sonyps4.ru

Виртуальная реальность: все, что вам нужно знать. Что такое VR и как она развивалась

Виртуальная реальность - это огромный дивный мир, в который мы не заглянули даже глазком. Хотя под определенной интерпретацией виртуальной реальности можно понимать Интернет, в действительности же ее потенциал гораздо больше. Это место, в которое человек может погрузиться целиком и полностью и найти там гораздо больше, чем в реальной жизни, а также не думая о том, чтобы отличать виртуальное от реального. На данный момент разными компания разрабатывается аппаратное обеспечение для полного выхода в виртуальную реальность: Omni, Oculus Rift, а также для создания дополненной реальности: Google Glass и другие. Вполне может так статься, что с развитием высоких технологий в этой сфере виртуальная реальность займет прочное место в нашей жизни и обеспечит людей огромным, практически безграничным пространством для ведения любых дел.

Самым распространенным способом погружения в виртуальную реальность на данный момент считается использование специальных очков и шлемов. Однако, есть и другие способы погружения - например, проецирование изображения прямо на сетчатку глаза или использование создающих объемное изображение дисплеев. Последний метод используется крайне редко, так как на такие экраны нужно смотреть строго под определенным углом, но исследователи из Канады устранили этот недостаток - они создали шарообразный дисплей с 360-градусным охватом.

Представленная ещё на выставке IFA 2017 гарнитура смешанной реальности , наконец, поступила в розничную продажу. Эксперты предполагали, что стоимость устройства будет заоблачной, опираясь на стоимость той же

/ 20.04.2017

2016 год стал показательным годом для виртуальной реальности. Возможности AR/VR-технологий уже оценили некоторые предприятия из сфер энергетики, автомобилестроения, ОПК и т.д. Эксперты, обсудившие актуальные вопросы развития AR/VR-технологий, отметили, что использование виртуальной реальности – это один из шагов к повышению эффективности. И все же экспериментировать с VR/AR в России, ввиду консервативности бизнеса, готовы единичные предприятия.

В обсуждении приняли участие:



Какие тренды обеспечили развитие VR и AR-технологий для промышленности в 2016 году?

Екатерина Филатова: 2016 год стал показательным годом для виртуальной реальности. Технологии стали внедряться в реальные бизнес-процессы. Это был очень важный шаг. Произошло это благодаря выходу на рынок качественных и доступных устройств. Крупные компании стараются быстро адаптироваться к требованиям VR-технологии и совершенствуют свои устройства, например, все больше появляется компьютеров и ноутбуков, смартфонов, которые позволяют комфортно работать с VR-проектами и контентом. Также нужно отметить, что компании-разработчики накопили большую экспертизу и сейчас уже создание крупных VR-проектов возможно в более короткие сроки и в высшем качестве по сравнению с 2015 годом.

Александр Леус: Атомная энергетика, судостроение, авиастроение и ОПК стали флагманскими отраслями промышленности, внедряющими VR и AR-технологии. В большей степени они используют эти технологии для задач проектирования и обучения, уже имеют свой парк соответствующего оборудования и заинтересованы в обновлении ПО и аппаратной составляющей, переориентируя ее в сторону VR Ready инфраструктуры.

Наряду с этим очевиден тренд совмещения HMD-устройств (Head-mounted display, шлемов виртуальной реальности) и CAVE-систем (комнаты виртуальной реальности). Например, HMD используется на рабочем месте сотрудника, а CAVE - в специальных лабораториях (R&D центрах) при совместной работе и демонстрации результатов исследований и визуализации расчетов и отдельных процессов.

Наблюдается переход компаний на цифровые информационные материалы и компьютерные тренажеры, включая LMS (Learning Management System). Следующим шагом развития станут так называемые Serious Games и VR-приложения, ориентированные на обучение с высокой степенью детализации. При этом и в стандартные буклеты, компьютерные приложения, 3D- и VR-приложения уже закладываются технологические регламенты и алгоритмы работы, которые должны существовать на предприятии.

Как бы вы оценили готовность и доступность VR и AR-технологий для применения на российских предприятиях? Чем мировая практика применения этих технологий отличается от российской?

Анатолий Суздальцев: Многое зависит от области применения. Если речь идет об обучении с использованием виртуальной реальности, то барьеров для применения на российских предприятиях нет. Если речь идет о складской логистике, или о повышении эффективности ТОиР, то необходимо не только разработать AR приложение, но и интегрировать его с системами складской логистики и MRO. Соответственно, эта задача может быть реализована только крупным ИТ-интегратором.

Александр Леус: Первые тренажеры для операторов непрерывных технологических процессов с функцией виртуальной реальности, позволяющей оператору перемещаться по территории цеха или завода, появились еще несколько лет назад. Однако пока массового распространения на российских производствах они не получили. Во многом это объясняется незрелостью рынка и неготовностью предприятий отказаться от традиционных и менее эффективных методов обучения. Именно промышленность можно назвать наиболее подготовленной отраслью для внедрения AR и VR-технологий. С помощью AR/VR предприятия снижают риски неправильной эксплуатации оборудования и роль человеческого фактора при работе на опасных объектах.

Александр Лавров: Использование виртуальной реальности - это следующий шаг к повышению эффективности. Инновационные интерактивные способы, в том числе виртуальная реальность, во многом помогают это сделать.

Например, появляется все больше запросов на создание VR-классов для обучения персонала. Технологии дополненной и виртуальной реальности уже доступны и в части устройств, и в части создания контента. В мировой практике все больше используются VR-технологии для оптимизации процессов.

В чем вы видите главные барьеры для распространения VR и AR-технологий в российской промышленности?

Светлана Вронская: Перед многими российскими промышленными предприятиями до сих пор стоят задачи по выходу на прибыльность и первичной информатизации, поэтому экспериментировать с VR/AR готовы лишь самые передовые российские компании – либо находящиеся в частном владении, либо являющиеся лидерами в своих под-сегментах рынка.

Александр Лавров: Промышленная отрасль очень консервативная, особенно в России. В мировой практике принято использовать 3D-моделирование и визуализации на всех этапах производства. У нас пока это внедрено не везде. И для многих промышленных сегментов использование виртуальной реальности - это первые опыты работы с детальной визуализацией проектов. Нужно отметить, что стоимость производства контента и создания проекта в целом достаточно высока. необходимо создание пилотных проектов, чтобы показывать их и меняться опытом, совершенствовать. Однако многие кейсы создаются под грифом секретности и в общественных кругах мало известно крупных и успешных проектов.

Все еще недостаточный уровень понимания заказчиками всех преимуществ технологий виртуальной и дополненной реальности замедляет их проникновение на промышленном производстве. Отчасти это связано с отсутствием необходимой инфраструктуры, готовой к внедрению технологий такого класса. Стоит также отметить необходимость разработки четких отраслевых стандартов. В отличии от массового рынка, количество поставщиков решений Training and Simulation корпоративного уровня для предприятий невелико и требует глубокой экспертизы.

Для каких целей VR и AR-технологии можно использовать в российской промышленности?

Анатолий Cуздальцев: В настоящий момент нашей компанией уже запущены проекты по разработке виртуальных тренажеров и симуляторов в энергетике и нефтегазовой области. Обучение сотрудников и повышение их квалификации – это очевидная область применения. Следующая перспективная область, где будут внедряться VR/AR технологии - это сопровождение операций технического обслуживания и ремонта с помощью дополненной реальности (вывод технологической карты, видеоинструкций на очки дополненной реальности). Большие перспективы также у автоматизации процессов внутрискладской логистики с использованием дополненной реальности, это позволит повысить эффективность за счет полного освобождения рук и передачи всей информации по расположению объекта на складе на очки дополненной реальности.

Светлана Вронская: В направлениях использования VR/AR в промышленности не будет разницы между примерами за рубежом и в России. Прежде всего, это проектирование и разработка инженерных приложений, которые применяются в авиа-, автомобиле- и судостроении, промышленном строительстве и ГИС. Прототип, подготовленный виртуально, дает возможность конструкторам, инженерам и клиентам работать с макетом будущего изделия: тестировать работу конструкции в виртуальном пространстве, выявлять недочеты в проектировании, оценивать эргономику и многое другое, что сокращает количество ошибок и, следовательно, затраты на их устранение на финальной стадии разработки.

Здесь в качестве примера можно привести головной проектор, который может передавать цифровые данные на любую рабочую поверхность, обеспечивая аудио- и видео-подсказки, указания, шаги и направление в режиме реального времени. Так как такой проектор может быть мобильным, то он же может использоваться непосредственно на производстве. Это, в частности, может применяться для инспектирования производственного процесса, сбора детальных данных по ключевым процессам и выявления проблемных мест.

Также развивающимся направлением промышленного использования технологий AR в производстве становится послепродажное обслуживание продукции, в которое можно входить и данные о работе товара в режиме реального времени, передаваемая информация из других информационных, а также руководства по ремонту и эксплуатации изделия. В частности, такие примеры использования VR/AR демонстрируют европейские Schneider Electric и KTM.

В российской промышленности есть единичные кейсы применения VR/AR – например, анонсированные проекты в КАМАЗе, создание системы дополненной реальности для ремонта военной техники и сборки устройств государственного Центра технологии судостроения и судоремонта или использование метода виртуального прототипирования для отработки плана производства ответственных работ Ростовской АЭС, - однако широкого применения этих технологий на рынке производственных компаний пока не видно.

На ваш взгляд, какие тренды в сфере VR и AR-технологий для промышленности будут преобладать в России и в мире в 2017-2019 гг?

Екатерина Филатова: В промышленном сегменте в ближайшие годы произойдет интеграция классических методов образования и VR-тренажеров, в том числе с полным погружением человека в виртуальное пространство, отслеживание его движений и контроля действий. На рынок будут выходить более компактные и качественные AR/VR-устройства, использование которых позволит повышать эффективность обучающих процессов для персонала. Также нужно не забывать о хороших презентационных возможностях виртуальной реальности. Демонстрация объектов, локаций, планируемых построек предприятий и комплексов при использовании виртуальной реальности дает большую вовлеченность зрителя и позволяет увидеть процесс так, как будто это происходит в живую перед его глазами.

Анатолий Суздальцев: В России в следующие два года мы ожидаем внедрение виртуальных тренажеров у всех игроков из ТОП-50, после чего они из инновационных инструментов перейдут в разряд базовых технологий подготовки персонала. Также мы ожидаем старт проектов в области автоматизации ТОиР с использованием дополненной реальности. Если говорить об общемировых трендах, то можно ожидать более активное включение ведущих ИТ корпораций в сфере PLM/ERP, таких, как SAP, PTC, Autodesk и др. в разработку и внедрение VR/AR решений.

Александр Леус: По нашим оценкам, среди российских предприятий продолжится рост проектов по внедрению технологий VR и AR для корпоративного обучения и проектирования. О нарастании этого тренда свидетельствуют отчеты крупнейших мировых исследовательских компаний. Также мы ожидаем увеличение спроса на высокопроизводительные вычислительные комплексы и проекционные системы - компоненты VR Ready инфраструктуры, способные обеспечивать работу профессиональных VR-решений для тренингов и визуализации. По нашим ожиданиям, сектор обучения персонала должен стать основным источником спроса на VR промышленного уровня в ближайшие три года.

Спор о том, чем же является наша реальность (и существует ли она вообще) — один из основных в философии. И, пока философы сквозь века сходятся в словесных баталиях, пионеры высоких технологии создают реальность виртуальную. Concepture разбирается, что из себя представляет технология VR умноженную сущность или необходимость?

Что?

Виртуальная реальность (Virtual Reality, VR) — искусственный мир (объекты и субъекты), который создаётся с помощью технических устройств. Неотъемлемой частью VR является воздействие на основные органы чувств человека: зрение, слух, обоняние, осязание и другие. В отличии от физической реальности, которая является внутренним состоянием индивидуума, виртуальность - это процессуальное взаимодействие между материально-техническими процессами и психикой человека.

Так выглядит вторая версия Oculus Rift под названием Development Kit 2.

Современное VR, помимо очевидного наличия правдоподобной картинки и звуков, так же симулирует и физические явления, тем самым предоставляя возможность пользователю взаимодействовать с виртуальными объектами, либо объектам взаимодействовать с пользователем.

Как?

Совершить погружение в VR не сложно, достаточно воспользоваться специальными периферийными устройствами, которые сегодня ассоциируются со следующими компаниями: Google, Samsung, HTC, Facebook и Sony. Сегодня для того, чтобы создать более-менее достоверную симуляцию необходимо качественно воздействовать на два основных перцептивных канала — слуховой и зрительный.

Самое просто и незамысловатое VR-устройство - Google Cardboard. На деле просто картонная коробка со смартфоном.

С этой целью были разработаны и введены в эксплуатацию так называемые HMD-гарнитуры (head mounted display). Самое простое из них - Google Cardboard. Это картонный «шлем», в котором предусмотрено ложе для смартфона. Подобное «устройство» не сможет обмануть человека полностью, но подарит ему несколько новых впечатлений от просмотра специальных роликов в приложении.

Гораздо более совершенные машины — Playstation VR от Sony, или пионер VR-движения Oculus Rift - не только транслируют картинку, но и отслеживают положение головы в пространстве и подстраивают звук в зависимости от того, насколько далеко от пользователя виртуальный источник звука. В таких «шлемах» установлены жк-мониторы высокого разрешения, продвинутая аудиосистема и линзы перед экранами, что в полной мере позволяет называть их «очками виртуальной реальности».

Теперь поговорим подробнее о трекинге движений. Любая продвинутая VR-гарнитура опирается на технологию 6DoF (Six degrees of freedom), которая занимается анализом положения головы по осям x, y, z (вперёд/назад, от плеча к плечу, из стороны в сторону). В сочетание с дополнительными устройствами (акселерометр, магнитометр и гироскоп внутри, отслеживающая камера или датчики снаружи) достигается эффект движения картинки, относительно поворотов головы и её нахождения в пространстве.

В деле трекинга крайне важно достигнуть низкой задержки (меньше 50 мс). Самый впечатляющий результат у Oculus Rift — около 30 миллисекунд, но и другие крупные игроки, вроде HTC Vive и Playstation VR не превышают критической отметки скорости отклика.

Для чего?

Может показаться, что технология VR — вещь сугубо развлекательная. Да, уже сегодня достигнут тот этап развития, на котором «виртуальный гейминг» перестал быть уделом энтузиастов и медленно, но верно превращается в полноценный коммерческий рынок со своей аудиторией пользователей.

Пока основная преграда — высокая цена «стартового пакета» всех необходимых устройств: Playstation VR (вместе с покупкой Playstation 4 Pro, PS4 Cam и парой Move’ов) обойдётся в 40-50 тысяч рублей; HTC Vive и Oculus Rift стоят 70 и 50 тысяч соответственно, но помимо этого к ним нужен мощный персональный компьютер, заточенный под игры. Google Cardboard дешёв и сердит (от 240 рублей), но и поиграть во что-то серьёзно на нём не получится.

Благо, не одними игрушками жив VR. Исследования университета штата Вашингтон показывают, что виртуальную реальность можно применять в терапевтических целях. «Результаты исследования показывают, что виртуальная реальность не только изменяет характер восприятия человеком боли, она изменяет также характер реальной активности различных областей мозга», — говорит Хантер Хоффман, директор исследовательского центра по виртуальному обезболиванию (VR Analgesia Research Center).

Пациенты испытывали боль на 40-50% меньше, когда проходили через болезненные процедуры погружёнными в виртуальную реальность! Подобное влияние может снизить долю использования обезболивающих на основе морфия, а следовательно и опасности возникновения привыкания к наркотическим, по сути, препаратам.

Другая область применения — экспериментальная психология. VR качественно отличается от традиционных лабораторных инструментов. Во-первых, виртуальная реальность обладает высокой степенью экологической валидности, то есть симулирует комплексные условия для более точного тестирования когнитивных функций в условиях, максимально приближенных к естественным.

Вот знаменитый Virtualizer от Cyberith. Комплекс включает Omni, всенаправленную беговую дорожку Oculus Rift, 2 контроллера Skyrim и Wii.

Во-вторых, это введение фактора времени, появление возможности простроить эпизод от прошлого к будущему, и целиком пережить его. Третье — установление полного контроля за вниманием испытуемого, от виртуальной реальности тяжело отвлечься, а значит исследование не будет испорчено стимуляциями извне. Одних этих особенностей достаточно, чтобы продвинуть экспериментальную психологию далеко вперёд. А так же, создать новый подход к психотерапии.

Такой же благотворный эффект VR уже оказывает на образование, в частности, Google продвигает свои недорогие шлемы в школах и университетах. С их помощью ученики не только могут побывать на полях известных исторических сражений, но и своими глазами увидеть взрыв Сверхновой или развитие личинки внутри куколки. Образовательные процессы давно требуют свежего методологического подхода и «виртуальная реальность» может стать достойным ответом на стремительное устаревание существующих образовательных программ.

Инновационные возможности VR также подходят для: сферы продаж, транслирования мероприятий в прямом эфире, проектирования и военной промышленности. Впрочем, это не перспективы, а почти повседневность.

Недостатки?

Есть, как и у любой современной технологии. В независимости от сферы применения основным минусом является высокая цена устройств. Гипотетически, справиться с этим должна сама индустрия, выпускающая всё более качественные составляющие по всё более низкой цене. Ориентировочно «доступными» VR-шлемы, похожие на Oculus или Playstation VR, станут через пять-десять лет.

Перед вами HTC-Vive один из самых удобных шлемов на сегодняшний день.

Второй большой минус - это размеры. Тотальное «облегчение» очков (замена металлических деталей высококачественным пластиком) не спасает от габаритов, VR-очки всё равно выглядят массивно и слишком «гиковски», чтобы представить их на голове серьёзного бизнесмена или домохозяйки. Путь решения, опять же, будет найдено в ходе естественного развития индустрии и постепенного уменьшения аппаратного обеспечения.

Третье - принципиальное несовершенство технологии. Несмотря на экраны высокого разрешения и отличный трекинг, VR-шлемы всё ещё могут вызывать сильную тошноту. Потому требуется разрабатывать специализированный контент, адаптированный для человеческого вестибулярного аппарата. Перемещаться в виртуальности, при этом в реальности оставаясь неподвижным — прямой путь к использованию ведёрка не по назначению. Исключение составляет, разве что, управление каким-нибудь транспортом, потому что здесь наш мозг чувствует себя вполне в своей тарелке.

Для решения этой проблемы необходима разработка специализированной платформы, которая бы позволяла ходить в реальности, при этом не рискуя разбить нос об косяк. Хотя, боюсь даже представить, сколько она будет стоить.

Вывод

Технологии VR - будущее человечества, в которое наступило равно на половину. С удешевлением устройств, совершенствованием систем трекинга и решением «вестибулярного вопроса» недалёк тот день счастливого нового мира, где с помощью высокоорганизованных виртуальных симуляций будут делать операции, операторы боевых дронов ещё эффективнее будут бомбить очередных террористов, а население развитых стран перестанет выходить из дома в поисках социального контакта.

Но как обычно, кому-то это может и не понравиться.

Возможно вы не знали:

6DoF - (Шесть степеней свободы от англ. Six degrees of freedom ) — указывает на возможность геометрической фигуры совершать геометрические движения в (трёхмерном) пространстве, а именно: двигаться вперёд/назад, вверх/вниз, влево/вправо (в декартовой трёхмерной системе координат), включая повороты вокруг каждой из трёх взаимно перпендикулярных осей (рыскание, тангаж, крен).

Head-mounted display (сокращенно HMD) - представляет собой дисплейное устройство, которое надевается на голову или как часть шлема, у которого есть небольшая оптическая система под один (монокулярный HMD) или каждый глаз (бинокулярный HMD). HMD имеет много применений, в том числе в играх, авиации, технике и медицине.

Совсем недавно виртуальная реальность воспринималась как технология из далекого будущего. Но теперь она стала гораздо ближе к людям. Этот год и вовсе ударный в плане VR-очков и шлемов: Oculus Rift, HTC Vive, PlayStation VR готовятся к покорению планеты. Их цена вызывает вопросы, но уже есть более доступная альтернатива –мобильный VR. Для такой системы нужен только смартфон и специальные очки с линзами – корпус подойдет и самодельный из картона. Затраты минимальны, а виртуальная реальность уже доступна.

Отдельный всплеск интереса к VR исходит от игровой индустрии, но есть масса других областей, в которых виртуальная реальность вот-вот совершит революцию. Видеоигры перейдут на новую ступень реалистичности, обучение в ВУЗах, наконец, станет увлекательным, даже просмотр фильмов сильно преобразится…

Стоп, что такое VR и AR?

Это виртуальная (virtual) и дополненная (augmented) реальность соответственно. Разница следует прямо из названий. Виртуальная реальность убирает из поля зрения привычный мир, в то время как AR оставляет его на месте, но дополняет его полезной информацией. Самый яркий пример дополненной реальности – Microsoft Hololens. Это устройство добавляет в реальный мир трехмерные голографические объекты, с которыми можно взаимодействовать. По замыслу Microsoft устройство (которое называют, ни много ни мало, голографическим компьютером) понадобятся архитекторам, инженерам, программистам и медикам, автопроизводителям, агентам по недвижимости...

Microsoft Hololens

Виртуальная реальность же полностью заменяет реальный мир искусственно созданным. И в этой области уже сейчас есть ожесточенная конкуренция.

А какие вообще бывают устройства?

Устройства можно разделить на несколько категорий: аксессуары к смартфонам, шлемы и самостоятельные AR-очки. К первым относятся обыкновенные пластмассовые либо картонные шлемы с линзами. В конструкцию просто вставляется смартфон, и получаются очки виртуальной реальности.

Шлемы виртуальной реальности подключаются к компьютеру либо игровой приставке. Они годятся только для стационарного использования. Наконец, самостоятельное носимое устройство – это HoloLens. Пока что оно выглядит очень круто, но впечатляет ориентировочная цена в три тысячи долларов.

Да это же игрушки очередные. Зачем вообще это нужно?

Сфер применения VR/AR гораздо больше, чем может показаться. Студенты медицинских вузов перейдут от тренировки на лягушках к виртуальным учебным операциям, пилоты- и водители-курсанты получат реалистичные тренажеры, школьники на уроках географии отправятся в кругосветку, риелторы покажут вам планировку жилья и дизайн не на бумаге, а устроят полноценный осмотр в VR-очках.

Ладно, а еще что?

На новый уровень выйдет проектирование автомобилей, зданий, да и вообще любой техники. В военной сфере будет доступно обучение специалистов с минимальными затратами по сравнению с настоящими полевыми испытаниями. Кинематограф тоже получит новый скачок в плане реалистичности. И если фильмом в 3D давно никого не удивишь, и все это больше похоже не баловство, то VR сможет дать полноценный эффект присутствия.

Убедили, хочу поучаствовать. Но это же надо учиться долго?

Если вы совсем не знакомы с программированием – конечно, учиться придется многому. Но при наличии минимальных знаний в этой области можно без проблем перестроиться под создание приложений для виртуальной реальности. Производители очень заинтересованы в написании программ под VR/AR, ведь это только ускорит развитие индустрии.

К примеру, Microsoft выпустила бесплатные онлайн-курсы для разработчиков, они позволят каждому человеку, даже с минимальными знаниями программирования, создать приложение под технологию виртуальной реальности.

Так это ведь шлем покупать надо… Без него никак?

Совсем без шлема вы не сможете испытать приложение, которое сами создаете, а это все-таки жутко неудобно. Но есть бюджетный вариант. VR-очки можно получить почти бесплатно: просто вырезав из картона и вставив в них линзы, или купить заготовку и собрать своими руками. Получается практически даром, если у вас есть смартфон. А о том, какие бывают очки и как собрать свой экземпляр из подручных материалов, Microsoft расскажет в рамках лекций.

Что еще нужно знать?

Теперь уже можно браться за разработку. Для начала стоит скачать инструменты Microsoft для создания VR-приложений: Visual Studio, Windows 10 SDK и Fibrum SDK, плагин ALPS-VR.

А дальше - учиться и пробовать свежие знания в деле. У Microsoft есть серия видеолекций с подробным разбором самой технологии виртуальной реальности и разработки проектов: как лучше организовать управление и навигацию в VR плюс углубленное изучение программирования на DirectX и C++. Первая лекция, посвященная конкретно разработке приложений, рассматривает пример Unity.

На сегодняшний день образование считается одним из наиболее перспективных направлений для развития и внедрения технологий виртуальной реальности. Идея применения виртуальной реальности с целью обучения уже далеко не новая, и VR технологии уже давно используются от виртуальных экскурсий на уроках истории или географии до обучения управления самолетом или скоростным поездом.

Преимущества внедрения VR в образовании

Виртуальная реальность открывает новые возможности для изучения теории и отработки практики, ведь традиционные методы могут быть весьма затратными или слишком сложными. Существует 5 основных преимуществ использования AR/VR в сфере образования.

  • Наглядность. 3D-графика позволяет воспроизвести детализацию даже самых сложных процессов, невидимых человеческому оку, вплоть до распада ядра атома или химических реакций. К тому же, ничто не мешает увеличить уровень детализации и увидеть движение электронов или воспроизвести механическую модель, к примеру, развития клетки человеческого организма на разных этапах. Virtual Reality позволяет воспроизвести или смоделировать любые процессы или явления, о которых знает современная наука.
  • Безопасность. Практические основы управления летательными или сверхскоростными аппаратами, можно абсолютно безопасно отработать на устройстве виртуальной реальности. Еще VR дает возможность отрабатывать сверхсложные медицинские операции или манипуляции, без вреда и опасности для кого-либо.
  • Вовлечение. VR-технологии дают возможность смоделировать любую механику действий или поведение объекта, решать сложные математические задания в форме игры и прочее. Виртуальная реальность позволяет путешествовать во времени, просматривая основные сценарии важных исторических событий или увидеть человека из внутри на уровне движения эритроцита в крови.
  • Фокусировка. Пространство, смоделированное в VR можно легко рассмотреть в панорамном диапазоне 360 градусов, не отвлекаясь на внешние факторы.

Возможность проведения виртуальных уроков. Благодаря возможности отображения смоделированного пространства от первого лица и возникновения эффекта собственного участия в виртуальных событиях, стало возможным проведение целых уроков в режиме Virtual Reality.

Форматы VR в сфере образования

Внедрение новых технологий влечет за собой переформатирование всего учебного процесса, с целью адаптации к использованию новых возможностей изучения теории и отработки усвоенных знаний на практике.

Стационарное образование

Технологии виртуальной реальности предоставляют отличные возможности для того, чтобы усвоить материал эмпирического характера. Традиционный формат урока практически не меняется, а лишь дополняется погружением в VR на 5-10 минут.

Возможно деление одного занятия на несколько этапов, в каждом из которых наиболее сложные моменты визуализируются в виртуальном мире. Как и раньше, основой изложения нового материала остается лекция. Но виртуальная реальность дает возможность усовершенствовать урок, вовлекая учеников полностью погрузиться в учебный процесс, визуализируя ключевые моменты пройденного материала.

Дистанционное образование

В случае с дистанционным обучением, ученики могут быть в любой точке планеты, аналогично, как и преподаватель. У каждого из них будет создан образ-аватар, который будет присутствовать в виртуальном классе. При всем этом, ученики могут дистанционно слушать лекции, выполнять индивидуальные или групповые задачи.

Аватары учеников в виртуальном классе.

Виртуальная реальность позволяет избавиться от границ, что могут возникать во время видеоконференций или дистанционных уроков, создавая эффект личного присутствия. Преподаватель сможет увидеть, когда ученику необходимо «выйти» из «класса», к примеру, такие модели VR-шлемов, как Oculus Rift или HTC ViveТакже имеют встроенные датчики освещения, которые позволяют понять, когда устройство используется человеком, а когда нет.

Образование смешанного типа

Если существуют обстоятельства, которые мешают посещать занятия, в ученика есть возможность проходить уроки дистанционно. Чтобы это стало возможным, класс или аудиторию необходимо оборудовать специальными камерами, которые позволяют производить съемку в формате кругового обзора (360 градусов) с которых будет транслироваться урок в режиме online. Ученики, которые по той или иной причине не могут присутствовать в классе, могут быть вместе со своими одноклассниками во время урока, конспектируя материал или решая задачи прямо со своего места за партой.

Самообразование

Практически каждый образовательный курс можно адаптировать для самостоятельного прохождения материала и его усвоения. Уроки с разных предметов можно размещать в популярных онлайн-магазинах, таких как Steam, App Store, Google Play Market и другие. Таким образом, у каждого появиться возможность проходить урок в любое удобное для него время или делать это повторно для лучшего усвоения знаний со сложной темы.

Недостатки внедрения VR в образование

На данном этапе самые новые модели VR-устройств еще не проработаны на 100% для их полноценного применения с целью обучения в школе или ВУЗе, поэтому потенциально использование виртуальной реальности может иметь ряд недостатков.

  • Объем. Практически каждая учебная дисциплина обладает огромным объемом важного материала, поэтому создание одного такого курса несет большую трудоемкость для создания виртуального контента. Это может быть, как отдельный урок на каждую тему, так и десятки отдельных приложений. Компании, которые планируют заниматься разработкой уроков в формате виртуальной реальности, должны быть готовыми к тому, что этот процесс будет занимать большой объем времени и ресурсов без возможности получить прибыль до создания и выхода полноценного урока или целого курса, состоящего из десятка уроков.
  • Стоимость. Если речь идет о дистанционным обучении, то ученикам стоит позаботится о наличии гаджетов способных визуализировать виртуальную реальность, в свою же очередь учебным заведениям необходимо будет закупить дорогостоящее оборудование для классов, в которых будут проходить виртуальные уроки, что требует немалых финансовых вливаний.
  • Функциональность. Virtual Reality, как и любая другая аналогичная технология, нуждается в использовании собственного языка. Нужно подобрать правильные инструменты, чтобы создать качественное наполнение виртуального урока. Существующие приложения виртуальной реальности для обучения не могут использовать на 100% все потенциальные возможности технологии и поэтому не выполняют своей основной функции.

Урок химии в Virtual Reality

С целью проверки и испытания эффективности и целесообразности применения VR-технологий в образовательном процессе, разработчики стартапа Mel создали виртуальный урок химии в качестве эксперимента. Для прохождения исследования были задействованы дети школьного возраста (от 6 до 17 лет), а также их родители или родственники. После прохождения, участники должны были дать ответ на три поставленных вопроса: хорошо ли усваивается материал, поданный в таком виде, как относятся дети к обучению в режиме VR и какие школьные дисциплины более предпочтительны для визуализации в режиме виртуальной реальности.

Темой урока были различные химические реакции проводимые в реальном времени в виртуальной реальности. После того, как участник надевал VR-очки, он попадал в комнату с партой, на которой были представлены колбы с различными хим. составами. Следующим этапом было смешение ингредиентов, и проведение самой химической реакции. В одном уроке приняло участие порядка 6 учеников, он проводился одним учителем и проходил около 5-7 минут. По окончанию лекции участники заполняли опросники.

Уровень усвоения материала и личное отношения к VR-урокам

Результаты опроса

Участники должны были дать ответ на несколько закрытых тематических вопроса из проведенных опытов. Преимущественное большинство респондентов показали отличный результат, и только 8,5% участников так и не смогли усвоить новый материал.

Если говорить об отношении участников к урокам в таком формате, то исходя из данных Cerevrum , 148 из 153 респондентов (больше 97%) положительно восприняли урок в режиме Virtual Reality и были бы не против того, чтобы аналогичные уроки проводились в школах. В пункте о том, для каких именно дисциплин стоит разрабатывать VR-уроки в первую очередь, большинство дали ответ: физика или химия.

Таким образом, эксперимент, который провели инженеры Mel, дал успешный результат. Технология виртуальной реальности может применяться в сфере образования и, скорее всего, в скором времени мы сможем наблюдать настоящий прорыв в данной отрасли и массу интересных открытий.



Загрузка...