно, как это было на первых порах.

Процессоры Intel и AMD

На сегодняшний день "Интел" и "АМД" являются прямыми конкурентами на рынке процессоров. Если посмотреть на выручку и продажи, то явное преимущество будет на стороне "синих", хотя в последнее время "красные" стараются не отставать. У обоих компаний имеется хороший ассортимент готовых решений на все случаи жизни - от простого процессора с 1-2 ядрами до настоящих монстров, у которых количество ядер переваливает за 8. Обычно подобные "камни" используются на специальных рабочих "компах", которые имеют узкую направленность.

Intel

Итак, на сегодняшний день у компании Intel успехом пользуются 5 видов процессоров: Celeron, Pentium, и i7. Каждый из этих "камней" имеет разное количество ядер и предназначенные для разных задач. Например, Celeron имеет всего 2 ядра и используется в основном на офисных и домашних компьютерах. Pentium, или, как его еще называют, "пенек", также используется в дому, но уже имеет гораздо лучшую производительность, в первую очередь за счет технологии Hyper-Threading, которая "добавляет" физическим двум ядрам еще два виртуальных ядра, которые называют потоками. Таким образом, двухъядерный "проц" работает как самый бюджетный четырехъядерник, хотя это не совсем корректно сказано, но основная суть именно в этом.

Что же касается линейки Core, то тут примерно схожая ситуация. Младшая модель с цифрой 3 имеет 2 ядра и 2 потока. Линейка постарше - Core i5 - имеет уже полноценные 4 или 6 ядер, но лишена функции Hyper-Threading и дополнительных потоков не имеет, кроме как 4-6 стандартных. Ну и последнее - core i7 - это топовые процессоры, которые, как правило, имеют от 4 до 6 ядер и в два раза больше потоков, т. е., например, 4 ядра и 8 потоков или 6 ядер и 12 потоков.

AMD

Теперь стоит сказать про AMD. Список "камушков" от данной компании огромен, смысла перечислять все нет, поскольку большинство из моделей уже попросту устарели. Стоит, пожалуй, отметить новое поколение, которое в некотором смысле "копирует" "Интел" - Ryzen. В данной линейке также присутствуют модели с номерами 3, 5 и 7. Главное отличие от "синих" у Ryzen заключается в том, что самая младшая модель уже сразу предоставляет полноценные 4 ядра, а у старшей их не 6, а целых восемь. Кроме этого, и количество потоков меняется. Ryzen 3 - 4 потока, Ryzen 5 - 8-12 (в зависимости от кол-ва ядер - 4 или 6) и Ryzen 7 - 16 потоков.

Стоит упомянуть и о еще одной линейке "красных" - FX, которая появилась в 2012 году, и, по сути, данная платформа уже считается устаревшей, но благодаря тому, что сейчас все больше и больше программ и игр начинает поддерживать многопоточность, линейка Vishera вновь обрела популярность, которая наряду с низкими ценами только растет.

Ну а что касается споров касательно частоты процессора и количества ядер, то, по сути, правильнее смотреть в сторону второго, поскольку с тактовыми частотами уже давно все определились, и даже топовые модели от "Интел" работают на номинальных 2. 7, 2. 8, 3 Ггц. Помимо этого, частоту всегда можно поднять при помощи оверклокинга, но в случае с двухъядерником это не даст особого эффекта.

Как узнать сколько ядер

Если кто-то не знает, как определить количество ядер процессора, то сделать это можно легко и просто даже без скачивания и установки отдельных специальных программ. Достаточно лишь зайти в "Диспетчер устройств" и нажать на маленькую стрелочку рядом с пунктом "Процессоры".

Получить более подробную информацию о том, какие технологии поддерживает ваш "камень", какая у него тактовая частота, номер его ревизии и многое другое можно при помощи специальной и маленькой программки CPU-Z. Скачать ее можно бесплатно на официальном сайте. Есть версия, которая не требует установки.

Преимущество двух ядер

В чем может быть преимущество двухъядерного процессора? Много в чем, например, в играх или приложениях, при разработке которых основным приоритетом была однопоточная работа. Взять хотя бы для примера игру Wold of Tanks. Самые обычные двухъядерники типа Pentium или Celeron будут выдавать вполне приличный результат по производительности, в то время как какой-нибудь FX от AMD или INTEL Core задействуют гораздо больше своих возможностей, а итог будет примерно таким же.

Чем лучше 4 ядра

Чем 4 ядра могут быть лучше двух? Лучшей производительностью. Четырехъядерные "камни" рассчитаны уже на более серьезную работу, где простые "пеньки" или "селероны" попросту не справятся. Отличным примером тут послужит любая программа по работе с 3D-графикой, например 3Ds Max или Cinema4D.

Во время процесса рендеринга данные программы задействуют максимум ресурсов компьютера, включая оперативную память и процессор. Двухъядерные ЦП будут очень сильно отставать по времени обработки рендера, и чем сложнее будет сцена, тем больше времени им потребуется. А вот процессоры с четырьмя ядрами справятся с данной задачей гораздо быстрее, поскольку им на помощь придут еще и дополнительные потоки.

Конечно, можно взять и какой-нибудь бюджетный "процик" из семейства Core i3, например, модель 6100, но 2 ядра и 2 дополнительных потока все равно будут уступать полноценному четырехядернику.

6 и 8 ядер

Ну и последний сегмент многоядерников - процессоры с шестью и восемью ядрами. Их основное предназначение, в принципе, точно такое же, как и у ЦП выше, только вот нужны они там, где обычные "четверки" не справляются. Кроме этого, на базе "камней" с 6 и 8 ядрами строят полноценные профильные компьютеры, которые будут "заточены" под определенную деятельность, например, монтаж видео, 3Д-программы для моделирования, рендеринг готовых тяжелых сцен с большим количеством полигонов и объектов и т. д.

Помимо этого, такие многоядерники очень хорошо себя показывают в работе с архиваторами или в приложениях, где нужны хорошие вычислительные возможности. В играх, которые оптимизированы под многопоточность, равных таких процессорам нет.

На что влияет количество ядер процессора

Итак, на что же еще может влиять количество ядер? В первую очередь на повышение энергопотребления. Да, как бы это ни прозвучало удивительно, но это так и есть. Особо переживать не стоит, потому как в повседневной жизни данная проблема, если можно так выразиться, заметна не будет.

Второе - это нагрев. Чем больше ядер, тем лучше нужна система охлаждения. Поможет измерить температуру процессора программа, которая называется AIDA64. При запуске нужно нажать на "Компьютер", а затем выбрать "Датчики". Следить за температурой процессора нужно, потому как если он будет постоянно перегреваться или работать на слишком высоких температурах, то через какое-то время он просто сгорит.

Двухъядерники незнакомы с такой проблемой, потому как не обладают слишком высокой производительностью и тепловыделением соответственно, а вот многоядерники - да. Самыми "горячими" считаются камни от AMD, особенно серии FX. Например, возьмем модель FX-6300. Температура процессора в программе AIDA64 находится в отметке около 40 градусов и это в режиме простоя. При нагрузке цифра будет расти и если случится перегрев, то комп выключится. Так что, покупая многоядерник, нужно не забывать о кулере.

На что влияет количество ядер процессора еще? На многозадачность. Двухъядерные"процы" не смогут обеспечить стабильную производительность при работе в двух, трех и более программ одновременно. Самый простой пример - стримеры в интернете. Помимо того, что они играют в какую-нибудь игру на высоких настройках, у них параллельно запущена программа, которая позволяет транслировать игровой процесс в интернет в режиме онлайн, работает и интернет-браузер с несколькими открытыми страницами, где игрок, как правило, читает комментарии смотрящих его людей и следит за прочей информацией. Обеспечить должную стабильность может даже далеко не каждый многоядерник, не говоря уже о двух- и одноядерных процессорах.

Также стоит сказать пару слов о том, что у многоядерных процессоров есть очень полезная вещь, которая называется "Кеш третьего уровня L3". Этот кеш имеет определенный объем памяти, в который постоянно записывается различная информация о запущенных программах, выполненных действиях и т. д. Нужно это все для того, чтобы увеличить скорость работы компьютера и его быстродействие. Например, если человек часто пользуется фотошопом, то эта информация сохранится в памяти каша, и время на запуск и открытие программы значительно сократиться.

Подведение итогов

Подводя итог разговора о том, на что влияет количество ядер процессора, можно прийти к одному простому выводу: если нужна хорошая производительность, быстродействие, многозадачность, работа в тяжелых приложениях, возможность комфортно играть в современные игры и т. д., то ваш выбор - процессор с четырьмя ядрами и больше. Если же нужен простенький "комп" для офиса или домашнего пользования, который будет использоваться по минимуму, то 2 ядра - это то что нужно. В любом случае, выбирая процессор, в первую очередь нужно проанализировать все свои потребности и задачи, и только после этого рассматривать какие-либо варианты.

Миновал почти месяц, как компания Intel представила процессоры семейства Coffee Lake, и прошедшие недели явно продемонстрировали, что выпущены они были несколько поспешно. Показателей плохой подготовки анонса - масса. Доступность новинок в рознице крайне ограничена, а цены вследствие дефицита заметно завышаются продавцами. Не идеально обстоят дела и с материнскими платами: на прилавках имеется достаточно широкий выбор LGA1151-материнок на базе совместимого с Coffee Lake набора логики Z370, но многие из них вызывают серьёзные нарекания со стороны пользователей в связи с постоянно вскрывающимися недоработками в прошивках.

Тем не менее, несмотря на все имеющиеся проблемы, платформы на базе Coffee Lake оцениваются сообществом сугубо положительно. Добавив в новые процессоры дополнительные вычислительные ядра, компания Intel сделала именно то, чего от неё давно хотели пользователи. Производительность массовых интеловских процессоров совершила заметный рывок, и в результате представители нового семейства стали очень хорошими кандидатами на попадание в современные десктопы, даже несмотря на все «детские болезни» и существование конкурирующих процессоров AMD Ryzen.

Мы уже высказывали собственное мнение о Coffee Lake в обзоре : тестирование тогда показало, что компания Intel смогла быстро наверстать наметившееся было отставание от конкурента в отдельных аспектах. Тем не менее при всех своих достоинствах Core i7-8700K не слишком подходит для массового пользователя. Мало того, что с переходом на дизайн Coffee Lake компания Intel нарастила аппетиты и оценила свой новый флагманский массовый процессор дороже, чем раньше, подняв рекомендованную цену Core i7-8700K с привычных $339 до $359. К тому же реальные розничные цены заходят далеко за эту черту. Например, в крупнейших североамериканских онлайн-магазинах за этот чип попросят как минимум $410 (при условии наличия на складе), а отечественную розницу не сдерживают и такие рамки.

Понятное дело, покупать массовый процессор за сумму, превышающую 400 долларов, готовы далеко не все. Поэтому мы решили обратить внимание на новинки классом ниже, которые относятся к семейству Core i5, а не Core i7. Как и раньше, такие CPU отличаются от своих старших собратьев отсутствием поддержки технологии Hyper-Threading, то есть шестиядерное строение они сохраняют. А это значит, что по соотношению цены и производительности Coffee Lake в обличии Core i5 могут быть ещё привлекательнее, чем Core i7. Они тоже способны предложить возросшее по сравнению с предшественниками число вычислительных ядер, но даже согласно официальному прайс-листу их стоимость ниже, чем у Core i7, как минимум на $100.

Раньше мы часто рекомендовали разблокированные процессоры серии Core i5 для настольных компьютеров среднего уровня, в первую очередь игровой направленности. Теперь же, кажется, обзаведясь парой дополнительных ядер, эта серия предлагает ещё лучшее сочетание потребительских характеристик. Именно поэтому мы решили провести подробное тестирование старшего Coffee Lake серии Core i5 и попробовать оценить, намного ли такой вариант хуже по сравнению с обладающим технологией Hyper-Threading процессором Core i7 и как он противостоит конкурирующим предложениям серий Ryzen 7 и Ryzen 5, которые, несмотря на проведённую Intel модернизацию модельного ряда, продолжают иметь превосходство по числу потоков, а иногда и ядер.

Core i5-8600K в подробностях

Процессор Core i5-8600K, как и Core i7-8700K, вполне можно охарактеризовать как типичного представителя семейства Coffee Lake - он имеет в своём распоряжении шесть вычислительных ядер. Главное отличие от старшего собрата - отключённая технология Hyper-Threading: именно этим десктопные Core i5 всегда и отличались от Core i7 с самого момента появления данных торговых марок в 2011 году. Приверженность Intel этому принципу делает сегодняшний Core i5-8600K особенно привлекательным — по сравнению с предшественником поколения Kaby Lake вычислительная мощность новинки значительно выросла: у неё стало не только в полтора раза больше ядер, но и поднялись рабочие частоты. Всё это отлично видно при сопоставлении спецификаций.

Core i5-8 600K Core i 5 -7 6 00K
Кодовое имя Coffee Lake Kaby Lake

Технология производства, нм
14++ 14+
Ядра/потоки 6/6 4/4
Базовая частота, ГГц 3,6 3,8
Частота Turbo Boost 2.0, ГГц 4,3 4,2
L3-кеш, Мбайт
9
6
Поддержка памяти DDR4-2666 DDR4-2400
Интегрированная графика GT2: 24 EU GT2: 24 EU
Макс. частота графического ядра, ГГц 1,15 1,15
Линии PCI Express 16 16
TDP, Вт 95 91
Сокет LGA1151 v2 LGA1151 v1
Официальная цена $257 $242

Никаких улучшений на микроархитектурном уровне в Coffee Lake нет, то есть при однопоточной нагрузке и на одинаковой тактовой частоте новые процессоры идентичны по производительности Kaby Lake. Однако для производства новинок используется улучшенный техпроцесс 14++ нм. Пока Intel никак не удаётся приступить к выпуску крупных процессорных кристаллов по более совершенной 10-нм технологии, начало применения которой для изготовления десктопных процессоров отодвинулось как минимум до второй половины 2018 года, инженеры занимаются оптимизацией старого 14-нм техпроцесса. И отнюдь не без успеха. Сегодняшняя технология 14++ нм по сравнению с изначальной версией техпроцесса смогла обеспечить солидное снижение токов утечки, которое вылилось в 52-процентное уменьшение тепловыделения при том же уровне производительности. Именно благодаря этому достижению в Core i5-8600K стало в полтора раза больше ядер, а максимальная частота в турборежиме увеличилась с 4,2 ГГц до 4,3 ГГц.

Правда, некоторые опасения вызывает снижение в характеристиках базовой частоты: для Core i5-8600K она установлена в 3,6 ГГц, что на 200 МГц меньше, чем у соответствующего Kaby Lake. Однако это отставание должно компенсироваться агрессивной технологией Turbo Boost 2.0, которая в Coffee Lake умеет повышать частоту процессора гораздо сильнее, чем раньше. Даже при нагрузке на все шесть ядер, если энергопотребление и тепловыделение Core i5-8600K остаётся в установленных рамках, рабочая частота процессора может возрастать до 4,1 ГГц. В результате с учётом активного турборежима Core i5-8600K должен всегда опережать своего четырёхъядерного предшественника.

Номинальная частота Максимальная частота Turbo Boost 2.0
1 ядро 2 ядра 3 ядра 4 ядра 5 ядер 6 ядер
Core i5-8600K 3,6 ГГц 4,3 ГГц 4,2 ГГц 4,2 ГГц 4,2 ГГц 4,1 ГГц 4,1 ГГц
Core i5-7600K 3,8 ГГц 4,2 ГГц 4,1 ГГц 4,1 ГГц 4,0 ГГц - -

Помимо увеличенных частот и дополнительных ядер Core i5-8600K может предложить увеличенный на 3 Мбайт кеш третьего уровня, а также официальную поддержку двухканальной DDR4-2666 с пропускной способностью до 42,7 Гбайт/с против DDR4-2400 с пропускной способностью 38,4 Гбайт/с.

Правда, чтобы получить все преимущества, предоставляемые новинкой, потребуется новая системная плата на базе набора логики Intel Z370. В новой версии LGA1151, которая используется процессорами Coffee Lake, добавлены дополнительные линии питания, и в старых LGA1151-платах на базе Z270 или Z170 (и других чипсетов прошлых поколений) процессоры восьмитысячной серии не работают. Зато все без исключения совместимые с Core i5-8600K новые платы могут обеспечить его разгон. Он, как и Core i7-8700K, имеет разблокированный множитель, поэтому с помощью пары манипуляций в BIOS материнской платы его рабочую частоту можно легко увеличить, как можно увеличить и частоту, на которой работает L3-кеш и системная память. При этом для оверклокерских LGA1151-процессоров семейства Coffee Lake заявляется соответствие 95-ваттному тепловому пакету, а это значит, что теоретически их умеренный разгон вполне возможен без применения громоздких воздушных или жидкостных систем охлаждения.

Нет никаких сомнений, что Core i5-8600K лучше своего предшественника поколения Kaby Lake, Core i5-7600K, по всем параметрам. Однако сравнивать этот процессор теперь нужно не только с внутренними конкурентами, но и с теми процессорами, которые в том же ценовом сегменте предлагает компания AMD. Реальная розничная цена Core i5-8600K на сегодняшний день составляет порядка $300, и за эту сумму можно купить восьмиядерный Ryzen 7 1700. Если же ориентироваться на официальные цены, то прямым конкурентом для старшего Core i5 является шестиядерный Ryzen 5 1600X. Давайте сопоставим спецификации Core i5-8600K с обоими альтернативами AMD.

Intel AMD
Core i5-8600K Ryzen 7 1700 Ryzen 5 1600X
Сокет LGA1151 v2 Socket AM4 Socket AM4
Ядра/Потоки 6/6 8/16 6/12
Базовая частота 3,6 ГГц 3,0 ГГц 3,6 ГГц
Турборежим/XFR 4,3 ГГц 3,7/3,75 ГГц 4,0/4,1 ГГц
Разгон Есть Есть Есть
L 2-кеш 256 Кбайт на ядро 512 Кбайт на ядро 512 Кбайт на ядро
L 3-кеш 9 Мбайт 2 × 8 Мбайт 2 × 8 Мбайт
Память DDR4-2666 DDR4-2666 DDR4-2666
Линии PCIe 16 16 16
Графическое ядро Есть Нет Нет
TDP 95 Вт 65 Вт 95 Вт
Официальная цена $257 $329 $249

С точки зрения формальных характеристик предложения AMD продолжают выглядеть привлекательно, даже несмотря на то, что компания Intel в процессорах Coffee Lake существенно увеличила количество вычислительных ядер. Ryzen 5 и Ryzen 7 продолжают превосходить соперников как минимум по числу исполняемых потоков и по размерам кеш-памяти. Однако на стороне Coffee Lake лидерство по тактовым частотам, плюс не следует забывать и о том, что современные процессорные ядра Intel имеют явное преимущество по показателю IPC - числу исполняемых за такт инструкций.

Как показали наши предыдущие тесты, в ресурсоёмких приложениях шестиядерный Core i7-8700K выступает как минимум не хуже, чем восьмиядерный Ryzen 7 1700X. Но разрыв в характеристиках Core i5-8600K и Ryzen 7 1700 существеннее: в то время как Intel в новых процессорах среднего уровня блокирует Hyper-Threading, технология SMT в Ryzen присутствует не только в восьмиядерных Ryzen 7, но в шестиядерных Ryzen 5. А это значит, что ситуация в среднем ценовом сегменте может остаться неоднозначной даже после обновления модельного ряда процессоров Intel.

Естественно, все точки над «ё» расставят подробные тесты, однако переходить к ним пока рано.

Нас обманули: особенности турборежима в Coffee Lake

Когда мы впервые знакомились с процессорами поколения Coffee Lake и тестировали , мы отмечали, что его реальная частота всегда соответствует максимальной разрешённой турбочастоте для соответствующей нагрузки. Это положительно сказывалось на производительности: ещё бы, Core i7-8700K с номинальной частотой 3,7 ГГц даже при максимальной AVX-нагрузке на все шесть ядер «шпарил» на 4,3 ГГц, не оставляя никаких сомнений в превосходстве нового процессорного дизайна технологии и 14++ нм. Правда, некоторое недоумение при этом вызывали тепловые и электрические показатели. Дело в том, что в то время как тепловой пакет Core i7-8700K установлен в 95 Вт, а максимально допустимая температура составляет 100 градусов, его реальное потребление под максимальной нагрузкой доходило до 140-145 Вт, а температура с высокоэффективным кулером Noctua NH-U14S - до 88 градусов. Очень сомнительно, что такой режим работы CPU можно считать нормальным.

Ещё большие вопросы относительно корректности работы процессоров Coffee Lake в турборежиме стали возникать тогда, когда мы начали знакомиться с образцом Core i5-8600K. На этот раз в наших руках оказался серийный экземпляр CPU, и списать наблюдавшиеся с потреблением и температурами странности на особенности инженерного семпла было уже невозможно. А причин для удивления только прибавилось. Дело в том, что в номинальном режиме при полной AVX-нагрузке, которую по традиции мы создавали утилитой LinX 0.8.0, температура выходила за всякие рамки разумного.

Как видно по приведённому скриншоту, частота процессора под полной нагрузкой в LinX 0.8.0 составляет 4,1 ГГц - это максимально возможная частота Core i5-8600K при задействовании всех шести ядер. Потребление CPU при этом достигает уже знакомых нам 145 Вт, а температура доходит до разрешённого спецификацией максимума - 99 градусов. И это с кулером Noctua NH-U14S, обвинять который в неумении противостоять высокой тепловой мощности чипа нет ни малейших оснований! Понятно, что столь высокая температура во многом связана с низкой эффективностью используемого в процессорах Intel внутреннего термоинтерфейса, но в то же время вполне очевидно, что никакого критического нагрева Core i5-8600K в номинальном режиме быть всё равно не должно.

Поэтому мы обратились за разъяснениями к инженерам Intel, которые дали весьма обескураживающий комментарий: на многих LGA1151-материнских платах, основанных на наборе логики Z370, работа технологии Turbo Boost 2.0 реализована неверно. В попытках выжать из новых процессоров максимальную эффективность, производители плат намеренно игнорируют установленные ограничения по энергопотреблению процессоров, и это действительно может приводить к перегреву. К сожалению, используемая нами материнская плата ASUS Strix Z370-F Gaming оказалась ярким примером платы с неправильно сконфигурированным турборежимом. Поэтому нет ничего удивительного, что при испытаниях на этой платформе Core i7-8700K и Core i5-8600K демонстрировали зашкаливающую температуру и энергопотребление.

На самом же деле процессоры семейства Coffee Lake при активации турборежима вовсе не должны работать на максимальных частотах, определённых для нагрузки на то или иное количество ядер. Это - лишь верхняя граница, и к ней прилагаются ещё некоторые условия. Главное из них: потребление процессора на длительных временных отрезках должно не выходить за установленные ограничения по TDP (то есть за пределы 95 Вт для Core i7-8700K и Core i5-8600K) и лишь кратковременно может достигать 120 Вт. Однако проверку этих дополнительных условий многие производители плат заблокировали на уровне BIOS, и сейчас Intel ведёт работу с партнёрами с тем, чтобы корректная работа технологии Turbo Boost 2.0 была восстановлена.

Понятно, что это повлечёт за собой некоторое снижение производительности новых процессоров при высокой вычислительной нагрузке, но зато температурный режим Coffee Lake сможет, наконец, не внушать никаких опасений. И некоторых успехов в наставлении производителей плат представители Intel уже смогли достичь. Например, в последних версиях BIOS для нашей платы ASUS Strix Z370-F Gaming (0419 и 0420) реализация турборежима уже вполне соответствует норме. После обновления прошивки частота Core i5-8600K при прохождении тестирования в LinX 0.8.0 на отметке в 4,1 ГГц уже не держится и снижается до 3,5 ГГц, благодаря чему температура и потребление остаётся во вполне допустимых рамках: 95 Вт и 72 градуса соответственно.

Что же касается производительности, то переход материнской платы к корректной работе с множителем ожидаемо привёл к 10-процентному снижению показателя производительности в тесте Linpack (с 330 до 300 Гфлоп). Однако в данном случае имеет место максимальное занижение частоты, так как Linpack пользуется чрезвычайно энергоёмкими AVX2-инструкциями. Например, при прохождении тестирования в Prime95 с деактивированными AVX-инструкциями рабочая частота Core i5-8600K составляет уже 3,9 ГГц, что заметно ближе к установленному для полной нагрузки максимуму, но всё же не дотягивает до него.

Тем не менее нельзя не обратить внимание на тот факт, что из-за неправильной поддержки турборежима материнскими платами результаты измерений производительности Coffee Lake, сделанные в момент или до анонса процессоров этого семейства, оказались несколько завышены (это касается не только нашего, но и подавляющего большинства обзоров, доступных в Сети). На самом же деле производительность Coffee Lake в номинальном режиме при тяжёлой многопоточной нагрузке будет где-то на 3-7 процентов ниже полученной в первоначальных тестированиях, но зато в реальности они теперь смогут функционировать при более адекватной температуре и демонстрировать куда более умеренное энергопотребление.

Такая работа процессоров с множителями, когда при тяжёлой вычислительной нагрузке частота заметно падает, причём порой даже ниже базового паспортного значения, раньше была характерна исключительно для платформы HEDT, где процессоры обладают значительным числом вычислительных ядер. Однако с внедрением дизайна Coffee Lake многоядерными стали и обычные массовые модели, поэтому нет ничего странного в том, что коэффициент умножения теперь динамически подстраивается к потреблению и в платформе LGA1151.

Именно поэтому компания Intel приняла решение прекратить детально описывать значения частоты турборежима при различной нагрузке, ограничиваясь указанием лишь только общего максимума, - подробности теперь не имеют особого смысла. Дело в том, что частоты, которые заложены в турборежиме, в реальности могут быть недостижимы. Всё зависит от текущего уровня энергопотребления, а оно не только определяется характером нагрузки, но и может различаться в том числе и для разных экземпляров процессоров в зависимости от качества полупроводникового кристалла и номинального напряжения VID.

ВведениеГлядя на современное состояние процессорного рынка, со всей уверенностью можно говорить о том, что тактовая частота перестала быть главным мерилом привлекательности современных продуктов. Например, производители уже давно перешли от маркировки моделей процессоров по частоте к рейтинговым номерам, которые присваиваются совсем по другим принципам. В результате произошедших изменений поменялись и правила конкурентной борьбы между AMD и Intel. Ещё совсем недавно эти компании соревновались за покорение очередных частотных рубежей, но сегодня гораздо большее значение для обеих компаний приобрела «гонка за ядрами» - теперь производители стремятся первыми выпустить CPU с наибольшим количеством вычислительных ядер.

Лидирует в этом негласном соревновании на сегодняшний день компания AMD. Она уже сейчас готова предложить потребителям серверные процессоры Opteron 6100, известные также под кодовым именем Magny-Cours, обладающие двенадцатью вычислительными ядрами. У Intel же предельное число ядер в процессоре пока дошло только до восьми: столько ядер насчитывается в серверных моделях Xeon серий 7500 и 6500, называемых также Beckton или Nehalem-EX. Впрочем, следует понимать, что связь между числом ядер и уровнем производительности не такая уж и очевидная. Пропорциональный рост быстродействия при переходе на CPU с большим числом ядер наблюдается лишь в специально оптимизированных задачах, более типичных именно для серверного рынка, а потому ни AMD, ни Intel не стремятся к развязыванию подобной многоядерной гонки среди процессоров для настольных процессоров.

Но некоторые отголоски «гонки за ядрами» до обычных потребителей всё же доносятся. Так, в настоящее время мы переживаем момент прихода в настольные компьютеры процессоров с шестью вычислительными ядрами. Первый шаг в этом направлении сделала уже компания Intel, совсем недавно выпустившая свой шестиядерный процессор в семействе Core i7. Но в то же время этот шаг микропроцессорного гиганта носит явно пробный характер. Во-первых, модель с шестью ядрами предлагается только одна – Core i7-980X , а, во-вторых, она относится к довольно-таки дорогой серии Extreme Edition, ориентированной на очень узкий круг обеспеченных энтузиастов. Плюс к тому, при выпуске своего шестиядерника компания Intel задействовала и новый технологический процесс с 32-нм нормами: на примере этого процессора легко можно осуществлять обкатку техпроцесса – проблемы ни с недопоставками, ни с чрезмерно высокой себестоимостью ему явно не грозят. Иными словами, Intel, конечно, вывела на рынок шестиядерный процессор для домашних пользователей первой, но сделала это чисто формально, скорее чтобы просто «отметиться» в качестве первопроходца и морально подготовить пользователей к тому, что будущее – за многоядерными процессорами.

Традиционный антагонист Intel, компания AMD, решила придерживаться другой идеологии. В ответ на появление шестиядерного процессора Core i7-980X премиального ценового сегмента этот производитель хочет начать внедрение шестиядерных процессоров в общеупотребительные компьютеры среднего ценового диапазона. И, надо сказать, у AMD для этого есть все необходимые ресурсы. Шестиядерник AMD использует уже давно «обкатанное» в серверном сегменте ядро, а для его производства применяется вполне зрелая 45-нм технология. Так что новый шестиядерный процессор Phenom II X6, с которым нам предстоит познакомиться в этом материале, не является прямым конкурентом для Core i7-980X. AMD просто предлагает нам новый вариант для обычных компьютеров, в которых до сих пор применялись только двухъдерные и четырёхъядерные CPU. Но вот имеет ли смысл широко применять шестиядерные процессоры в настольных системах сегодня, или AMD бежит впереди паровоза – именно на этот вопрос мы и постараемся ответить в нашем исследовании.

Thuban: Istanbul для Socket AM3

Шестиядерный процессор производства AMD – это далеко не новинка. Только ранее шестиядерники, известные под кодовым именем Istanbul, эта компания поставляла исключительно на рынок серверов и рабочих станций, что, впрочем, не мешало при желании применять их и в десктопах, чему мы посвятили отдельную статью . Теперь же процессоры, аналогичные Istanbul, пришли в настольные компьютеры официально. Им присвоено кодовое имя Thuban, а продаваться они будут под торговой маркой Phenom II X6.

Ответ на вопрос, почему выпустить десктопный шестиядерник AMD решила только сейчас, вполне очевиден. Нет, дело не во внедрении нового техпроцесса. Просто используемый этой компанией для производства современных процессоров технологический процесс с 45-нм проектными нормами дошёл до той степени зрелости, когда себестоимость достаточно крупных шестиядерных полупроводниковых кристаллов позволяет устанавливать на процессоры на их основе цены, приемлемые для индивидуальных покупателей. Более того, учитывая тот факт, что текущие процессоры AMD с микроархитектурой Stars (K10.5) не могут соперничать по быстродействию с интеловскими предложениями верхней ценовой категории, производитель собирается продавать Phenom II X6 по весьма привлекательным ценам – от 200 до 300 долларов.

И, тем не менее, в основе процессоров Phenom II X6 лежит совершенно полноценный шестиядерный монолитный полупроводниковый кристалл с площадью 346 кв. мм., то есть ровно такой же, как и применяется в серверных процессорах семейства Opteron 2400 и 8400.



Конечно, число шин HyperTransport в десктопном шестиядерном кристалле Thuban сокращено до одной, а контроллер памяти переориентирован на поддержку нерегистровых модулей, но это – минорные и малозначительные изменения. Вместе с этим можно сказать, что Thuban является и прямым потомком четырёхъядерных процессоров Deneb, в которых просто было добавлено два дополнительных ядра. Все же общие блоки, такие как контроллер памяти или шина HyperTransport в Thuban абсолютно такие же, как в четырехъядерных процессорах Phenom II X4. Даже размер разделяемой кэш-памяти третьего уровня остался тем же – 6 Мбайт.



Совершенно неудивительно, что новые шестиядерные процессоры Phenom II X6 полностью совместимы с существующими Socket AM3 и Socket AM2+ материнскими платами. AMD продолжает блюсти установленные ей же самой принципы преемственности платформ. Единственное, что может потребоваться для обеспечения полной работоспособности новых процессоров в старых материнских платах – это обновление прошивки.

Вместе с тем AMD подготовила для своих приверженцев и весьма неожиданный сюрприз. Тактовые частоты процессоров Phenom II X6 будут достигать 3.2 ГГц, что существенно превышает частоту старших серверных процессоров с шестью вычислительными ядрами. Поблагодарить за это мы должны производственного партнёра AMD – компанию Globalfoundries, которая освоила применение нового материала с низкой диэлектрической проницаемостью между слоями проводников. В результате, мы получили шестиядерные процессоры с относительно высокой тактовой частотой, но с расчётным тепловыделением, не выходящим за привычный 125-ваттный рубеж.

Кроме того, AMD придумали и ещё одно усовершенствование, которое повышает привлекательность Phenom II X6 в общеупотребительных применениях – технологию Turbo CORE. О ней – подробнее.

Технология AMD Turbo CORE

Одним из ключевых усовершенствований новых процессоров семейства Thuban стало появление технологии Turbo CORE – своеобразного ответа компании AMD на интеловский Turbo Boost.

Напомним, суть технологии Turbo Boost, реализованной в процессорах Intel Core i5 и Core i7, заключается в увеличении их тактовой частоты в те моменты, когда работой загружены не все вычислительные ядра. Благодаря этому трюку современные многоядерные процессоры компании Intel, тактовая частота которых обычно оказывается ниже, чем у двухъядерных, демонстрируют хорошую производительность не только в многопоточных приложениях, но и при слабо распараллеливаемой нагрузке. До настоящего времени AMD не могла ничего противопоставить Turbo Boost, но в новых шестиядерных процессорах симметричный ответ, наконец, был найден.

При этом AMD не пошла по сложному, проторённому инженерами Intel пути. В процессорах Phenom II X6 нет никаких специальных управляющих частотой узлов, интерактивно отслеживающих температуру процессора и потребляемый ими ток. Новые шестиядерники AMD с точки зрения микроархитектуры вообще мало отличаются от своих предшественников. Поэтому, технология AMD Turbo CORE реализована наиболее простым (или даже кондовым) методом – через «расширение» технологии Cool"n"Quiet. Иными словами, решение об увеличении тактовой частоты процессоры AMD Phenom II X6 принимают основываясь лишь на одном единственном факторе – количестве загруженных работой процессорных ядер.



То есть в реальности технология AMD Turbo CORE работает так: как только в энергосберегающем состоянии со сниженной в рамках технологии Cool"n"Quiet до 800 МГц частотой оказывается три или более процессорных ядер – процессор поднимает частоту активных ядер на 400 или на 500 МГц (в зависимости от модели процессора). При этом для обеспечения стабильности работы на повышенной частоте напряжение питания процессора поднимается на 0.15 В. Немаловажно, что при таком автоматическом разгоне энергопотребление и тепловыделение процессора не выходит за установленный 125-ваттный предел – рост потребления активных ядер компенсируется тем, что простаивающие ядра работают на 800-мегагерцовой частоте. Но подчеркнём ещё раз, неактивные ядра в AMD Phenom II X6 не отключаются. Несмотря на то, что их частота во время простоя понижается, при включении турбо-режима они вместе с разогнанными ядрами получают повышенное напряжение питания. То есть, технология AMD Turbo CORE в этом смысле наносит определённый ущёрб экономичности процессора в состояниях с его частичной загрузкой.

Для представителей линейки процессоров Thuban технология Turbo CORE выглядит следующим образом.



Пока что AMD анонсировала два процессора из этого списка: 125-ваттные Phenom II X6 1090T и 1055T, остальные же модели будут представлены немного позже – в течение ближайших месяцев. Но технология AMD Turbo CORE и в актуальных, и в перспективных моделях работает совершенно одинаково. Для примера мы посмотрели на её работу у Phenom II X6 1090T. В полном соответствии с теорией при нагрузке на 4 и большее количество ядер их частота равнялась 3.2 ГГц.



Но как только число загруженных работой ядер снижалось до трёх – коэффициент умножения увеличивался, и активные ядра выходили на частоту 3.6 ГГц.



Именно благодаря технологии Turbo CORE новый процессор Phenom II X6 1090T может с полным правом носить звание флагмана в линейке предлагаемых AMD продуктов. Несмотря на то, что выпущенный в августе прошлого года четырёхъядерный Phenom II X4 965 имеет более высокую номинальную тактовую частоту – 3.4 ГГц, старший шестиядерник будет быстрее его в большинстве задач, ведь при загрузке трёх или меньшего количества процессорных ядер Phenom II X6 1090T работает на частоте 3.6 ГГц. Чтобы проиллюстрировать этот факт мы сравнили производительность Phenom II X6 1090T и Phenom II X4 965 в Fritz Chess Benchmark при задействовании для расчётов различного количества потоков.



Как и ожидалось, Phenom II X4 965 оказывается производительнее чем Phenom II X6 1090T со включённой технологией Turbo CORE в единственном случае – когда вычисление производятся четырьмя ядрами. Именно изменением таковой частоты в рамках этой технологии и объясняется тот факт, что прирост быстродействия при переходе от расчётов в три потока к четырём у шестиядерного процессора существенно меньше прироста скорости во всех остальных случаях.

Но, как было сказано выше, за увеличение производительности при неполной загрузке процессора работой приходится платить увеличившимся энергопотреблением. И это не пустые слова – следующий график наглядно показывает, насколько прожорливым становится Phenom II X6 1090T с работающей технологией Turbo CORE. Для снятия показаний мы использовали утилиту Linx 0.6.3 в настройках которой вручную ограничивали количество создаваемых потоков, а измерению подвергалось процессорное энергопотребление по выделенной 12-вольтовой линии питания.



В том случае, если вычислительная нагрузка ложится на одно, два или три из шести процессорных ядер, технология Turbo CORE увеличивает общее энергопотребление процессора на 20-25 Вт. В результате, при трёхпоточной нагрузке Phenom II X6 1090T с активированной технологией Turbo потребляет примерно столько же, сколько расходуется и при загрузке пяти из шести ядер. Очевидно, что столь существенный прирост энергопотребления вызван в первую очередь добавкой к напряжению питания, происходящей при включении турбо-режима.

Таким образом, технология AMD Turbo CORE оказывает положительное влияние на производительность, но при этом не может считаться эффективной с позиции экономии электроэнергии. Однако следует понимать, что её разработчики были существенно ограничены в средствах, ведь Turbo CORE должна быть полностью совместимой с имеющимися Socket AM3 платформами. И здесь уже мы не можем предъявить никаких претензий: данная технология не требует установки никакого программного обеспечения, она прозрачна для операционной системы и вполне нормально работает во всех материнских платах, а для её активации требуется всего лишь поддержка процессоров семейства Thuban в BIOS.



Кстати, параллельно хочется отметить особенность работы Turbo CORE на процессоре Phenom II X6 1090T, который относится к серии Black Edition. Благодаря тому, что этот CPU ориентирован на аудиторию энтузиастов-оверклокеров, он позволяет не только простой разгон через изменение коэффициента умножения, но и более гибкое конфигурирование турбо-режима. В BIOS Setup вместе с настройкой множителя процессора появляется опция для ручного изменения коэффициента умножения, используемого при активации турбо-режима. Такая возможность предлагается всеми системами с поддержкой технологии Turbo CORE, но исключительно для процессоров Black Edition.

Модельный ряд Phenom II X6

Сегодня компания AMD анонсирует только две модели нового семейства: Phenom II X6 1090T Black Edition и Phenom II X6 1055T.



Phenom II X6 1090T


Формальные характеристики этих процессоров мы приводим в следующей таблице.



А вот такие сведения о старшей модели Phenom II X6 1090T выдаёт диагностическая утилита CPU-Z.



Однако двумя моделями AMD не собирается ограничиваться, в ближайшие месяцы количество различных представителей шестиядерных процессоров Phenom II X6 будет увеличиваться, плюс к ним прибавятся и четырёхъядерные процессоры, основанные на аналогичном ядре Thuban с отключенной парой ядер.

Как мы тестировали

Для сравнения с новыми шестиядерными процессорами компании AMD мы в первую очередь выбрали двухъядерные и четырёхъядерные процессоры конкурента, попадающие в ту же ценовую категорию. «Вне конкурса» в тестах принимает участие и шестиядерный процессор Core i7-980X, который, несомненно, является гораздо более быстродействующим решением. Кроме того, на диаграммах мы приводим и результаты старшего четырёхъядерного процессора AMD, преемниками которого в среднем ценовом сегменте должны стать Phenom II X6. В итоге, в состав тестовых систем вошёл следующий набор комплектующих:

Процессоры:

AMD Phenom II X6 1090T (Thuban, 6 ядер/6 потоков, 3.2 ГГц, 6 Мбайт L3);
AMD Phenom II X6 1055T (Thuban, 6 ядер/6 потоков, 2.8 ГГц, 6 Мбайт L3);
AMD Phenom II X4 965 (Deneb, 4 ядра/4 потока, 3.4 ГГц, 6 Мбайт L3);
Intel Core i7-980X (Gulftown, 6 ядер/12 потоков, 3.33 ГГц, 12 Мбайт L3);
Intel Core i7-930 (Bloomfield, 4 ядра/8 потоков, 2.8 ГГц, 8 Мбайт L3);
Intel Core i7-920 (Bloomfield, 4 ядра/8 потоков, 2.66 ГГц, 8 Мбайт L3);
Intel Core i7-860 (Lynnfield, 4 ядра/8 потоков, 2.8 ГГц, 8 Мбайт L3);
Intel Core i5-750 (Lynnfield, 4 ядра/4 потока, 2.66 ГГц, 8 Мбайт L3);
Intel Core i5-670 (Clarkdale, 2 ядра/4 потока, 3.46 ГГц, 4 Мбайта L3).

Материнские платы:

ASUS M4A89GTD PRO/USB3 (Socket AM3, AMD 890GX + SB850, DDR3 SDRAM);
ASUS P7P55D Premium (LGA1156, Intel P55 Express);
Gigabyte X58A-UD5 (LGA1366, Intel X58 Express).

Память:

2 x 2 GB, DDR3-1600 SDRAM, 9-9-9-24 (Kingston KHX1600C8D3K2/4GX);
3 x 2 GB, DDR3-1600 SDRAM, 9-9-9-24 (Crucial BL3KIT25664TG1608).

Графическая карта: ATI Radeon HD 5870.
Жёсткий диск: Western Digital VelociRaptor WD3000HLFS.
Блок питания: Tagan TG880-U33II (880 Вт).
Операционная система: Microsoft Windows 7 Ultimate x64.
Драйверы:

Intel Chipset Driver 9.1.1.1025;
ATI Catalyst 10.3 Display Driver.

Производительность

Общая производительность















Тест SYSmark 2007, показывающий производительность систем при обычной комплексной работе в распространённых приложениях, оценивает новые шестиядерные процессоры AMD не слишком высоко. Дело в том, что возможность разложить нагрузку на шесть равнозначных потоков могут далеко не все приложения, и это сильно сказывается в данном случае. Что же касается технологии Turbo CORE, то в данном случае, как показывают результаты, она роль панацеи не выполняет. Да, производительность Phenom II X6 1090T оказывается на уровне Phenom II X4 965, но не более того. В общем же, шестиядерники AMD уступают процессорам Intel, которые можно купить за сумму 200-300 долларов.

В то же время процессоры Phenom II X6 весьма неплохо справляются с работой над видеоконтентом. Их соответствующий результат, формируемый на основании измерения производительности в Adobe After Effects, Adobe Photoshop, Adobe Illustrator, Sony Vegas иWindows Media Encoder, оказывается на одном уровне с показателями быстродействия младших Lynnfield, которые хоть и имеют по четыре процессорных ядра, но попадают в одну ценовую категорию с шестиядерниками AMD и являются их прямыми конкурентами.

Игровая производительность












В том, что современные игры не могут использовать преимущества шестиядерных процессоров, мы убедились ещё во время тестов Gulftown. В данном случае можно лишь подтвердить тот вывод – геймерам шестиядерные процессоры Phenom II X6 пока что явно ни к чему. Phenom II X4 965 слегка опережает оба шестиядерника AMD в большинстве случаев, несмотря на то, что AMD постаралась компенсировать их более низкую тактовую частоту технологией Turbo CORE. А в Colin McRae: DiRT2 оба Phenom II X6 и вовсе демонстрируют подозрительно низкое число fps, что, очевидно, связанно с особенностями оптимизации данной игры. Иными словами, лучшим выбором для геймеров на данный момент представляются четырёхъядерные процессоры Intel - именно их микроархитектура наиболее соответствует нагрузке, создаваемой большинством игр.

Впрочем, справедливости ради следует заметить, что мощности и Phenom II X4, и Phenom II X6 вполне хватает для обеспечения достаточно высокого уровня fps. А это значит, что в реальности в игровых системах узким местом будет не процессор, а видеокарта, к правильному выбору которой геймеры должны относиться со всей ответственностью.

Синтетические тесты



Тест на скорость вычисления 32 миллионов знаков после запятой числа π мы вставили в наше исследование главным образом из-за того, что он использует лишь один вычислительный поток. Это делает его превосходным полигоном для сравнения процессоров, работающих в турбо-режиме, который теперь поддерживается CPU не только производства Intel, но и AMD. И, как видно по диаграммам, технология Turbo CORE, реализованная в Phenom II X6, оказывается вполне эффективной. Старший шестиядерный процессор AMD заметно обгоняет старшего Phenom IIX4, приближаясь по результату к Core i7-860, работающему при однопоточной нагрузке на частоте 3.46 ГГц.






В тесте 3DMark Vantage, процессорная составляющая которого превосходно распараллеливает нагрузку по произвольному числу процессорных ядер, Phenom II X6 своими достижениями не блещут. Максимум, чем они могут похвастать, это – превосходством над четырёхъядерным Core i5-750. Процессоры же Core i7, которые в дополнение к своим четырём ядрам располагают и четырьмя виртуальными ядрами, реализованными на основе технологии Hyper-Threading, оказываются значительно быстрее.

Производительность в приложениях





















Измерив производительность Phenom II X6 в нескольких распространённых приложениях, мы приходим к неутешительному выводу, что новые шестиядерники AMD могут быть достойными конкурентами только четырёхъядерным процессорам конкурента, не поддерживающим технологию Hyper-Threading. Процессоры же семейства Core i7, в которых эта технология имеется, в большинстве случаев будут показывать более высокую скорость. Так что Phenom II X6, видимо, следует рассматривать как альтернативу серии Core i5, но не более того.

Впрочем, описанная картина наблюдается всё-таки не всегда. Существует целый пласт задач, для которых новые процессоры AMD подходят весьма хорошо. Это задачи, связанные с обработкой и перекодированием видео. В таких приложениях относительное быстродействие Phenom II X6 выглядит гораздо лучше, чем во всех остальных случаях, в них они выступают даже успешнее, чем Core i7-860 или i7-930. Так что если сфера ваших интересов достаточно плотно связана с работой с медиа-контентом, мы искренне рекомендуем присмотреться к новым процессорам AMD.

Энергопотребление

Формально увеличение числа ядер в новых процессорах Phenom II X6 не повлекло за собой изменения расчётного тепловыделения. Как и другие старшие представители семейства Phenom II, они имеют расчётное тепловыделение, установленное равным 125 Вт. Это – результат как определённых улучшений в технологическом процессе, так и внедрения нового процессорного степпинга. Кроме того, не следует упускать из вида и пониженное по сравнению с четырёхъядерными процессорами Phenom II X4 напряжение питания, ограниченное в спецификации новинок величиной 1.4 В.

Однако в то, что полуторакратное увеличение сложности полупроводникового кристалла мало сказалось на потреблении, верится всё-таки с трудом. Поэтому, для получения более детальной картины мы провели и практическое тестирование энергопотребления. На следующих ниже графиках приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД же самого блока питания в данном случае не учитывается. Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.6.3. Кроме того, для правильной оценки энергопотребления в простое мы активировали все имеющиеся энергосберегающие технологии: C1E, AMD Cool"n"Quiet и Enhanced Intel SpeedStep.



Без нагрузки потребление Socket AM3 систем с процессорами Phenom II X6, действительно, лишь немного больше потребления аналогичной системы с Phenom II X4 965.



Такая же картина наблюдается и под нагрузкой. Как и было обещано, потребление новых шестиядерных процессоров AMD не сильно отличается от потребления старшего Phenom II X4. А это значит, что платформы с Phenom II X6 могут похвастать более высокой энергоэффективностью не только чем их предшественники, но и чем системы с LGA1366 процессорами. Однако LGA1156-платформам по этому параметру они всё-таки проигрывают.

Разгон

В отличие от Intel компания AMD для выпуска своего шестиядерника не стала внедрять более современный технологический процесс. Но, несмотря на это, мы ожидаем от новых процессоров некоторого увеличения частотного потенциала, ведь сделанные производственным партнёром AMD, компанией Globalfoundries, изменения в 45-нм техпроцессе всё же позволили снизить удельное тепловыделение каждого ядра даже без внедрения более «тонких» транзисторов.

Для проверки этой гипотезы мы попытались поразгонять предоставленный нам на тесты Phenom II X6 1090T Black Edition. Напомним, особенность этого процессора заключается в разблокированности его коэффициента умножения, что открывает простой путь к увеличению его тактовой частоты, чем мы и воспользовались в процессе экспериментов. Тестирование на стабильность при разгоне проверялась утилитой LinX 0.6.3. Для охлаждения CPU использовался воздушный кулер Thermalright Ultra-120 eXtreme. Технология Turbo CORE в процессе оверклокерских экспериментов деактивировалась.

В первую очередь мы решили взглянуть на то, на какой максимальной частоте сможет работать шестиядерный Phenom II X6 1090T при использовании его штатного напряжения питания, ведь как мы показали в нашем недавнем материале , именно такой разгон является наиболее энергетически эффективным и не приводит к драматическому росту энергопотребления и тепловыделения.

Практические испытания показали, что стабильность работы без поднятия процессорного напряжения не теряется при максимальной частоте 3.7 ГГц.



Забавно, что без увеличения напряжения питания мы добились работы процессора на частоте, превышающей частоту в турбо режиме, в котором напряжение поднимается автоматически. Иными словами, кажется, для работы Turbo CORE прирост напряжения вовсе не обязателен, однако, отключить его не представляется возможным.

Попробовали мы разогнать процессор и с увеличением напряжения. Для проведения второй части испытаний питание CPU было повышено до 1.475 В – напряжения, подающегося на процессор в турбо-режиме. Мы намеренно не стали сильно «задирать» напряжение, так как его чрезмерное повышение для шестиядерного CPU чревато катастрофическим увеличением энергопотребления и тепловыделения. В таком режиме нам удалось добиться прохождения тестов на стабильность на частоте 4.0 ГГц.



При этом хочется отметить, что процессор мог загружать операционную систему и проходить некоторые тесты и на частоте 4.2 ГГц, но полноценного тестирования на стабильность в таком состоянии он всё-таки не выдерживал. Именно поэтому финальным результатом разгонных экспериментов мы считаем достижение частоты 4.0 ГГц. То есть, частотный потенциал Thuban как минимум не уступает частотному потенциалу четырёхъядерных процессоров семейства Phenom II X4. Так что оверклокеры новинкой AMD, безусловно, должны быть довольны.

К сожалению, мы не можем рассказать подробностей о температурном режиме Phenom II X6 1090T в разогнанном состоянии. Данные о собственной температуре, выдаваемые процессором, не соответствуют действительности и показываемые во всех диагностических утилитах значения оказываются явно ниже реальных величин. Возможно, термодатчик первой партии шестиядерных процессоров оказался неправильно откалиброван, либо эта проблема должна быть исправлена в BIOS материнских плат. Оценить же тепловые и электрические параметры разогнанного процессора можно на основании того факта, что его реальное энергопотребление на частоте 4.0 ГГц под нагрузкой составляет порядка 260 Вт.

4.0 ГГц кажется неплохим достижением для Phenom II X6 1090T, эта частота превышает штатную на 25%. Однако производительность разогнанного шестиядерника AMD оказывается ниже желаемого уровня. Об этом говорят результаты экспресс-теста в рамках которого мы сопоставили производительность разогнанного Phenom II X6 1090T с быстродействием процессора Core i7-930, также разогнанного до 4.0 ГГц.



Как это ни удивительно, но разогнанный до частоты 4 ГГц четырёхъядерник с микроархитектурой Intel Nehalem и технологией Hyper-Threading практически всегда обыгрывает шестиядерный процессор AMD. При этом нельзя и сказать, что частотный потенциал Thuban превосходит потенциал процессоров Core i7 на ядрах Lynnfield и Bloomfield. Так что вывод напрашивается вполне однозначный: микроархитектура современных процессоров Intel при одинаковой тактовой частоте позволяет им существенно обгонять процессоры AMD. И AMD не может компенсировать этот разрыв даже полуторакратным увеличением количества вычислительных ядер. Так что мы вновь возвращаемся к выводу о том, что главный рычаг AMD в борьбе за потребителя – это ценовая политика.

Впрочем, несмотря на это весьма интересным объектом для разгона может стать Phenom II X6 1055T. Этот CPU конкурирует с Core i7-750, в котором поддержки технологии Hyper-Threading нет, и если младшая модель шестиядерника AMD сможет также разгоняться до 4.0 ГГц, то она вполне может обойти по быстродействию своего разогнанного соперника.

Выводы

Думается, никто не станет отрицать тот факт, что микроархитектура Stars (K10.5), используемая в современных процессорах компании AMD, изрядно устарела, и проигрывает микроархитектуре Nehalem по многим позициям. Однако это вовсе не означает, что компании AMD не удаётся выпускать вполне актуальные продукты. В лице Phenom II X6 мы видим очередное тому подтверждение. Конечно, этот шестиядерный CPU не хватает звёзд с неба, но производителю удалось приспособить к имеющейся микроархитектуре такую систему подпорок и противовесов, которая сделала Phenom II X6 достаточно любопытным предложением, способным найти немало приверженцев.

По сравнению с флагманскими процессорами серии Phenom II прошлого поколения, шестиядерная новинка может похвастать сразу несколькими преимуществами. Во-первых, Phenom II X6 имеет в полтора раза больше ядер, что значительно увеличивает его производительность при многопоточной нагрузке. Во-вторых, Phenom II X6 обладает вполне приемлемым уровнем энергопотребления, достигнутым за счёт подстройки 45-нм технологического процесса и снижения напряжения питания процессорного ядра. В-третьих, несмотря на увеличение количества ядер, разгонный потенциал новых процессоров отнюдь не ухудшился – они свободно выходят на 4-гигагерцовый рубеж. В-четвёртых, в Phenom II X6 производитель внедрил технологию Turbo CORE, поднимающую быстродействие при слабо распараллеливаемой нагрузке.

Но по-настоящему привлекательным решением Phenom II X6 делает ценовая политика, в построении которой AMD особенно поднаторела в последнее время. Официальная стоимость Phenom II X6 1090T установлена равной 300 долларам, а цена младшей модели, Phenom II X6 1055T, - 200 долларам. Это значит, что шестиядерные процессоры AMD попадают в среднюю ценовую категорию и являются единственными в своём роде доступными по стоимости многоядерными процессорами. Именно этот фактор и будет, по всей видимости, обеспечивать их популярность у покупателей.

Тем более что шесть процессорных ядер, как показали тесты, могут быть очень полезны при работе с видеоконтентом, а такой род деятельности с каждым днём становится всё более популярным. Впрочем, и во многих других приложениях шесть ядер Phenom II X6 могут оказаться небесполезны. Шестиядерные процессоры подняли планку быстродействия Socket AM3 систем, и теперь они вполне могут соперничать по скорости с платформами, основанными на старших процессорах Core i5, обладающих четырьмя ядрами. Однако, к сожалению, шестиядерные Phenom II X6 оказываются всё же медленнее четырёхъядерных процессоров Core i7, поддерживающих технологию Hyper-Threading.

Но в заключение хочется подчеркнуть, что шесть ядер далеко не всегда оказывается лучше чем четыре. Доля программного обеспечения, не оптимизированного под многоядерные архитектуры, остаётся всё ещё весьма значительной. А это значит, что существует целый пласт задач, для которых наилучшим выбором остаются двухъядерные и четырёхъядерные CPU. К таким задачам, в первую очередь, относятся современные игры. Поэтому, если вы подыскиваете основу для геймерской системы, Phenom II X6 будет далеко не самым оптимальным выбором, несмотря на все его сильные стороны.

Уточнить наличие и стоимость 6-ядерных процессоров

Другие материалы по данной теме


Шесть ядер для десктопа: Intel Core i7-980X Extreme Edition
Энергопотребление разогнанных процессоров
Взгляд в будущее: шестиядерный процессор AMD Istanbul в десктопе

шесть ядер, технология Turbo CORE и демократичная цена

Чуть менее, чем пять лет назад, мы были свидетелями выпуска первых двухъядерных процессоров. Споров вокруг них на тематических форумах было предостаточно, но корень дискуссии о целесообразности перехода состоял в том, что первые двухъядерники ограничивались меньшей частотой, нежели их одноядерные прототипы. Таким образом, в тех программах, где два ядра не задействовались, производительность оказывалась ниже. А поскольку предлагалось второе ядро отнюдь не в качестве бесплатного приложения, а весьма недешево, скептики отмечали, что время многоядерности еще не наступило и надо погодить.

И вот сейчас AMD предлагает уже шесть процессорных ядер, размещенных на одном кристалле и при этом обещает не оставить поводов для дискуссии на тему что лучше: быть богатым или здоровым. Поскольку новые процессоры должны быть, как минимум, не медленнее своих четырехъядерных предшественников, даже в приложениях не имеющих ничего общего с многопоточностью, и пропорционально быстрее - в многопоточных. А ценник чуть ниже $300 за старшую модель явно указывает на то, что принадлежать новая линейка будет к категории продуктов, которую принято «не только пробовать, но и есть».

Первоначально в линейке будут два процессора: Phenom II X6 1090T с номинальной частотой 3,2 ГГц, который мы и рассмотрим в этой статье, и Phenom II X6 1055T с частотой 2,8 ГГц. Рекомендованная цена для старшей модели составляет $289, а младшей $199. Оба процессора имеют уровень TDP в пределах 125 Вт, устанавливаются на платы с разъемом Socket AM3, а также обратно совместимы с AM2+ и даже AM2, но здесь, конечно, многое зависит от расторопности компаний-производителей плат, поскольку необходимы соответствующие обновления BIOS. Помимо наличия двух дополнительных ядер, отличия новинок от моделей из ряда Phenom II X4 900-ой серии состоят в поддержке технологии Turbo CORE, на принципе работы которой мы остановимся чуть подробнее.

В первом приближении AMD Turbo CORE можно назвать аналогом Intel Turbo Boost, реализованной в процессорах Core i7, поскольку она также обеспечивает подъем частоты отдельных ядер при работе в приложениях, не оптимизированных под многопоточность, то есть не использующих все вычислительные ядра процессора. Однако алгоритм управления отличается. Если в процессорах Intel, как мы знаем, разогнанными могут оказаться все 4 ядра, а допустимость разгона определяется встроенным в процессор датчиком, измеряющим фактическую потребляемую мощность. То решение AMD предполагает непременное отключение неиспользуемых ядер «в обмен» на разгон используемых. По умолчанию алгоритм таков: если нагруженными оказываются менее 4 ядер, три ядра переводятся в режим сна (C1), а три активных получают повышенную частоту. Величина повышения определяется моделью процессора, так у 1090T максимум составляет 3,6 ГГц, то есть на 400 МГц выше номинала, а у 1055T - до 3,2 ГГц. Определить в каком из двух режимов должен работать процессор является задачей BIOS, причем для того чтобы все работало, как задумано производителем, должны быть активированы энергосберегающие опции (Cool’n’Quiet и C1E), ведь при работе этой технологии происходит аналогичное переключение множителей для процессорных ядер, только в сторону повышения. Кстати, именно в таком режиме процессор и рекомендуется тестировать, что очень на руку пользователям, поскольку обычно тестеры отключают энергосберегающие опции для получения максимального результата, но в реальных условиях большинство пользователей держат эти функции включенными. Поэтому теперь результаты тестов будут еще ближе к реальному положению дел.

Как нетрудно догадаться, технология, задействующая штатные механизмы управления множителями, должна без каких-либо ограничений поддаваться настройке. Что мы и видим в новой версии AMD OverDrive. Пользователь может задать максимальную частоту и количество ядер, которые будут активны в режиме «буста». Например, если критичные для вас приложения умеют задействовать лишь два ядра, логично будет выбрать несимметричный режим и отправлять в режим сна четыре ядра, а двум активным поднять частоту, скажем, до 4 ГГц.

Поскольку речь зашла о разгоне, сразу скажем несколько слов о наших опытах в этой области. Подробно исследовать этот вопрос мы не успели, но тот факт, что на штатном напряжении и без каких-либо усилий, просто выставив повышенный множитель в BIOS, мы получили стабильные 4,2 ГГц для всех 6 ядер, очень даже вдохновляет!

Наконец, еще одна особенность, которую скорее можно назвать административной: для новых процессоров частота контроллера памяти (CPU NB) не является строго фиксированной, и скорее всего, будет привязана разработчиками BIOS к используемой частоте памяти (в автоматическом режиме). А выбирая этот параметр вручную, рекомендуется при стандартной частоте памяти (DDR3-1333) выбирать частоту CPU NB равную 2200 МГц, а для DDR3-1600 - 2400 МГц. Надо отметить, что и то, и другое выше, чем ранее использовавшаяся частота 2000 МГц.

Конфигурация тестовых стендов

Процессор Phenom II X4 965 Phenom II X6 1090T Core i7 930 Xeon X5680
Название ядра Deneb Thuban Bloomfield Gulftown
Технология пр-ва 45 нм 45 нм 45 нм 32 нм
Частота ядра (std/max), ГГц 3,4 3,2/3,6 2,8/3,06 3,33/3,6
Кол-во ядер (HT-потоков) 4 6 4 (8) 6 (12)
Кэш L1, I/D, КБ 64/64 64/64 32/32 32/32
Кэш L2, КБ 4 х 512 6 х 512 4 х 256 6 х 256
Кэш L3, КБ 6144 6144 8192 12288
Оперативная память DDR2-1066, DDR3-1333 DDR2-1066, DDR3-1333 DDR3-1066 DDR3-1333
Сокет AM2+/AM3 AM2+/AM3 LGA1366 LGA1366
TDP 125 Вт 125 Вт 130 Вт 130 Вт
Цена Н/Д(0) Н/Д(0) Н/Д() $1299()
  • жёсткий диск: Seagate 7200.11 (SATA-2);
  • кулер: Zalman CNPS9700;
  • видеокарта: PowerColor HD5870 1ГБ GDDR5;
  • блок питания: SeaSonic M12D 750 Вт.

Поскольку тестирование совпало с обновлением методики, набор процессоров для сравнения сведен к необходимому и достаточному минимуму. Естественно, интересно узнать, как будет выглядеть новый топ от AMD на фоне своего предшественника: старшей четырехъядерной модели Phenom II X4 965, а от Intel «нельзя обойтись» без примерно равного по цене конкурента (формально их двое: Core i7 860 и Core i7 930, чьи результаты едва ли сильно отличаются в виду равной тактовой частоты и прочих основных характеристик, но второй ближе по позиционированию и в данном случае актуальнее, ведь процессоры AMD мы тестируем на плате с топовым чипсетом, соответственно и от Intel честнее взять топовую платформу LGA1366). Ну и, конечно, законы жанра и прочего шоу-бизнеса требуют в данном случае наличия результатов недавно выпущенного шестиядерника от Intel. Но Core i7 980X в наличии не оказалось, поэтому в таблицах приведены результаты Xeon X5680, имеющего практически идентичные характеристики. Впрочем, конкурентами для рассматриваемого в этой статье процессора ни один из интеловских шестиядерников не является, уже по той причине, что на старшем шестиядернике от AMD можно собрать целый компьютер, уложившись в сумму, которая запрашивается за один лишь Core i7 980X.

Как обычно, результаты всех тестов в абсолютных величинах приведены в сводной таблице , а в статье используются относительные величины, обозначающие сколько процентов составляет производительность рассматриваемого процессора относительно «референсного», чьи результаты взяты за 100% (в роли референса выступает Athlon II X2 630, так что фактически по результатам можно также судить: насколько сильно рассматриваемые процессоры превосходят уровень современных середнячков). Тестирование

Сразу отметим, что в окончательную версию методики, которую мы будем использовать в текущем году, начиная со следующей статьи, возможно, будут включены еще тесты. В данном же случае представляем вниманию читателей своего рода бета-версию, что, кстати, очень сообразуется и с результатами этого тестирования, которые для нового процессора не выглядят как окончательные. Почему? Сейчас все расскажем.

3D-визуализация

Подгруппа интерактивных операций в среде программ 3D-моделирования оказалась единственной, где шестиядерная новинка от AMD уступила четырехъядернику Phenom II X4 965. Как нам хорошо известно, многопоточность в этих задачах до сих пор реализована крайне слабо, и, сразу надо отметить, что с обновлением версий самих программ до актуальных на сегодняшнй день никаких существенных перемен не произошло. Но почему, в таком случае, новому процессору не помог Turbo-режим? Скорее всего причины две: во-первых активно использовать только одно-два ядра и вовсе не использовать остальные ядра, это два разных утверждения, и вполне возможно, что какие-то нересурсоемкие процессы периодически назначаются свободным ядрам, не давая им перейти в пассивное состояние. Тем более, когда речь идет о достаточно сложных программных пакетах, как рассматриваемые в данном случае. А, во-вторых, и это наиболее вероятная причина, которая, скорее всего, не даст новому процессору продемонстрировать всю свою мощь прямо сейчас и в остальных подгруппах, состоит в не до конца отлаженном BIOS. Тем более, что мы вынуждены были использовать предрелизную версию. Вспомните первые тесты Core i7, особенно на примере 920-ой модели, которая поначалу по производительности угодила куда-то в середину линейки Core 2 Duo и была по этой причине воспринята весьма холодно. Но после шлифовки BIOS все стало на свои места, и это не удивительно, поскольку технологии подобные Turbo Boost напрямую зависят от логики управления.

А пока, если посмотреть на подробные результаты, можно отметить, что только в UGS NX новый процессор вышел вперед, хотя этот тест всегда был известен как чуть ли не однопоточный. Видимо, вот тут как раз и смог включиться как следует Turbo CORE? Результаты процессоров Intel в этом приложении получились подозрительно низкими, хотя мы несколько раз перепроверяли, но даже при визуальном сравнении двух стендов оказывалось, что на AMD-платформе тест ворочался явно быстрее и завершался раньше. Странно, поскольку раньше мы у этого теста подобного поведения не наблюдали, возможно так активно помешал Hyper-Threading...

3D-рендеринг

В рендеринге два дополнительных ядра задействуются во всех трех приложениях, составляющих эту подгруппу. Поэтому выигрыш шестиядерника у четырехъядерника с одинаковой архитектурой получается уверенным, хоть и не самым большим по абсолютной величине: далее мы увидим и более впечатляющие отрывы. Что касается сравнения с конкурентом, то шестиядерный Phenom лидирует в Lightwave и Maya, а четырехъядерный, он же восьмипоточный, Core i7 930 оказывается сильнее в 3dsmax. По совокупности: равенство.

Научно-инженерные вычисления

Здесь новому процессору в ряде тестов помогают дополнительные ядра, где-то явно включается «буст», но выигрыш у Phenom II X4 965 не столь существенный (по сути принципиальный отрыв лишь в Mathematica), и аналогичный предыдущему случаю паритет с конкурентом.

Графические редакторы

В этой подгруппе тестов полноценной многозадачностью располагает лишь Photoshop, причем он пытается задействовать и 6 ядер, но явно не во всех процедурах, поэтому Phenom II X6 1090T чуть-чуть не хватает, чтобы дотянуться до Core i7 930. А вот в ACDSee новый процессор получает ускорение довольно неожиданно. Вряд ли в новой версии появилась сразу столь эффективная многопоточность, скорее всего как раз помог Turbo-режим. А вот в двух оставшихся графических редакторах, от природы к многопоточности равнодушных, результаты новинки практически не отличаются от 965-ого, поэтому на итоговой диаграмме новый процессор занял промежуточное положение.

Архиваторы

Архиваторы и в мыслях не имеют пока намерений загрузить шесть ядер, поэтому преимущество нового процессора обеспечило включение Turbo CORE, и пока только в одном тесте (7-Zip). Да, да, снова явный запас для будущей оптимизации алгоритма включения этой технологии, более агрессивного что ли.

Компиляция

В компиляторе от Microsoft распараллеливание реализовано достаточно грамотно, поэтому новинка чувствует себя уверенно, в том числе выигрывает и у конкурента.

Java

Многоядерность работает и здесь, плюс еще сама среда сильнее благоволит к архитектуре процессоров AMD. В результате Phenom II X6 1090T смотрится пусть не королем, но вполне себе принцем.

Интернет-браузеры

А вот и новая подгруппа тестов, где будет тестироваться скорость исполнения Adobe Flash и JavaScript под управлением большинства распространенных браузеров: Internet Explorer, FireFox, Opera, Safari и Chrome. Результат усредняется.

Не столь большая разница, чтобы долго задумываться над ее происхождением. Но все же отметим, что 1090T формально выиграл у 965-ого и не менее формально проиграл 930-ому. Однако к адекватности теста претензий нет. И скорее всего он будет действительно интересным при тестировании мобильных или бюджетных процессоров для настольных ПК.

А вот безобидный JAVA-скрипт породил просто эпических масштабов картину, на тему адекватности которой все же придется предпринять дополнительное расследование, прежде чем использовать этот тест для подсчета общего балла по новой методике. В качестве гипотез на ум приходит как минимум три: либо действительно сам факт наличия шести ядер сбивает с толку браузеры, причем схожим образом от разных совершенно разработчиков, и они действительно так будут вести себя, выполняя JAVA-скрипты. Либо данный конкретный скрипт, используемый в тесте от Sun, обладает такой магической способностью погружать браузеры в прострацию. Либо метод подсчета в бенчмарке дает сбой при запуске на шестиядерниках. Дополнительная странность заключается в том, что виртуальную многопоточность в Core i7 930 тот же бенчмарк переваривает вполне пристойно.

Кодирование аудио

Кодирование аудио, наряду с растровой графикой, это еще одна подгруппа, удобная с точки зрения архитектуры современного семейства процессоров Intel, и соответственно, не выигрышная для AMD. Но в данном случае, хотя бы полноценно работает многопоточная оптимизация, и процессоры AMD могут подтянуться за счет большего количества ядер, что и демонстрирует 1090T.

Кодирование видео

Ну а в более разносторонней в плане запросов к ресурсам задаче кодирования видео (и что уж скрывать: более актуальной, поскольку даже небольшие ролики кодируются не моментально, в отличие от отдельно взятых аудиотреков или операций в графических редакторах) расстановка сил для Phenom II X6 1090T весьма благоприятна. Новинка выигрывает у конкурента в 5 из 6 тестов, а в XviD силы практически равны.

Игры

Как мы уже хорошо знаем, современные игры действительно умеют извлекать пользу из многоядерных процессоров. Но это наблюдается по мере наращивания числа ядер до 4 (причем больше трех ядер активно использует уже явное меньшинство игр). Формально есть возможность несколько разгрузить основные ядра за счет переноса вычислительных потоков, связанных с работой видеодрайвера, на дополнительные ядра. Но в реальности эффективно распоряжается шестью ядрами лишь одна игра, новая для нашей методики, точнее бенчмарк на основе известной шахматной программы Fritzchess. Ну а во всех остальных случаях Phenom II X4 965 набрал больше или столько же баллов, сколько и 1090T. И более того, есть даже игры, где многоядерность не только не помогает, но и отчасти мешает (как и виртуальная многопоточность от Intel). Например, в Colin McRae: DiRT 2 первое место среди всех рассматриваемых в этом обзоре процессоров оказалось как раз за Phenom II X4, второе занял Athlon II X4 630, а далее уже идут остальные. Но если Hyper-Threading можно лишь принудительно отключить, то в случае с Phenom II X6 как раз в таких случаях и должен вовсю работать Turbo CORE, причем с двойной эффективностью (и лишние ядра спят, а значит «не мешаются», и активные работают на повышенной частоте). Да и в остальных играх режим работы явно не был оптимальным. В общем, результат в игровой подгруппе может и должен быть лучше. С другой стороны, мы не использовали настройки Smart Profiles, а в случае с играми подстройка непосредственно под ту или иную игру может быть эффективнее универсального алгоритма реагирования из BIOS.

Выводы

Можно с уверенностью сказать, что Phenom II X6 1090T стоит своих денег и будет пользоваться спросом. И позиционирование на уровне Core i7 930, как подтверждает наша итоговая диаграмма, совершенно справедливо. Но как уже отмечалось в процессе тестирования, есть ощущение, что этот процессор, исходя из технических характеристик, может продемонстрировать более высокий результат. Если по мере отладки BIOS будет внедрен более активный алгоритм Turbo CORE, включающийся не только в ситуации полной пассивности ядер, ускорение будет наблюдаться в большем количестве приложений. С другой стороны, поскольку сама технология реализована поверх хорошо известного механизма динамического выбора множителя, пользователь имеет все возможности для самостоятельных экспериментов и оптимизации. Например, в играх наверняка лучше будет срабатывать «буст», если хотя бы просто выбрать несимметричный режим (4 активных, разгоняемых ядра при отключении 2 пассивных). Поэтому и мы, в свою очередь, тему не закрываем.



Загрузка...