sonyps4.ru

Внешняя память компьютера. Внешняя оперативная память компьютера

Любые электронные вычислительные машины включают в себя накопители памяти. Без них оператор не смог бы сохранить результат своей работы или скопировать на другой носитель.

Перфокарты

На заре появления для применяли перфокарты - обычные картонные карточки с нанесенной цифровой разметкой.

На одной перфокарте помещалось 80 столбцов, в каждом столбце можно было сохранить 1 бит информации. Отверстия в этих столбцах соответствовали единице. Считывание данных происходило последовательно. Повторно что-либо записать на перфокарту было невозможно, поэтому их требовалось огромное количество. Для хранения массива данных объемом 1 ГБ потребовалось бы 22 тонны бумаги.

Похожий принцип использовался и в перфолентах. Они наматывались на бобину, занимали меньше места, но часто рвались и не позволяли добавлять и редактировать данные.

Дискеты

Появление дискет стало настоящим прорывом в информационных технологиях. Компактные, емкие, они позволяли хранить от 300 Кб на самых ранних образцах до 1,44 Мб на последних версиях. Чтение и запись осуществлялись на магнитный диск, заключеный в пластиковый футляр.

Главным недостатком дискет была недолговечность хранимой на них информации. Они были уязвимы от действия и могли размагнититься даже в общественном транспорте - троллейбусе или трамвае, поэтому для долговременного хранения данных их старались не использовать. Считывание дискет происходило в дисководах. Вначале были 5-дюймовые дискеты, потом их заменили более удобные 3-дюймовые.

Главным конкурентом дискет стали флеш-накопители. Их единственным недостатком была цена, но по мере развития микроэлектроники стоимость флэшек сильно упала и дискеты ушли в историю. Окончательно их выпуск прекратился в 2011 году.

Стримеры

Для хранения архивных данных раньше применялись стримеры. Они были похожи на видеокассеты внешне и по принципу действия. Магнитная лента и две бобины позволяли последовательно считывать и записывать информацию. Емкость этих устройств составляла до 100 Мб. Массового распространения такие накопители не получили. Рядовые пользователи предпочитали хранить свои данные на жестких дисках, а музыку, фильмы, программы было удобнее держать на CD-, а позднее DVD-дисках.

CD и DVD

Эти накопители информации используются до сих пор. На пластмассовую подложку наносится активный, отражающий и защитный слой. Информация с диска считывается лучом лазера. Стандартный диск имеет объем 700 МБ. Этого хватает например на запись 2-часового фильма в среднем качестве. Существуют также двусторонние диски, когда активный слой напыляется на обе стороны диска. Для сохранения небольшого объема информации используются мини-CD. Драйвера, инструкции к компьютерным изделиям теперь пишутся именно на них.

DVD-диски пришли на смену CD в 1996 году. Они позволяли хранить информацию уже объемом 4,7 Гб. Достоинство их также было в том, что DVD-привод мог считывать как CD-, так и DVD-диски. На данный момент это самый массовый накопитель памяти.

Флеш-накопители

Рассмотренные выше накопители CD и DVD обладают целым рядом преимуществ - дешевизна, надежность, возможность хранить большие массивы информации, но они предназначены для однократной записи. На записанный диск нельзя внести изменения, добавить или удалить лишнее. И тут на помощь нам приходит принципиально другой накопитель - флеш-память.

Некоторое время он конкурировал с дискетами, но быстро победил в этой гонке. Главным сдерживающим фактором оставалась цена, но теперь ее удалось снизить до приемлемого уровня. Современные компьютеры уже не комплектуются дисководами, поэтому флешка стала незаменимым спутником для всех имеющих дело с компьютерной техникой. Максимальный объем информации, умещающийся на флешку, достигает 1 Tb.

Карты памяти

Телефоны, фотоаппараты, электронные книги, фоторамки и много чего еще требуют для работы накопители памяти. Из-за своих относительно больших размеров для этой цели не годятся USB-накопители. Карты памяти специально созданы для таких случаев. По сути, это та же флешка, но адаптированная под малогабаритные изделия. Большую часть времени карта памяти находится в электронном устройстве и вынимается только для переноса накопившихся данных на постоянный носитель.

Существует множество стандартов карт памяти, самые миниатюрные из них имеют размер 14 на 12 мм. На современных компьютерах вместо дисковода обычно ставится картридер, который позволяет считывать большинство типов карт памяти.

Жесткие диски (HDD)

Накопители памяти для компьютера представляют собой Внутри него находятся металлические пластины, с двух сторон покрытые магнитным составом. Двигатель вращает их со скоростью 5400 для старых моделей или 7200 об/мин - для современных устройств. Магнитная головка движется от центра диска к его краю и позволяет считывать и записывать информацию. Объем винчестера зависит от количества дисков в нем. Современные модели позволяют хранить до 8 Tb информации.

Недостатков у этого вида накопителей памяти практически нет - это очень надежные и долговечные изделия. Стоимость единицы памяти в жестких дисках самая дешевая среди всех типов накопителей.

Твердотельные накопители (SSD)

Как бы ни были хороши жесткие диски, но они уже почти достигли своего потолка. Быстродействие их зависит от скорости вращения дисков, а дальнейшее ее увеличение приводит к физической деформации. Флеш-технология, которая применяется при изготовлении твердотельных накопителей памяти, лишена этих недостатков. Они не содержат движущиеся части, поэтому не подвержены физическому износу, не боятся ударных воздействий и не шумят.

Но пока есть и серьезные недостатки. В первую очередь - цена. Стоимость твердотельного диска в 5 раз выше жесткого диска аналогичного объема. Другой существенный недостаток - небольшой срок эксплуатации. Твердотельные накопители обычно выбирают для установки операционной системы, а для хранения данных используется жесткий диск. Стоимость твердотельных дисков неуклонно снижается, есть подвижки и в увеличении их ресурса. В недалеком будущем они должны вытеснить традиционные винчестеры, как в свое время флешки вытеснили дискеты.

Внешние накопители

Внутренний накопитель и внутренняя память всем хороши, но часто требуется перенести информацию с одного компьютера на другой. Еще в 1995 году был разработан интерфейс USB, позволяющий подключать к ПК самые разнообразные устройства, не стали исключением и накопители памяти. Вначале это были флеш-накопители, позднее появились DVD-проигрыватели c USB-разъемом и, наконец, диски HDD и SSD.

Привлекательность USB-интерфейса в его простоте - достаточно воткнуть флешку или другой накопитель и можно работать, не требуется ни установки драйвера, ни других дополнительных действий. Развитие интерфейса и появление вначале USB 2.0, а затем и USB 3.0 резко повысило скорость обмена данными по этому каналу. Быстродействие теперь мало отличается от внутреннего, а их размеры не могут не радовать. Внешний накопитель памяти легко помещается на ладони, при этом он позволяет хранить сотни гигабайт информации.

Компьютер служит для увеличения эффективности работы человека. Но какую бы он имел ценность, если бы не мог хранить данные? В этом ему помогает основная и внешняя (долговременная) И хотя главной темой статьи является вторая, для полноты картины один раздел в рамках статьи будет уделён и первой.

Что относится к основной памяти?

Она включает в себя:

  1. Оперативное запоминающее устройство. Является энергозависимым, и при выключении компьютера вся информация, которая на нем хранилась, пропадает.
  2. Является энергонезависимым. В нём находится информация, которая не должна меняться. Прежде всего, к ней относится конфигурация ПК и программное обеспечение, что проводит тестирование компонентных устройств, прежде чем загрузить операционную систему. Также здесь хранится одна из самых важных составляющих - базовая система ввода/вывода, известная как BIOS. Следует отметить, что ПЗУ и компьютера имеют много общего. Но из-за разницы в важности хранимой информации их разделяют.

Внешняя память

Так называют место, где на длительном хранении находятся разнообразные данные, которые на данный момент не используются оперативной составляющей компьютера. К ним относят различные программы, результаты расчетов, тексты и прочее.

Внешняя память является энергонезависимой. Также её удобно транспортировать в случаях, когда компьютеры не являются объединёнными в локальную или глобальную сеть. Чтобы работать с внешней памятью, необходимо обзавестись накопителем. Это специальное устройство(а), что обеспечивает запись и считывание информации. Также необходимыми являются механизмы хранения - носители.

Значительным отличием долговременной памяти от оперативной является то, что у неё нет прямой связи с процессором. Это доставляет определённые неудобства в виде необходимости усложнять строение ПК. Поэтому оперативная и долговременная память компьютера работают вместе: из второй данные передаются в первую, а потом через кэш или напрямую в процессор.

Что входит во внешнюю память?

Чтобы понимать, с чем мы имеем дело, необходимо представить себе данные устройства внешней памяти. Итак, к ней относятся:

  1. Накопители на жестких магнитных дисках. Размер используется как показатель объема информации, что может храниться на компьютере.
  2. Накопители на Устарели. Использовались, чтобы переносить программы и документы между компьютерами.
  3. Накопители на компакт-дисках. Используются, чтобы хранить значительные объемы данных.
  4. Флеш-накопители. Применяются для хранения значительных объемов данных в малых объектах.
  5. К внешней памяти относятся все другие накопители, которые могут быть без проблем перемещены к другим компьютерам. Как правило, устарели и вышли из обращения.

Классифицируем

Запоминающие устройства делят на виды и категории. В качестве краеугольного камня принимают принципы их функционирования, эксплуатационно-технические, программные, физические и другие характеристики. Каждое устройство имеет свою технологию записи/хранения/воспроизведения цифровой информации. Основные характеристики, которые имеют важность для пользователей (по ним же можно провести классификацию):

  1. Скорость обмена данными.
  2. Информационная емкость.
  3. Надежность хранения данных.
  4. Стоимость.

Вот по таким параметрам и отличаются запоминающие устройства. Конечно, есть ещё много различных характеристик, но они будут интересны исключительно профессионалам.

Магнитные устройства

Принцип работы данных приборов базируется на хранении информации, при котором используются магнитные свойства материалов. В самих устройствах, как правило, имеются составляющие, отвечающие за чтение/запись и магнитный носитель, на котором всё хранится. Последний делят на виды в зависимости от их физико-технических характеристик и особенностей исполнения. Чаще всего выделяют ленточные и дисковые устройства. Они имеют общую технологию: так, с помощью намагничивания переменным магнитным полем наносится и считывается информация. Данные процессы обычно выполняют вдоль концентрических полей. Это специальные дорожки, что находятся по всей плоскости вращающегося носителя. Записывание осуществляется в цифровом коде.

Намагничивание совершается благодаря использованию головок чтения/записи. Они представляют собой как минимум два управляемых магнитных контура с сердечниками. На их обмотки подаётся переменное напряжение. Если его величина меняется, то это же относится и к направлению линий магнитного поля. Когда происходит этот процесс, значение бита информации меняется с 0 на 1 или с 1 на 0. Вот так устроено это устройство долговременной памяти компьютера.

Несмотря на кажущуюся сложность и медленность работы такой схемы, смеем вас заверить, что данные предположения являются неоправданными. Так, компьютер из современных жестких магнитных дисков может за отдельные моменты времени извлекать огромнейшие массивы информации. Если выводить коэффициент эффективности, то выпущенные в последние несколько лет, будут иметь его в сотни и тысячи раз больший, чем те, что были созданы два десятилетия назад.

Организация

Данные для операционной системы систематизируются и объединяются в секторы и дорожки. Последние в количестве сорока или восьмидесяти штук являются узкими концентрическими кольцами на диске. Каждая дорожка делится на отдельные части, которые называют секторами. Когда осуществляется чтения или запись, то всегда считывается их целое число. И это не зависит от объема информации, что запрашивается. Размер одного сектора равен 512 байтам.

Также следует ознакомиться с таким термином, как цилиндр. Так называют общее количество дорожек, с которого можно считать информацию без перемещения головок. Ячейкой размещения данных (или кластером) называют самую малую область диска, что используется операционной системой для записи файлов. Обычно под ними понимают один или несколько секторов.

О накопителях. Жесткие диски

Наибольшую важность для работы с современными компьютерами в качестве хранилищ информации для нас имеют жесткие диски. В них в одном корпусе часто объединяют непосредственно носитель, устройство чтения/записи и интерфейсную часть (часто называемую также контроллером). Вот такие приборы объединяются в специальные камеры, где они находятся на одной оси и работают с блоком головок и общим приводящим механизмом. Жесткие диски на данный момент являются наиболее вместимыми широко используемыми устройствами - сейчас мало кого сможет удивить хранилище информации на 1 или даже 10 Терабайт. Но это всё же сказывается на скорости выполнения операции. Так, когда только начинается работа, процесс считывания данных может занять не один десяток секунд. Хотя, если сравнивать с более старыми моделями, прогресс быстродействия налицо.

О накопителях: переносные устройства

Жесткие диски, как уже неоднократно подчеркивалось, могут хранить в себе значительные объемы данных, однако их перестановка с одного компьютера на другой не является легким делом. И тут на помощь приходят переносные устройства.

Это специальные механизмы, посредством которых можно без значительных проблем перебрасывать данные между разными компьютерами. Объем внешней памяти у них не такой большой, как у жестких дисков, но благодаря лёгкости транспортировки и подсоединению (а затем считыванию информации) они нашли свою нишу. Сейчас наиболее популярными являются два типа подобных устройств: флеш-накопители и Каждый из них имеет свои преимущества и недостатки, но в мире уже давно наметилась тенденция на его постепенный захват первым типом приборов.

Заключение

Как видите, к долговременной памяти компьютера относится довольно много различных устройств. Все они обеспечивают хранение данных на протяжении значительного периода времени, а также возможность их извлечения.

Подытожив, можно сказать, что долговременная память компьютера полностью выполняет возложенный на неё функционал.

Внешняя память компьютера.
Основные виды внешней памяти.

Основное назначение внешней памяти компьютера – долговременное хранение большого количества различных файлов (программ, данных и т.д.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем, а хранится информация на носителях. Наиболее распространенными являются накопители следующих типов:

  • Накопители на гибких магнитных дисках (НГМД) двух различных типов, рассчитанные на диски диаметром 5,25” (емкость 1,2 Мб) и диски диаметром 3,5“(емкость 1,44 Мб);
  • Накопители на жестких магнитных дисках (НЖМД) информационной емкостью от 1 до десятков Гб;
  • Накопители CD -ROM емкостью 640 Мб;
  • Накопители DVD -ROM емкостью до 17 Гб.

Для пользователя имеют существенное значение некоторые показатели: информационная емкость, скорость обмена информацией, надежность ее хранения и т.д. (см. таблицу).

В основу записи, хранения и считывания информации положены два физических принципа, магнитный и оптический .

В НГМД и НЖМД используется магнитный принцип. При магнитном способе запись информации производится на магнитный носитель (диск, покрытый ферромагнитным лаком) с помощью магнитных головок.

В процессе записи головка с сердечником из магнитомягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожесткого носителя (большая остаточная намагниченность). Электрические импульсы создают в головке магнитное поле, которое последовательно намагничивает (1) или не намагничивает (0) элементы носителя.

При считывании информации намагниченные участки носителя вызывают в магнитной головке импульс тока (явление электромагнитной индукции).

Носители информации имеют форму диска и помещаются в конверт из плотной бумаги (5, 25”) или пластмассовый корпус (3,5”). В центре диска имеется отверстие (или приспособление для захвата) для обеспечения вращения диска в дисководе, которое производится с постоянной угловой скоростью 300 об/с.

В защитном конверте (корпусе) имеется продолговатое отверстие, через которое производится запись / считывание информации. На боковой кромке дискет (5,25”) находится маленький вырез, позволяющий производить запись, если вырез заклеить непрозрачной наклейкой, запись становится невозможной (диск защищен). В дискетах 3,5” защиту от записи обеспечивает предохранительная защелка в левом нижнем углу пластмассового корпуса.

Диск должен быть форматирован, т.е. должна быть создана физическая и логическая структура диска. В процессе форматирования на диске образуются концентрические дорожки, которые делятся на сектора, для этого головка дисковода расставляет в определенных местах диска метки дорожек и секторов.

Жесткие магнитные диски состоят из нескольких дисков, размещенных на одной оси и вращающихся с большой угловой скоростью (несколько тысяч оборотов в минуту), заключенных в металлический корпус. Большая информационная емкость жестких дисков достигается за счет увеличения количества дорожек на каждом диске до нескольких тысяч, а количества секторов на дорожке – до нескольких десятков. Большая угловая скорость вращения дисков позволяет достигать высокой скорости считывания / записи информации (более 5 Мб/с).

CD -ROM накопители используют оптический принцип чтения информации. Информация на CD -ROM диске записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося CD -ROM -диска, интенсивность отраженного луча соответствует значениям 0 или 1. C помощью фотопреобразователя они преобразуются в последовательности электрических импульсов.

Скорость считывания информации в CD -ROM накопителе зависит от скорости вращения диска. Первые CD -ROM накопители были односкоростными и обеспечивали скорость считывания информации 150 Кб/с, в настоящее время все большее распространение получают 24-скоростные CD -ROM накопители, которые обеспечивают скорость считывания информации до 3,6 Мб/с.

Информационная емкость CD -ROM диска может достигать 640 Мб. Производятся CD -ROM диски либо путем штамповки (диски белого цвета), либо записываются (диски желтого цвета) на специальных устройствах, которые называются CD -recorder .

DVD -ROM диски (цифровые видео диски) имеют гораздо большую информационную емкость (до 17 Гбайт), т.к. информация может быть записана на двух сторонах, в два слоя на одной стороне, а сами дорожки имеют меньшую толщину.

Первое поколение DVD-ROM накопителей обеспечивало скорость считывания информации примерно 1,3 Мбайт/с. В настоящее время 5-скоростные DVD-ROM достигают скорости считывания до 6,8 Мбайт/с.

Существуют CD -R и DVD -R диски (R - recordable , записываемый), которые имеют золотистый цвет. Специальные CD-R и DVD-R дисководы обладают достаточно мощным лазером, который в процессе записи информации меняют отражающую способность участков поверхности записываемого диска. Информация на таких дисках может быть записана только один раз.

Существуют также CD -RW и DVD -RW диски (RW - Rewritable , перезаписываемый), которые имеют «платиновый» оттенок. Специальные CD-RW и DVD-RW дисководы в процессе записи информации также меняют отражающую способность отдельных участков поверхности дисков, однако информация на таких дисках может быть записана многократно. Перед перезаписью записанную информацию «стирают» путем нагревания участков поверхности диска с помощью лазера.

Носители информации (гибкие диски, жесткие диски, диски CD-ROM, магнитооптические диски и пр.) и их основные характеристики.

Внешняя (долговременная) память - это место длительного хранения данных (программ, результатов расчётов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьютеры не объединены в сети (локальные или глобальные).

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения - носителя.

Основные виды накопителей:

накопители на гибких магнитных дисках (НГМД);

накопители на жестких магнитных дисках (НЖМД);

накопители на магнитной ленте (НМЛ);

накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

гибкие магнитные диски (Floppy Disk) (диаметром 3,5’’ и ёмкостью 1,44 Мб; диаметром 5,25’’ и ёмкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25’’, тоже прекращён)), диски для сменных носителей;

жёсткие магнитные диски (Hard Disk);

кассеты для стримеров и других НМЛ;

диски CD-ROM, CD-R, CD-RW, DVD.

Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства.

Основные характеристики накопителей и носителей:

информационная ёмкость;

скорость обмена информацией;

надёжность хранения информации;

стоимость.

Остановимся подробнее на рассмотрении вышеперечисленных накопителей и носителей.

Принцип работы магнитных запоминающих устройств основан на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственно устройств чтения/записи информации и магнитного носителя, на который, непосредственно осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись производится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение величины напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.

Дисковые устройства делят на гибкие (Floppy Disk) и жесткие (Hard Disk) накопители и носители. Основным свойством дисковых магнитных устройств является запись информации на носитель на концентрические замкнутые дорожки с использованием физического и логического цифрового кодирования информации. Плоский дисковый носитель вращается в процессе чтения/записи, чем и обеспечивается обслуживание всей концентрической дорожки, чтение и запись осуществляется при помощи магнитных головок чтения/записи, которые позиционируют по радиусу носителя с одной дорожки на другую.

Для операционной системы данные на дисках организованы в дорожки и секторы. Дорожки (40 или 80) представляют собой узкие концентрические кольца на диске. Каждая дорожка разделена на части, называемые секторами. При чтении или записи устройство всегда считывает или записывает целое число секторов независимо от объёма запрашиваемой информации. Размер сектора на дискете равен 512 байт. Цилиндр - это общее количество дорожек, с которых можно считать информацию, не перемещая головок. Поскольку гибкий диск имеет только две стороны, а дисковод для гибких дисков - только две головки, в гибком диске на один цилиндр приходится две дорожки. В жестком диске может быть много дисковых пластин, каждая из которых имеет две (или больше) головки, поэтому одному цилиндру соответствует множество дорожек. Кластер (или ячейка размещения данных) - наименьшая область диска, которую операционная система использует при записи файла. Обычно кластер - один или несколько секторов.

Перед использованием дискета должна быть форматирована, т.е. должна быть создана её логическая и физическая структура.

Дискеты требуют аккуратного обращения. Они могут быть повреждены, если

дотрагиваться до записывающей поверхности;

писать на этикетке дискеты карандашом или шариковой ручкой;

сгибать дискету;

перегревать дискету (оставлять на солнце или около батареи отопления);

подвергать дискету воздействию магнитных полей.

Накопители на жестких дисках объединяют в одном корпусе носитель (носители) и устройство чтения/записи, а также, нередко, и интерфейсную часть, называемую контроллером жесткого диска. Типичной конструкцией жесткого диска является исполнение в виде одного устройства - камеры, внутри которой находится один или более дисковых носителей, помещённых на один ось, и блок головок чтения/записи с их общим приводящим механизмом. Обычно, рядом с камерой носителей и головок располагаются схемы управления головками, дисками и, часто, интерфейсная часть и (или) контроллер. На интерфейсной карте устройства располагается собственно интерфейс дискового устройства, а контроллер с его интерфейсом располагается на самом устройстве. С интерфейсным адаптером схемы накопителя соединяются при помощи комплекта шлейфов.

Принцип функционирования жёстких дисков аналогичен этому принципу для ГМД.

Основные физические и логические параметры ЖД.

Диаметр дисков. Наиболее распространены накопители с диаметром дисков 2.2, 2.3, 3.14 и 5.25 дюймов.

Число поверхностей - определяет количество физических дисков, нанизанных на ось.

Число цилиндров - определяет, сколько дорожек будет располагаться на одной поверхности.

Число секторов - общее число секторов на всех дорожках всех поверхностей накопителя.

Число секторов на дорожке - общее число секторов на одной дорожке. Для современных накопителей показатель условный, т.к. они имеют неравное число секторов на внешних и внутренних дорожках, скрытое от системы и пользователя интерфейсом устройства.

Время перехода от одной дорожки к другой обычно составляет от 3.5 до 5 миллисекунд, а у самых быстрых моделей может быть от 0.6 до 1 миллисекунды. Этот показатель является одним из определяющих быстродействие накопителя, т.к. именно переход с дорожки на дорожку является самым длительным процессом в серии процессов произвольного чтения/записи на дисковом устройстве.

Время установки или время поиска - время, затрачиваемое устройством на перемещение головок чтения/записи к нужному цилиндру из произвольного положения.

Скорость передачи данных, называемая также пропускной способностью, определяет скорость, с которой данные считываются или записываются на диск после того, как головки займут необходимое положение. Измеряется в мегабайтах в секунду (MBps) или мегабитах в секунду (Mbps) и является характеристикой контроллера и интерфейса.

В настоящее время используются в основном жёсткие диски ёмкостью от 10 Гб до 80 Гб. Наиболее популярными являются диски ёмкостью 20, 30, 40 Гб.

Кроме НГМД и НГМД довольно часто используют сменные носители. Довольно популярным накопителем является Zip. Он выпускается в виде встроенных или автономных блоков, подключаемых к параллельному порту. Эти накопители могут хранить 100 и 250 Мб данных на картриджах, напоминающих дискету формата 3,5’’, обеспечивают время доступа, равное 29 мс, и скорость передачи данных до 1 Мб/с. Если устройство подключается к системе через параллельный порт, то скорость передачи данных ограничена скорость параллельного порта.

К типу накопителей на сменных жёстких дисках относится накопитель Jaz. Ёмкость используемого картриджа - 1 или 2 Гб. Недостаток - высокая стоимость картриджа. Основное применение - резервное копирование данных.

В накопителях на магнитных лентах (чаще всего в качестве таких устройств выступают стримеры) запись производится на мини-кассеты. Ёмкость таких кассет - от 40 Мб до 13 Гб, скорость передачи данных - от 2 до 9 Мб в минуту, длина ленты - от 63,5 до 230 м, количество дорожек - от 20 до 144.

CD-ROM - это оптический носитель информации, предназначенный только для чтения, на котором может храниться до 650 Мб данных. Доступ к данным на CD-ROM осуществляется быстрее, чем к данным на дискетах, но медленнее, чем на жёстких дисках.

Компакт-диск диаметром 120 мм (около 4,75’’) изготовлен из полимера и покрыт металлической плёнкой. Информация считывается именно с этой металлической плёнки, которая покрывается полимером, защищающим данные от повреждения. CD-ROM является односторонним носителем информации.

Считывание информации с диска происходит за счёт регистрации изменений интенсивности отражённого от алюминиевого слоя излучения маломощного лазера. Приёмник или фотодатчик определяет, отразился ли луч от гладкой поверхности, был рассеян или поглощён. Рассеивание или поглощение луча происходит в местах, где в процессе записи были нанесены углубления. Фотодатчик воспринимает рассеянный луч, и эта информация в виде электрических сигналов поступает на микропроцессор, который преобразует эти сигналы в двоичные данные или звук.

Внутренняя и внешняя память

Память ЭВМ содержит обрабатываемые данные и выполняемые программы, поступающие через устройства ввода-вывода. Память делится на 2 части – внутреннюю и внешнюю.

Внутренняя память – это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, участвующих в вычислениях. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объем, определяемый адресацией машины. Внутренняя память делится на оперативную и постоянную.

Внешняя память – предназначена для размещения больших объемов информации и обмена ею с оперативной памятью. Для внешней памяти используют энергонезависимые носители. Емкость внешней памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем к внутренней.

Основной характеристикой модулей оперативной (внутренней ) памяти является малое время доступа к информации (считывания/записи данных).

Основной функцией внешней памяти ПК является способность долговременно хранить большой объем информации (на накопителях или дисководах).

Физические свойства :

Внутренняя память

– электронная (полупроводниковая) память, устанавливаемая на системной материнской плате или на платах расширения. Это память, построенная на электронных элементах (микросхемах), которая хранит информацию только при наличии электропитания (т.е. энергозависима);

– быстрая память (чтение и запись происходят быстро);

– небольшая по объему (по сравнению с внешней памятью).

Внешняя память

– память, реализованная в виде устройств с различными типами хранения информации и обычно с подвижными носителями;

– энергонезависима;

– медленная (по сравнению с оперативной);

– объем гораздо больше.

Информационная структура внутренней памяти – биты-байты. Во внешней памяти все программы и данные хранятся в виде файлов.

Виды внутренней памяти:

По способам хранения информации внутренняя память делится на несколько видов:

1. ОЗУ (Оперативная память) – см. ниже.

2. ПЗУ (BIOS) – см. ниже.

3. ППЗУ (Flash) – перепрограммируемое запоминающее устройство, способное длительно хранить информацию. Конструкция как у ПЗУ, только можно перепрограммировать. Применяется в CMOS, сотовых телефонах, пейджерах и т.п. Эта память энергонезависима.

1. Оперативная память (ОЗУ, RAM)

Этот уровень памяти подобен кратковременной памяти человека. В оперативке на стадии выполнения могут одновременно находится несколько программ. Кроме того, в оперативке могут находиться как обрабатываемые, так и уже обработанные программой данные. По объему оперативная память составляет большую часть внутренней памяти. Объем установленной в компьютере оперативки определяет, с каким программным обеспечением можно на нем работать. При недостаточном объеме оперативки многие программы либо не будут работать совсем, либо будут работать очень медленно.

Оперативная память – это последовательность специальных электронных ячеек, каждая из которых может хранить конкретную комбинацию из нулей и единиц – один байт. Эти ячейки нумеруются порядковыми номерами, начиная с нуля. Номер ячейки называется адресом того байта, который записан в ней в данный момент. Адрес физической ячейки – всегда один и тот же, а содержимое может меняться от 0 до 255 (в десятичном представлении). Содержимое каждого байта памяти может обрабатываться независимым от остальных байтов образом. Указав адрес байта, можно прочитать код, который в нем записан или записать в этот байт другой код. Поэтому оперативку называют еще памятью с прямым или произвольным доступом и обозначают RAM (ОЗУ – оперативное запоминающее устройство). Максимально возможный объем оперативки, который называется адресным пространством, и объем памяти, фактически присутствующий в ЭВМ являются важнейшими характеристиками компьютера в целом. Стандартным для современных компьютеров общего назначения считается объем оперативки 32 – 64 Мб, а во многих случаях рекомендуется 128 – 256 Мб. Последние на сегодняшний день модели компьютеров имеют теоретический предел оперативки 64 Гб.

Особенностью ОЗУ является способность хранить информацию только во время работы машины. Когда вы включаете компьютер, в оперативную память заносятся цепочки байтов, в которых хранится ОС. Далее, туда заносятся различные прикладные программы и данные. Содержимое многих ячеек памяти постоянно изменяется в процессе работы программ. Оперативная память – это черновик, где временно записываются программы, данные и результаты обработки. После загрузки новой программы, прежнее содержимое ОЗУ замещается новым, а после выключения компьютера пропадает вовсе, т.е. оперативная память энергозависима . Особенностью оперативки также является высокая стоимость.

Физически оперативная память выполняется в виде плат, на которых размещаются микросхемы. Плата – прямоугольная пластина стандартных размеров из специального материала, на которой размещаются разъемы для крепления микросхем, а также выполняется монтаж электронных схем питания микросхем и их подсоединения к остальным компонентам компьютера. При наращивании, расширении оперативки приходится учитывать тип уже установленных модулей.

Разновидности ОЗУ:

Современные полупроводниковые микросхемы ОЗУ бывают двух видов: статические и динамические .

Базовым элементом статической памяти служит триггер . Одно из его устойчивых состояний принято за логический 0, другое – за 1. При отсутствии внешних воздействий эти состояния могут храниться сколь угодно долго.

Динамические элементы памяти этим свойством не обладают. Они представляют собой конденсатор, который в заряженном состоянии соответствует 1, в разряженном – 0. Существенным недостатком является наличие постепенного самопроизвольного разряда, что ведет к потере информации. Чтобы этого не происходило, конденсатор надо периодически подзаряжать. Этот процесс называется регенерацией ОЗУ .

Статическая память гораздо проще в эксплуатации, т.к. не требует регенерации и приближается по скорости к быстродействию процессора. Зато статическая память имеет меньший информационный объем, большую стоимость и сильнее нагревается при работе.

Никакой из этих видов ОЗУ не является идеальным.

Управление оперативной памятью. Память состоит из отдельных элементов, каждый из которых предназначен, для хранения минимальной единицы информации – одного байта. Каждому элементу соответствует уникальный числовой адрес. Первому элементу присвоен адрес 0, второму – 1 и т.д, включая последний элемент, адрес которого определяется общим количеством элементов памяти минус единица. Обычно адрес задается шестнадцатеричным.



Сегменты. Процессор компьютера делит память на блоки, называемые сегментами. Каждый сегмент занимает 64 Кбайт и каждому сегменту соответствует уникальный числовой адрес. Процессор имеет четыре регистра сегмента.

Регистр – это участок сверхоперативной памяти процессора, предназначенной для хранения информации. Процессор использует регистры при выполнении расчетов и сохранении промежуточных результатов. После завершения действий результат должен быть переписан из регистра в ячейки ОЗУ. Регистры сегмента предназначены для хранения адресов отдельных сегментов. Они называются CS (сегмент кода), DS (сегмент данных), SS (сегмент стека) и ES (запасной сегмент). Кроме указанных, процессор имеет еще 9 регистров, а именно – регистры IP (указатель команды) и SP (указатель стека).

Доступ к памяти. Доступ к ячейкам памяти осуществляется посредством соединения содержимого регистра сегмента с содержи­мым того или другого регистра. Таким образом определяется адрес требуемого участка памяти.

2. Постоянная память (ПЗУ, ROM)

Отличается тем, что запись информации в ПЗУ осуществляется только 1 раз на заводе-изготовителе. И в дальнейшем из этой памяти возможно только чтение. Эта память энергонезависима, т.е. при выключении компьютера содержимое памяти не исчезает. Используется для хранения наиболее важных и часто используемых служебных программ, присутствие которых постоянно нужно компьютеру. Обычно это компоненты ОС (программа первоначальной загрузки), программы контроля оборудования.

Базовая система ввода-вывода (Base Input Output System), находящаяся в постоянной памяти (ПЗУ) компьютера содержит программы для проверки оборудования ПК, программы для считывания и передачи управления операционной системе и программы для выполнения базовых (низкоуровневых) операций ввода-вывода с монитором, клавиатурой, дисками и принтером. BIOS играет роль своеобразного толкователя приказов программ для аппаратуры. Программы пользователя и ОС выдают такие приказы, а BIOS доводит их до сведения аппаратуры в виде, понятном ей.

Другие виды внутренней памяти:

4. Кэш-память

Для ускорения доступа к оперативной памяти на быстродействующих компьютерах используется специальная сверхоперативная кэш-память, которая располагается между процессором и оперативкой и хранит копии наиболее часто используемых участков оперативки. При обращении процессора к памяти сначала производится поиск нужных данных в кэш-памяти, поскольку время доступа к кэш-памяти в несколько раз меньше, чем к оперативке. Объем кэш-памяти 128-512 Кб. По структуре и принципу работы не отличается от оперативки, но скорость передачи данных значительно выше. Стоит дороже оперативки. В современных машинах предусматривается несколько уровней кэш-памяти. Кэш-память – это статическая память, которая служит для ускорения доступа к медленной динамической памяти.

5. CMOS-RAM – участок памяти для хранения параметров конфигурации компьютера. Называется так в связи с тем, что эта память выполняется по технологии CMOS, обладающей низким энергопотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера (SETUP). Она позволяет установить некоторые характеристики устройств компьютера, пароль и т.п. Программа настройки вызывается, если при начальной загрузке компьютера нажать Del.

6. Видеопамять – память, используемая для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера – электронной схемы, управляющей выводом изображения на экран монитора.

Карта памяти DOS:

Conventional – базовая (стандартная) память; от 0 до 640Кб, т.е. полностью находится в пределах адресуемой памяти. Для использования базовой памяти не нужны дополнительные драйверы. Эта память относится к области пользователя, в ней расположены сама MS-DOS и прикладные программы пользователя. UMB – блоки верхней памяти; часть оперативной памяти, находящаяся между 640Кб и 1Мб (системная область). Эта часть памяти используется видеоадаптером, графикой EGA и BIOS; для прикладных программ MS-DOS она недоступна. При указании общего объема ПК область верхней памяти не учитывается. Специальное программное обеспечение позволяет использовать свободные участки верхней памяти для загрузки резидентных программ и установочных драйверов устройств.

Расширенная память – вся память выше 1024 Кб (1Мб). Она делится на две области: HMA (область высокой памяти, объем равен 64Кб) и дополнительная память XMS. XMS память используют только некоторые утилиты MS-DOS, такие как smartdrive и ramdrive. Для работы с этой памятью нужен специальный драйвер himem.sys.

Отображаемая память (EMS) – память, адресуемая микропроцессорами по спецификации EMS. Для инициализации отображаемой памяти нужен специальный драйвер. До его загрузки ПК не "узнает" об установленной плате расширенной памяти. Драйвер EMS отводит определенную часть верхней памяти для того, чтобы поочередно отображать в нее требуемые участки расширенной памяти. Каждый участок расширенной памяти, отображаемый в данный момент, называется страницей, а "окно" в области UMB, через которое микропроцессор просматривает содержимое страниц расширенной памяти – страничным блоком.

Расширяемая память является результатом появления в среде MS-DOS устойчивых традиций использования страничной памяти. При этом подходе большой раздел памяти, который лежит вне адресного пространства процессора, "отображается" малыми областями на многие маленькие разделы памяти, лежащие внутри адресного пространства процессора. В то время как процессор не может адресовать большой раздел памяти непосредственно, он может выбрать или дойти до любой конкретной части, подобно выбору страницы в книге.

В спецификации расширяемой памяти MS-DOS или EMS большая физическая память отображается в 16-килобайтные разделы памяти MS-DOS, называемые страницами. Соответствующее 16-килобайтное адресное пространство в памяти MS-DOS называется страничным блоком. Количество поддерживаемых страничных блоков и размещение их внутри системы MS-DOS изменяется в зависимости от типа платы используемой расширяемой памяти, и существующей конфигурации системы.

Himem.sys

Обеспечивает стандарт XMS для доступа к верхней памяти. Для того, чтобы установить этот драйвер достаточно команды в config.sys: device = c:\путь\himem.sys. DOS = HIGH устанавливают вместе с himem.sys для загрузки ядра MS-DOS в область высокой памяти.

Emm386.exe

Драйвер – диспетчер отображаемой памяти. Он выполняет две основные функции: 1) использует память XMS поставляемую himem.sys для работы отображаемой памяти. 2) обеспечивает программам DOS доступ к страшим адресам памяти UMB.

Для того чтобы загрузить драйвер emm386 достаточно поместить в config.sys 2 команды:

device = c:\путь\himem.sys и device = c:\путь\emm386.exe ram.

Без первой команды вторая работать не будет. Параметр RAM указывает сегментные адреса блоков UMB. Если RAM без адресов, то emm самостоятельно определит адреса для UMB и страничный блок EMS.

Внешняя память

Внешняя память – место длительного хранения данных, не используемых в данный момент в оперативке. Этот уровень памяти похож на вспомогательные средства, используемые человеком для долговременного хранения важных сведений (записные книжки, справочники, фотоальбомы, звуко- и видеозаписи). Эти носители информации считаются внешними по отношению к внутренней памяти человека.

Внешней памятью называется группа устройств, которые предназначены для долговременного хранения больших массивов информации – программ и данных. Во внешней памяти данные могут храниться годами, пока не потребуются.

Программа, находящаяся во внешней памяти, не может в ней выполняться , а данные не могут быть обработаны. В этом и состоит главное отличие внешней памяти от оперативки. Во внешней памяти программы и данные хранятся в «нерабочем состоянии», в оперативной – программы и данные хранятся только во время выполнения. Для того, чтобы выполнить программу с внешней памяти, ее сначала нужно найти на внешнем устройстве и перенести в оперативную память, где она сможет выполниться.

Перенос программы из внешней памяти в оперативную называется загрузкой программы , а инициирование (начало) ее выполнения называют запуском программы .

Важной особенностью внешней памяти является ее энергонезависимость. Кроме того, внешняя память гораздо меньше стоит и имеет значительно больший объем по сравнению с оперативной. Зато скорость передачи данных с внешними запоминающими устройствами значительно меньше.

Необходимость во внешних устройствах хранения данных возникает в двух случаях:

Когда на вычислительной машине обрабатывается больше данных, чем можно разместить на базовом жестком диске;

Когда данные имеют повышенную ценность и нужно выполнять регулярное резервное копирование на внешнее устройство.

Для работы с внешней памятью необходимо наличие накопителя (устройства обеспечивающего считывание и запись информации) и носителя (устройства хранения информации).

Внешние запоминающие устройства по принципам функционирования разделяются на устройства прямого доступа (накопители на магнитных и оптических дисках) и устройства последовательного доступа (накопители на магнитных лентах).

В настоящее время в качестве внешней памяти в основном используются гибкие магнитные, жесткие магнитные, оптические и магнитооптические диски . Использование магнитных лент стремительно устаревает.

Основные накопители и носители:



Загрузка...