sonyps4.ru

Входы и выходы контроллера. Виды сигналов: аналоговый, цифровой, дискретный

Понятие стыка цифровых АТС

ЦСК должна обеспечивать интерфейс (стык) с аналоговыми и цифровыми абонентскими линиями (АЛ) и системами передачи.

Стыком называется граница между двумя функциональными блоками, которая задается функциональными характеристиками, общими характеристиками физического соединения, характеристиками сигналов и другими характеристиками в зависимости от специфики.

Стык обеспечивает одноразовое определение параметров соединения между двумя уст­ройствами. Эти параметры относятся к типу, количеству и функциям соединительных цепей, а также к типу, форме и последовательности сигналов, которые передаются по этим цепям.

Точное определение типов, количества, формы и последовательности соединений и взаимосвязи между двумя функциональными блоками на стыке между ними задается спе­цификацией стыка.

Стыки цифровой АТС можно разделить на следующие

Аналоговый абонентский стык;

Цифровой абонентский стык;

Абонентский стык ISDN;

Сетевые (цифровые и аналоговые) стыки.

Кольцевые соединители

Кольцевые структуры находят применение в целом ряде областей связи. Прежде всего это кольцевые системы передачи с временным группообразованием, которые по существу имеют конфигурацию последовательно соединенных однонаправленных линий, образую­щих замкнутую цепь или кольцо. При этом в каждом узле сети реализуются две основные функции:

1) каждый узел работает как регенератор, чтобы восстановить входящий цифровой сиг­нал и передать его заново;

в узлах сети опознается структура цикла временного группообразования и осуществ­ляется связь по кольцу посредством

2) удаления и ввода цифрового сигнала в определенных канальных интервалах, приписанных к каждому узлу.

Возможность перераспределения канальных интервалов между произвольными парами узлов в кольцевой системе с временным группообразованием означает, что кольцо является распределенной системой передачи и коммутации. Идея одновременности передачи и ком­мутации в кольцевых структурах была распространена на цифровые коммутационные поля.

В такой схеме с помощью единственного канала между любыми двумя узлами может быть установлено дуплексное соединение. В этом смысле кольцевая схема выполняет про­странственно-временное преобразование координат сигнала и может быть рассмотрена как один из вариантов построения S/T-ступени.

Аналоговый, дискретный, цифровой сигналы

В системах электросвязи информация передается с помощью сигналов. Международный союз электросвязи дает следующее определение сигнала:

Сигналом систем электросвязи называется совокупность электромагнитных волн, ко­торая распространяется по одностороннему каналу передачи и предназначена для воздей­ствия на приемное устройство.

1) аналоговый сигнал - сигнал у которого каждый представляющий параметр задается функцией непрерывного времени с непрерывным множеством возможных значений

2) дискретный по уровню сигнал - сигнал, у которого значения представляющих пара­метров задается функцией непрерывного времени с конечным множеством возможных зна­чений. Процесс дискретизации сигнала по уровню носит название квантования;

3) дискретный по времени сигнал - сигнал, у которого каждый представляющий пара­метр задается функцией дискретного времени с непрерывным множеством возможных зна­чений

4) цифровой сигнал - сигнал, у которого значения представляющих параметров задается функцией дискретного времени с конечным множеством возможных значений

Модуляция - это преобразование одного сигнала в другой путем изменения па­раметров сигнала-переносчика в соответствии с преобразуемым сигналом. В качестве сиг­нала-переносчика используют гармонические сигналы, периодические последовательности импульсов и т.д.

Например, при передаче по линии цифрового сигнала двоичным кодом может появиться постоянная составляющая сигнала за счет преобладания единиц во всех кодовых словах.

Отсутствие же постоянной составляющей в линии позволяет использовать согласующие трансформаторы в линейных устройствах, а также обеспечить дистанционное питание реге­нераторов постоянным током. Чтобы избавиться от нежелательной постоянной составляющей цифрового сигнала, перед посылкой в линию двоичные сигналы преобразуются с помощью специальных кодов. Для первичной цифровой системы передачи (ЦСП) принят код HDB3.

Кодирование двоичного сигнала в модифицированный квазитроичный сигнал с ис­пользованием кода HDB3 производится по следующим правилам (рис. 1.5).

Рис. 1.5. Двоичный и соответствующий ему HDB3 коды

Импульсно-кодовая модуляция

Преобразование непрерывного первичного аналогового сигнала в цифровой код называется импульсно-кодовой модуляцией (ИКМ). Основными операциями при ИКМ являются операции дискретизации по времени, квантова­ния (дискретизации по уровню дискретного по времени сигнала) и кодирования.

Дискретизацией аналогового сигнала по времени называется преобразование, при кото­ром представляющий параметр аналогового сигнала задается совокупностью его значений в дискретные моменты времени, или, другими словами, при котором из непрерывного анало­гового сигнала c(t) (рис. 1.6, а) получают выборочные значения с„ (рис. 1.6, б). Значения представляющего параметра сигнала, полученные в результате операции дискретизации по времени, называются отсчетами.

Наибольшее распространение получили цифровые системы передачи, в которых при­меняется равномерная дискретизация аналогового сигнала (отсчеты этого сигнала произво­дятся через одинаковые интервалы времени). При равномерной дискретизации используют­ся понятия: интервал дискретизации At (интервал времени между двумя соседними отсче­тами дискретного сигнала) и частота дискретизации Fd (величина, обратная интервалу дискретизации). Величина интервала дискретизации выбирается в соответствии с теоремой Котельникова.

Согласно теореме Котельникова, аналоговый сиг­нал с ограниченным спектром и бесконечным интерва­лом наблюдения можно без ошибок восстановить из дискретного сигнала, полученного дискретизацией ис­ходного аналогового сигнала, если частота дискретиза­ции в два раза больше максимальной частоты спектра аналогового сигнала:

Теорема Котельникова

Теоре́ма Коте́льникова (в англоязычной литературе - теорема Найквиста-Шеннона) гласит, что, если аналоговый сигнал x(t) имеет ограниченный спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчѐтам, взятым с частотой более удвоенной максимальной частоты спектра Fmax.

В технических отраслях знаний термин сигнал –

1) техническое средство, для передачи обращения и использования информации.

2) физический процесс отображающих информационное сообщение (изменение какого либо параметра носителя информации)

3) смысловое содержание определённого физического состояния или процесса.

Сигнал – сведенья/ сообщения/ информация, о каких либо процессах / состояниях или физических величинах объектов материального мира, выраженных в форме удобной для передачи, обработки, хранения и использования этих сведений.

С математической точки зрения сигнал представляет собой функцию, то есть зависимость одной величины от другой.

    Цель обработки сигналов

Целью обработки сигналов считают изучение определённых информационных сведений, которые отображены в виде целевой информации и преобразования этих сведений в форму удобную для дальнейшего использования.

    Цель анализа сигналов

Под "анализом" сигналов (analysis) имеется в виду не только их чисто математические преобразования, но и получение на основе этих преобразований выводов о специфических особенностях соответствующих процессов и объектов. Целями анализа сигналов обычно являются: - Определение или оценка числовых параметров сигналов (энергия, средняя мощность, среднее квадратическое значение и пр.). - Разложение сигналов на элементарные составляющие для сравнения свойств различных сигналов. - Сравнение степени близости, "похожести", "родственности" различных сигналов, в том числе с определенными количественными оценками.

    Регистрация сигналов

С понятием сигнала неразрывно связан термин регистрации сигналов, использование которого также широко и неоднозначно, как и самого термина сигнал. В наиболее общем смысле под этим термином можно понимать операцию выделения сигнала и его преобразования в форму, удобную для дальнейшего использования, обработки и восприятия . Так, при получении информации о физических свойствах каких-либо объектов, под регистрацией сигнала понимают процесс измерения физических свойств объекта и перенос результатов измерения на материальный носитель сигнала или непосредственное энергетическое преобразование каких-либо свойств объекта в информационные параметры материального носителя сигнала (как правило - электрического). Но так же широко термин регистрации сигналов используют и для процессов выделения уже сформированных сигналов, несущих определенную информацию, из суммы других сигналов (радиосвязь, телеметрия и пр.), и для процессов фиксирования сигналов на носителях долговременной памяти, и для многих других процессов, связанных с обработкой сигналов.

    Внутренние и внешние источники шумов

Шумы, как правило, имеют стохастический (случайный) характер. К помехам относят искажения полезных сигналов при влиянии различных дестабилизирующих факторов (электрические наводки, вибрация, виды шумов и помех различают по источникам их возникновения, энергетическому спектру). По характеру воздействия на сигнал источники шумов и помех бывают внутренние и внешние.

Внутренние помехи присущи физической природе источников и детекторов сигналов, а также материальных носителей. Внешние источники помех бывают искусственного и естественного происхождения. К искусственным шумам относят индустриальные помехи и помехи от работающего оборудования.

    Что дает математическая модель сигнала

Теория анализа и обработки физических данных базируется на математических моделях соответствующих физических полей и физических процессов на основе которых создаются математические модели сигналов они дают возможность обобщённо абстрагируясь от физической природы судить о свойствах сигналов, предсказывать изменения сигналов в различных условиях, кроме того появляется возможность игнорировать большое число второстепенных признаков. Знания математических моделей даёт возможность классифицировать сигналы по различным признакам (например, сигналы делят на детерминированные и стохастические).

    Классификация сигналов

Классификация сигналов осуществляется на основании существенных признаков соответствующих математических моделей сигналов. Все сигналы разделяют на две крупных группы: детерминированные и случайные.

    Гармонические сигналы

Гармонические сигналы (синусоидальные), описываются следующими формулами:

s(t) = A×sin (2f о t+f) = A×sin ( о t+f), s(t) = A×cos( о t+), (1.1.1)

Рис. 5. Гармонический сигнал и спектр его амплитуд

где А, f o ,  o , f - постоянные величины, которые могут исполнять роль информационных параметров сигнала: А - амплитуда сигнала, f о - циклическая частота в герцах,  о = 2f о - угловая частота в радианах,  и f- начальные фазовые углы в радианах. Период одного колебания T = 1/f о = 2/ o . При j = f-p/2 синусные и косинусные функции описывают один и тот же сигнал. Частотный спектр сигнала представлен амплитудным и начальным фазовым значением частоты f о (при t = 0).

    Полигармонические сигналы

Полигармонические сигналы составляют наиболее широко распространенную группу периодических сигналов и описываются суммой гармонических колебаний:

s(t) =A n sin (2f n t+ n) ≡ A n sin (2B n f p t+ n), B n ∈ I, (1.1.2)

или непосредственно функцией s(t) = y(t ± kT p), k = 1,2,3,..., где Т р - период одного полного колебания сигнала y(t), заданного на одном периоде. Значение f p =1/T p называют фундаментальной частотой колебаний.

Рис. 6. Модель сигнала Рис. 7. Спектр сигнала

Полигармонические сигналы представляют собой сумму определенной постоянной составляющей (f о =0) и произвольного (в пределе - бесконечного) числа гармонических составляющих с произвольными значениями амплитуд A n и фаз j n , с частотами, кратными фундаментальной частоте f p . Другими словами, на периоде фундаментальной частоты f p , которая равна или кратно меньше минимальной частоты гармоник, укладывается кратное число периодов всех гармоник, что и создает периодичность повторения сигнала. Частотный спектр полигармонических сигналов дискретен, в связи с чем второе распространенное математическое представление сигналов - в виде спектров (рядов Фурье).

    Почти периодические сигнала

Почти периодические сигналы близки по своей форме к полигармоническим. Они также представляют собой сумму двух и более гармонических сигналов (в пределе – до бесконечности), но не с кратными, а с произвольными частотами, отношения которых (хотя бы двух частот минимум) не относятся к рациональным числам, вследствие чего фундаментальный период суммарных колебаний бесконечно велик рис. 9.

Рис. 9. Почти периодический сигнал и спектр его амплитуд

    Аналоговые сигналы

Аналоговый сигнал (analog signal) является непрерывной или кусочно-непрерывной функцией y=x(t) непрерывного аргумента, т.е. как сама функция, так и ее аргумент могут принимать любые значения в пределах некоторого интервала y 1 £y £ y 2 , t 1 £t £ t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности.

Источниками аналоговых сигналов являются физические процессы и явления в качестве примера аналоговых сигналов чаще всего приводят изменения напряжённости электрического, магнитного и электромагнитного поля во времени.

    Дискретные сигналы

Дискретный сигнал

Рис. 13. Дискретный сигнал

Дискретный сигнал (discrete signal) – рис. 13 по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nt), где y 1 £y £ y 2 , t - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0, 1, 2,...,N. Величина, обратная шагу дискретизации: f = 1/t, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала.

    Цифровой сигнал

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k , где Q k - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда (discrete series) числовых данных - числового массива по последовательным значениям аргумента при t = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

Рис. 14. Цифровой сигнал

По существу, цифровой сигнал по своим значениям (отсчетам) является формализованной разновидностью дискретного сигнала при округлении отсчетов последнего до определенного количества цифр, как это показано на рис. 14. Цифровой сигнал конечен по множеству своих значений. Процесс преобразования бесконечных по значениям аналоговых отсчетов в конечное число цифровых значений называется квантованием по уровню, а возникающие при квантовании ошибки округления отсчетов (отбрасываемые значения) – шумами (noise) или ошибками (error) квантования (quantization).

    Теорема Котельникова-Шеннона

Физический смысл теоремы Котельникова-Шеннона : если максимальная частота в сигнале равна f, то достаточно на одном периоде этой гармоники иметь минимум 2 отсчета с известными значениями t 1 и t 2 , как появляется возможность записать систему из двух уравнений (y 1 =a cos 2ft 1 и y 2 =a cos 2ft 2) и решить систему относительно 2-х неизвестных – амплитуды а и частоты f этой гармоники. Следовательно, частота дискретизации должна быть в 2 раза больше максимальной частоты f в сигнале. Для более низких частот это условие будет выполнено автоматически.

На практике эта теорема широко используется например в преобразовании аудиозаписей Диапазон воспринимаемых человеком частот от 20гц – до 20 кгц поэтому для преобразования без потерь необходимо выполнять дискретизацию с частотой более 40 кгц поэтому cd dvd mp3 оцифровывают с частотой 44.1 кгц. Операция квантования (аналогово-цифровое преобразование АЦП ADC) заключается в преобразовании дискретного сигнала в цифровой кодированный в двоичной сист. счисления

    Понятие системы

Система любого назначения всегда имеет вход на который подаётся входной сигнал или входное воздействие (в общем случае многомерное) и выход с которого снимается обработанный выходной сигнал. Если устройство системы и внутренние операции преобразований принципиального значения не имеют, то система в целом может восприниматься как чёрный ящик в формализованном виде.

Формализованная система представляет собой определенный системный оператор (алгоритм) преобразования входного сигнала – воздействия s(t), в сигнал на выходе системы y(t) – отклик или выходную реакцию системы. Символическое обозначение операции преобразования (трансформации):

Для детерминированных входных сигналов соотношение между входными и выходными сигналами однозначно задаётся системным оператором.

    Системный опреатор t

Системный оператор T - это правило (набор правил, алгоритм) преобразования сигнала s(t) в сигнал y(t). Для общеизвестных операций преобразования сигналов применяются также расширенные символы операторов трансформации, где вторым символом и специальными индексами обозначается конкретный вид операции (как, например, TF - преобразование Фурье, TF -1 - обратное преобразование Фурье).

    Линейные и не линейные системы

В случае реализации на входе системы случайного входного сигнала также существует однозначное соответствие процессов на входе и выходе, однако при этом происходит изменение статистических характеристик выходного сигнала. Любые преобразования сигналов сопровождаются изменением их спектра и по характеру этих изменений их делят на 2 вида линейные и нелинейные

К нелинейным относят при котором в составе спектра сигналов появляются новые гармонические составляющие, а при линейных изменениях сигналов изменяются амплитуды составляющего спектра. Оба вида изменений могут происходить с сохранением и искажением полезной информации. Линейные системы составляют основной класс систем обработки сигналов.

Термин линейность – означает, что система преобразования сигналов должна иметь произвольную, но обязательно линейную зависимость между входным и выходным сигналами.

Система считается линейной если в пределах установленной области входных и выходных сигналов её реакция на входные сигналы аддитивна(выполняется принцип суперпозиции сигналов) и однородна (выполняется принцип пропорционального подобия).

    Принцип аддитивности

Принцип аддитивности требует, чтобы реакция на сумму двух входных сигналов была равна сумме реакций на каждый сигнал в отдельности:

T = T+T.

    Принцип однородности

Принцип однородности или пропорционального подобия требует сохранения однозначности масштаба преобразования при любой амплитуде входного сигнала:

T= c  T.

    Основные системные операции

К базовым линейным операциям, из которых могут быть сформированы любые линейные операторы преобразования, относятся операции скалярного умножения, сдвига и сложения сигналов:

y(t) = b  x(t), y(t) = x(t-t), y(t) = a(t)+b(t).

Рис. 11.1.1. Графика системных операций

Операции сложения и умножения являются линейными только для дискретных и аналоговых сигналов.

Для систем, с размерностью 2 и более существует также еще одна базовая операция, которая называется операцией пространственного маскирования , которая может рассматриваться как обобщение скалярного умножения. Так, для двумерных систем:

z(x,y) = c(x,y)u(x,y),

где u(x,y) – двумерный входной сигнал, c(x,y) – пространственная маска постоянных (весовых) коэффициентов. Пространственное маскирование представляет собой поэлементное произведение значений сигнала с коэффициентами маски.

    Дифференциальные уравнения как универсальный инструмент изучения сигналов

Дифференциальные уравнения представляют собой универсальный инструмент задания определенной связи между сигналами входа и выхода, как в одномерных, так и в многомерных системах, и могут описывать систему, как в режиме реального времени, так и апостериорно. Так, в аналоговой одномерной линейной системе такая связь обычно выражается линейным дифференциальным уравнением

a m = b n . (11.1.1)

При нормировке к а о = 1, отсюда следует

y(t) =b n –a m . (11.1.1")

По существу, правой частью этого выражения в самой общей математической форме отображается содержание операции преобразования входного сигнала, т.е. задается оператор трансформации входного сигнала в выходной. Для однозначного решения уравнений (11.1.1) кроме входного сигнала s(t) должны задаваться определенные начальные условия, например, значения решения y(0) и его производной y"(0) по времени в начальный момент времени.

Аналогичная связь в цифровой системе описывается разностными уравнениями

a m y((k-m)t) =b n s((k-n)t). (11.1.2)

y(kt) =b n s((k-n)t) –a m y((k-m)t). (11.1.2")

Последнее уравнение можно рассматривать как алгоритм последовательного вычисления значений y(kt), k = 0, 1, 2, …, по значениям входного сигнала s(kt) и предыдущих вычисленных значений y(kt) при известных значениях коэффициентов a m , b n и с учетом задания начальных условий - значений s(kt) и y(kt) при k < 0. Интервал дискретизации в цифровых последовательностях отсчетов обычно принимается равным 1, т.к. выполняет только роль масштабного множителя.

    Рекурсивные системы

На практике стремятся упростить системы взаимозависимых моделей и привести их к так называемому рекурсивному виду. Для этого сначала выбирают эндогенную переменную (внутренний показатель), зависящую только от экзогенных переменных (внешних факторов), обозначают ее у 1 . Затем выбирается внутренний показатель, который зависит только от внешних факторов и от y 1 , и т.д.; таким образом, каждый последующий показатель зависит только от внешних факторов и от внутренних предыдущих. Такие системы называются рекурсивными. Параметры первого уравнения рекурсивных систем находят методом наименьших квадратов, их подставляют во второе уравнение и опять применяется метод наименьших квадратов, и т.д.

    Сети доступа и магистральные сети

Магистральные территориальные сети (backbone wide-area networks) используются для образования одноранговых связей между крупными локальными сетями, принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как на магистрали объединяются потоки большого количества подсетей. Кроме того, магистральные сети должны быть постоянно доступны, то есть обеспечивать очень высокий коэффициентом готовности, так как по ним передается трафик многих критически важных для успешной работы предприятия приложений (business-critical applications). Ввиду особой важности магистральных средств им может «прощаться» высокая стоимость. Так как у предприятия обычно имеется не так уж много крупных сетей, то к магистральным сетям не предъявляются требования поддержания разветвленной инфраструктуры доступа.

Под сетями доступа понимаются территориальные сети, необходимые для связи небольших локальных сетей и отдельных удаленных компьютеров с центральной локальной сетью предприятия. Если организации магистральных связей при создании корпоративной сети всегда уделялось большое внимание, то организация удаленного доступа сотрудников предприятия перешла в разряд стратегически важных вопросов только в последнее время. Быстрый доступ к корпоративной информации из любой географической точки определяет для многих видов деятельности предприятия качество принятия решений его сотрудниками. Важность этого фактора растет с увеличением числа сотрудников, работающих на дому (telecommuters - телекоммьютеров), часто находящихся в командировках, и с ростом количества небольших филиалов предприятий, находящихся в различных городах и, может быть, разных странах.

    Мультеплексирование

Мультиплексирование – использование одного канала связи для передачи данных нескольких абонентов. Линии (канал) связи состоят из физической среды, по которой передаются информационные сигналы аппаратуры передачи данных.

    Разновидности каналов связи

    симплексный - при связи приемника с передатчиком по одному каналу, с однонаправленной передачей информации (например, в телевизионной и радиовещательной сетях);

    полудуплексный - когда два узла связи соединены одним каналом, по которому информация передается попеременно то в одном направлении, то в противоположном (в информационно-справочных и запросно-ответных системах);

    дуплексный - позволяет передавать данные одновременно в двух направлениях за счет использования четырехпроводной линии связи (два провода для передачи, два других – для приема данных), или двух полос частот.

    Характеристики линий связи

Основные характеристики канала связи – пропускная способность и достоверность передачи данных

Пропускная способность канала (количество информации, передаваемое в ед. времени) оценивается числом бит данных, передаваемых по каналу в секунду БИТ/ сек

Достоверность передачи данных оценивается по интенсивности битовых ошибок (BER) определяется вероятностью искажения передаваемого бита данных. Величина интенсивности битовых ошибок для каналов связи без дополнительной защиты от ошибок составляет 10 -4 до 10 -6

    Основные характеристики кабелей

В компьютерных сетях применяются кабели соответствующие международным стандартам ISO 11801. В этих стандартах регламентированы след основные характеристики кабелей:

– затухание (ДБ/м);

­­­­­– устойчивость кабеля к внутренним источникам помех (если в кабеле более одной пары проводов);

Импеданс (волновое сопротивление) - эффективное входное сопротивление кабеля для переменного тока;

Уровень внешнего ЭМ излучения в проводнике характеризует помехозащищённость кабеля.

Степень ослабления внешних помех от различных источников. Наиболее широкое применение находят след виды кабелей – неэкранированная витая пара / экранированная витая пара / коаксиальный кабель / оптоволокно.

Неэкранированная-

Экранированная – лучше неэкранированной

Кабель (RG8 и RG11 - толстый коаксиальный кабель имеет волновое сопротивление 8 Ом и внешний диаметр 2.5 см)

Кабели RG58 & RG59 – тонкие коаксиальные кабели с волновым сопротивлением 75 Ом

    Среды передачи данных (проводные и беспроводные)

В зависимости от физической среды передачи данных линии связи можно разделить:

    проводные линии связи без изолирующих и экранирующих оплеток;

    кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;

    беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Дискретные сигналы естественно возникают в тех случаях, когда источник сообщений выдает информацию в фиксированные моменты времени. Примером могут служить сведения о температуре воздуха, передаваемые радиовещательными станциями несколько раз в сутки. Свойство дискретного сигнала проявляется здесь предельно ярко: в паузах между сообщениями никаких сведений о температуре нет. Фактически же температура воздуха изменяется во времени плавно, так что результаты измерения возникают за счет дискретизации непрерывного сигнала - операции, которая фиксирует отсчетные значения.

Дискретные сигналы приобрели особое значение в последние десятилетия под влиянием совершенствования техники связи и развития способов обработки информации быстродействующими вычислительными устройствами. Большие успехи достигнуты в разработке и использовании специализированных устройств для обработки дискретных сигналов, так называемых цифровых фильтров.

Настоящая глава посвящена рассмотрению принципов математического описания дискретных сигналов, а также теоретических основ построения линейных устройств для их обработки.

15.1. Модели дискретных сигналов

Различие между дискретными и аналоговыми (непрерывными) сигналами подчеркивалось в гл. 1 при классификации радиотехнических сигналов. Напомним основное свойство дискретного сигнала: его значения определены не во все моменты времени, а лишь в счетном множестве точек. Если аналоговый сигнал имеет математическую модель вида непрерывной или кусочно-непрерывной функции, то отвечающий ему дискретный сигнал представляет собой последовательность отсчетных значений сигнала в точках соответственно.

Дискретизирующая последовательность.

На практике, как правило, отсчеты дискретных сигналов берут во времени через равный промежуток А, называемый интервалом (шагом) дискретизации:

Операцию дискретизации, т. е. переход от аналогового сигнала к дискретному сигналу , можно описать, введя в рассмотрение обобщенную функцию

называемую дискретизирующей последовательностью.

Очевидно, дискретный сигнал представляет собой функционал (см. гл. 1), определенный на множестве всевозможных аналоговых сигналов и равный скалярному произведению функции

Формула (15.3) указывает путь практической реализации устройства для дискретизации аналогового сигнала. Работа дискретизатора основана на операции стробирования (см. гл. 12) - перемножения обрабатываемого сигнала и «гребенчатой» функции Поскольку длительность отдельных импульсов, из которых складывается дискретизирующая последовательность, равна нулю, на выходе идеального дискретизатора в равноотстоящие моменты времени возникают отсчетные значения обрабатываемого аналогового сигнала.

Рис. 15.1. Структурная схема импульсного модулятора

Модулированные импульсные последовательности.

Дискретные сигналы начали использовать еще в 40-х годах при создании радиотехнических систем с импульсной модуляцией. Этот вид модуляции отличается тем, что в качестве «несущего колебания» вместо гармонического сигнала служит периодическая последовательность коротких импульсов.

Импульсный модулятор (рис. 15.1) представляет собой устройство с двумя входами, на один из которых подается исходный аналоговый сигнал На другой вход поступают короткие синхронизирующие импульсы с интервалом повторения . Модулятор построен таким образом, что в момент подачн каждого синхронизирующего импульса происходит измерение мгновенного значения сигнала х(t). На выходе модулятора возникает последовательность импульсов, каждый из которых имеет площадь, пропорциональную соответствующему отсчетному значению аналогового сигнала.

Сигнал на выходе импульсного модулятора будем называть модулированной импульсной последовательностью (МИП). Естественно, что дискретный сигнал является математической моделью МИП.

Отметим, что с принципиальной точки зрения характер импульсов, из которых складывается МИП, безразличен. В частности, эти импульсы могут иметь одинаковую длительность, в то время как их амплитуда пропорциональна отсчетным значениям дискретизируемого сигнала. Такой вид преобразования непрерывного сигнала получил название амплитудно-импульсной модуляции (АИМ). Возможен другой способ - широтно-импульсная модуляция (ШИМ). Здесь амплитуды импульсов на выходе модулятора постоянны, а их длительность (ширина) пропорциональна мгновенным значениям аналогового колебания.

Выбор того или иного способа импульсной модуляции диктуется рядом технических соображений, удобством схемной реализации, а также характерными особенностями передаваемых сигналов. Например, нецелесообразно использовать АИМ в случае, если полезный сигнал изменяется в очень широких пределах, т. е., как часто говорят, имеет широкий динамический диапазон. Для неискаженной передачи такого сигнала требуется передатчик со строго линейной амплитудной характеристикой. Создание такого передатчика - самостоятельная, технически сложная проблема. Системы ШИМ не предъявляют требований к линейности амплитудных характеристик передающего устройства. Однако их схемная реализация может оказаться несколько сложнее по сравнению с системами АИМ.

Математическую модель идеальной МИП можно получить следующим образом. Рассмотрим формулу динамического представления сигнала (см. гл. 1):

Поскольку МИП определена лишь в точках интегрирование в формуле (15.4) следует заменить суммированием по индексу к. Роль дифференциала будет играть интервал (шаг) дискретизации . Тогда математическая модель модулированной импульсной последовательности, образованной бесконечно короткими импульсами, окажется заданной выражением

где - выборочные значения аналогового сигнала.

Спектральная плотность модулированной импульсной последовательности.

Исследуем спектр сигнала, возникающего на выходе идеального импульсного модулятора и описываемого выражением (15.5).

Заметим, что сигнал вида МИП с точностью до коэффициента пропорциональности А равен произведению функции и дискретизирующей последовательности

Известно, что спектр произведения двух сигналов пропорционален свертке их спектральных плотностей (см. гл. 2). Поэтому бели известны законы соответствия сигналов и спектров:

то спектральная плотность МИП-сигнала

Чтобы найти спектральную плотность дискретизирующей последовательности, разложим периодическую функцию в комплексный ряд Фурье:

Коэффициенты этого ряда

Обратившись к формуле (2.44), получаем

т. е. спектр дискретизирующей последовательности состоит из бесконечной совокупности дельта-импульсов в частотной области. Данная спектральная плотность является периодической функцией с периодом

Наконец, подставив формулу (15.8) в (15.7) и изменив порядок следования операций интегрирования и суммирования, находим

Итак, спектр сигнала, полученного в результате идеальной дискретизации бесконечно короткими стробирующими импульсами, представляет собой сумму бесконечного числа «копий» спектра исходного аналогового сигнала. Копии располагаются на оси частот через одинаковые интервалы равные значению угловой частоты первой гармоники дискретизирующей импульсной последовательности (рис. 15.2, а, б).

Рис. 15.2. Спектральная плотность модулированной импульсной последовательности при различных значениях верхней граничной частоты: а - верхняя граничная частота велика; б - верхняя граничная частота мала (цветом обозначена спектральная плотность исходного сигнала, подвергнутого дискретизации)

Восстановление непрерывного сигнала по модулированной импульсной последовательности.

В дальнейшем будем полагать, что вещественный сигнал имеет низкочастотный спектр, симметричный относительно точки и ограниченный верхней граничной частотой Из рис. 15.2, б следует, что если , то отдельные копии спектра не накладываются друг на друга.

Поэтому аналоговый сигнал с таким спектром, подвергнутый импульсной дискретизации, может быть совершенно точно восстановлен с помощью идеального ФНЧ, на вход которого подана импульсная последовательность вида (15.5). При этом наибольший допустимый интервал дискретизации , что согласуется с теоремой Котельникова.

Действительно, пусть фильтр, восстанавливающий непрерывный сигнал, имеет частотный коэффициент передачи

Импульсная характеристика этого фильтра описывается выражением

Принимая во внимание, что МИП-сигнал вида (15.5) есть взвешенная сумма дельта-импульсов, находим отклик на выходе восстанавливающего фильтра

Данный сигнал с точностью до масштабного коэффициента повторяет исходное колебание с ограниченным спектром.

Идеальный ФНЧ физически нереализуем и может служить лишь теоретической моделью для объяснения принципа восстановления сообщения по его дискретным импульсным отсчетам. Реальный фильтр нижних частот имеет АЧХ, которая либо охватывает несколько лепестков спектральной диаграммы МИП, либо, концентрируясь вблизи нулевой частоты, оказывается значительно уже центрального лепестка спектра. Для примера на рис. 15.3, б-е приведены кривые, характеризующие сигнал на выходе RC-цепи, используемой в качестве восстанавливающего фильтра (рис. 15.3, а).

Рис. 15.3. Восстановление непрерывного сигнала по его импульсным отсчетам с помощью RC-цепи: а - схема фильтра; б - дискретный входной сигнал; в, г - АЧХ фильтра и сигнал на его выходе в случае ; д, е - то же, для случая

Из приведенных графиков видно, что реальный восстанавливающий фильтр неизбежно искажает входное колебание.

Заметим, что для восстановления сигнала можно использовать как центральный, так и любой боковой лепесток спектральной диаграммы.

Определение спектра аналогового сигнала по совокупности отсчетов.

Располагая МИП-представлением, можно не только восстановить аналоговый сигнал, но и найти его спектральную плотность. Для этого следует прежде всего непосредственно связать спектральную плотность МИП с отсчетными значениями:

(15.13)

Данная формула исчерпывающе решает поставленную задачу при указанном выше ограничении.

Чем измерительный сигнал отличается от сигнала? Приведите примеры измерительных сигналов, используемых в различных разделах науки и техники

Измерительный сигнал - это материальный носитель информации, содержащий количественную информацию об измеряемой физической величине и представляющий собой некоторый физический процесс, один из параметров которого функционально связан с измеряемой физической величиной. Такой параметр называют информативным. А сигнал несет количественную информацию только об информативном параметре, а не об измеряемой физической величине.

Примерами измерительных сигналов могут быть

Выходные сигналы различных генераторов (магнитогидродинамического, лазеров, мазеров и др.), трансформаторов (дифференциального, тока, напряжения)

Различные электромагнитные волны (радиоволны, оптическое излучение и др.)

Перечислите признаки, по которым классифицируются измерительные сигналы

По характеру измерения информативного и временного параметров измерительные сигналы делятся на аналоговые, дискретные и цифровые. По характеру изменения во времени сигналы делятся на постоянные и переменные. По степени наличия априорной информации переменные измерительные сигналы делятся на детерминированные, квазидетерминированные и случайные.

Чем аналоговый, дискретный и цифровой сигналы отличаются друг от друга?

Аналоговый сигнал - это сигнал, описываемый непрерывной или кусочно-непрерывной функцией Y a (t), причем как сама эта функция, так и ее аргумент t могут принимать любые значения на заданных интервалах (Y min ; Y max) и (t min ; t max).

Дискретный сигнал - это сигнал, изменяющийся дискретно во времени или по уровню. В первом случае он может принимать в дискретные моменты времени nТ, где Т = const - интервал (период) дискретизации, n = 0; 1; 2; ... - целое, любые значения в интервале (Y min ; Y max)называемые выборками, или отсчетами. Такие сигналы описываются решетчатыми функциями. Во втором случае значения сигнала Yд(t) существуют в любой момент времени t в интервале (t min ; t max) однако они могут принимать ограниченный ряд значений h j = nq, кратных кванту q.

Цифровые сигналы - квантованные по уровню и дискретные по времени сигналы Y ц (nТ), которые описываются квантованными решетчатыми функциями (квантованными последовательностями), принимающими в дискретные моменты времени nТ лишь конечный ряд дискретных значений - уровней квантования h 1 h 2 , ... , h n .

Расскажите о характеристиках и параметрах случайных сигналов

Случайный сигнал - это изменяющаяся во времени физическая величина, мгновенное значение которой является случайной величиной.

Семейство реализаций случайного процесса является основным экспериментальным материалом, на основе которого можно получить его характеристики и параметры.

Каждая реализация является неслучайной функцией времени. Семейство реализаций при каком-либо фиксированном значении времени t o представляет собой случайную величину, называемую сечением случайной функции, соответствующим моменту времени t o . Следовательно, случайная функция совмещает в себе характерные признаки случайной величины и детерминированной функции. При фиксированном значении аргумента она превращается в случайную величину, а в результате каждого отдельного опыта становится детерминированной функцией.

Наиболее полно случайные процессы описываются законами распределения: одномерным, двумерным и Т.д. Однако оперировать с такими, в общем случае многомерными функциями очень сложно, поэтому в инженерных приложениях, каковым является метрология, стараются обойтись характеристиками и параметрами этих законов, которые описывают случайные процессы не полностью, а частично. Характеристики случайных процессов, в отличие от характеристик случайных величин, которые подробно рассмотрены в гл. 6, являются не числами, а функциями. К важнейшим из них относятся математическое ожидание и дисперсия.

Математическим ожиданием случайной функции X(t) называется неслучайная функция

mx(t) = M = хр(х, t)dx,

которая при каждом значении аргумента t равна математическому ожиданию соответствующего сечения. Здесь р(х, t) - одномерная плотность распределения случайной величины х в соответствующем сечении случайного процесса X(t). Таким образом, математическое ожидание в данном случае является средней функцией, вокруг которой группируются конкретные реализации.

Дисперсией случайной функции X(t) называется неслучайная функция

Dx(t) = D = 2 p(x, t)dx,

значение которой для каждого момента времени равно дисперсии соответствующего сечения, т.е. дисперсия характеризует разброс реализаций относительно mx(t).

Математическое ожидание случайного процесса и его дисперсия являются весьма важными, но не исчерпывающими характеристиками, так как определяются только одномерным законом распределения. Они не могут характеризовать взаимосвязь между различными сечениями случайного процесса при различных значениях времени t и t". Для этого используется корреляционная функция - неслучайная функция R(t, t") двух аргументов t и t", которая при каждой паре значений аргументов равна ковариации соответствующих сечений случайного процесса:

Корреляционная функция, называемая иногда автокорреляционной, описывает статистическую связь между мгновенными значениями случайной функции, разделенными заданным значением времени ф = t"-t. При равенстве аргументов корреляционная функция равна дисперсии случайного процесса. Она всегда неотрицательна.

На практике часто используется нормированная корреляционная функция

Она обладает следующими свойствами: 1) при равенстве аргументов t и t" r(t, t") = 1; 2) симметрична относительно своих аргументов: r(t,t") = r(t",t); 3) ее возможные значения лежат в диапазоне [-1;1], т.е. |r(t,t")| ? 1. Нормированная корреляционная функция по смыслу аналогична коэффициенту корреляции между случайными величинами, но зависит от двух аргументов и не является постоянной величиной.

Случайные процессы, протекающие во времени однородно, частные реализации которых с постоянной амплитудой колеблются вокруг средней функции, называются стационарными. :Количественно свойства стационарных процессов характеризуются следующими условиями.

* Математическое ожидание стационарного процесса постоянно, Т.е. m х (t) = m х = const. Однако это требование не является существенным, поскольку от случайной функции X(t) всегда можно перейти к центрированной функции, для которой математическое ожидание равно нулю. Отсюда вытекает, что если случайный процесс нестационарен только за счет переменного во времени (по сечениям) математического ожидания, то операцией центрирования его всегда можно свести к стационарному.

* Для стационарного случайного процесса дисперсия по сечениям является постоянной величиной, Т.е. Dx(t) = Dx = const.

* :Корреляционная функция стационарного процесса зависит не от значения аргументов t и t", а только от промежутка ф = t"-t, т.е. R(t,t") = R(ф). Предыдущее условие является частным случаем данного условия, Т.е. Dx(t) = R(t, t) = R(ф = О) = const. Таким образом, зависимость автокорреляционной функции только от интервала "t является единственным существенным условием стационарности случайного процесса.

Важной характеристикой стационарного случайного процесса является его спектральная плотность S(щ), которая описывает частотный состав случайного процесса при щ?0 и выражает среднюю мощность случайного процесса, приходящуюся на единицу полосы частот:

Спектральная плотность стационарного случайного процесса является неотрицательной функцией частоты S(щ)?0. Площадь, заключенная под кривой S(щ), пропорциональна дисперсии процесса. Корреляционная функция может быть выражена через спектральную плотность

R(ф) = S(щ)cosщфdщ.

Стационарные случайные процессы могут обладать или не обладать свойством эргодичности. Стационарный случайный процесс называется эргодическим если любая его реализация достаточной продолжительности является как бы "полномочным представителем" всей совокупности реализаций процесса. В таких процессах любая реализация рано или поздно пройдет через любое состояние независимо от того, в каком состоянии находился этот процесс в начальный момент времени.

Для описания погрешностей используются теория вероятностей и математическая статистика. Однако прежде необходимо сделать ряд существенных оговорок:

* применение методов математической статистики к обработке результатов измерений правомочно лишь в предположении о независимости между собой отдельных получаемых отсчетов;

* большинство используемых в метрологии форму л теории вероятностей правомерны только для непрерывных распределений, в то время как распределения погрешностей вследствие неизбежного квантования отсчетов, строго говоря, всегда дискретны, Т.е. погрешность может принимать лишь счетное множество значений.

Таким образом, условия непрерывности и независимости для результатов измерений и их погрешностей соблюдаются приближенно, а иногда и не соблюдаются. В математике под термином "непрерывная случайная величина" понимается существенно более узкое, ограниченное рядом условий понятие, чем "случайная погрешность" в метрологии.

С учетом этих ограничений процесс появления случайных погрешностей результатов измерений за вычетом систематических и прогрессирующих погрешностей обычно может рассматриваться как центрированный стационарный случайный процесс. Его описание возможно на основе теории статистически независимых случайных величин и стационарных случайных процессов.

При выполнении измерений требуется количественно оценить погрешность. Для такой оценки необходимо знать определенные характеристики и параметры модели погрешности. Их номенклатура зависит от вида модели и требований к оцениваемой погрешности. В метрологии принято различать три группы характеристик и параметров погрешностей. Первая группа - задаваемые в качестве требуемых или допускаемых нормы характеристик погрешности измерений (нормы погрешностей). Вторая группа характеристик - погрешности, приписываемые совокупности выполняемых по определенной методике измерений. Характеристики этих двух групп применяются в основном при массовых технических измерениях и представляют собой вероятностные характеристики погрешности измерений. Третья группа характеристик - статистические оценки погрешностей измерений отражают близость отдельного, экспериментально полученного результата измерения к истинному значению измеряемой величины. Они используются в случае измерений, проводимых при научных исследованиях и метрологических работах.

В качестве характеристик случайной погрешности используют СКО случайной составляющей погрешности измерений и, если необходимо, ее нормализованную автокорреляционную функцию.

Систематическая составляющая погрешности измерений характеризуется:

* СКО неисключенной систематической составляющей погрешности измерений;

* границами, в которых неисключенная систематическая составляющая погрешности измерений находится с заданной вероятностью (в частности, и с вероятностью, равной единице).

Требования к характеристикам погрешности и рекомендации по их выбору приведены в нормативном документе МИ 1317-86 "ГСИ. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров".

Существуют аналоговые, дискретные и цифровые сигналы. Аналоговые сигналы описываются непрерывной во времени функцией , которая может принимать любые значения в определенном интервале; дискретные сигналы представляют собой последовательности или отсчеты функции , взятые в определенные дискретные моменты времени nT ; цифровыми являются сигналы, которые в дискретные моменты времени nT принимают конечные дискретные значения – уровни квантования, которые затем кодируются двоичными числами. Если в цепь микрофона (рис. 1), где ток является непрерывной функцией времени, встроить ключ и периодически на короткие мгновения замыкать его, то ток в цепи будет иметь вид узких импульсов с амплитудами, повторяющими форму непрерывного сигнала. Последовательность этих импульсов, которые называют отсчетами непрерывного сигнала, и представляет собой, не что иное, как дискретный сигнал.
Рис. 1 В отличие от непрерывного сигнала дискретный сигнал можно обозначить . Однако, чаще его обозначают , заменяя непрерывное время t дискретными моментами nT , следующими строго через интервал T . Используются и более краткие обозначения: и . Причем, во всех этих записях n – целое число, принимающее как положительные, так и отрицательные значения. Так, на рис. 1 при n < 0 дискретный сигнал . При n = 0 значение равно значению сигнала в момент времени t = 0. При n > 0 отсчеты повторяют форму сигнала , т.к. их амплитуды равны значениям непрерывного сигнала в моменты времени nT . Рис. 2 Дискретные сигналы можно задавать графиками, как это показано на рис. 1, формулами, например, , в виде таблиц дискретных значений или в виде комбинации этих способов. Рассмотрим примеры некоторых дискретных сигналов, полученных из типовых аналоговых сигналов. Все средства связи, которые на сегодняшний день используются в мире, основаны на передаче электрического тока из одной точки в другую. Как работа в сети Internet, так и разговор с другом по телефону обеспечиваются за счет постоянного протекания тока по оборудованию телекоммуникационной инфраструктуры. По каналам связи могут передаваться различные типы сигналов. В этой книге рассматриваются два основных типа сигналов: аналоговые и цифровые. Некоторые виды физической передающей среды, как, например, волоконно-оптический кабель, используются для передачи данных в сети провайдера в виде световых сигналов. Принципы цифровой передачи для такой среды такие же, однако для ее организации используются лазеры и светодиоды. Аналоговые и цифровые сигналы коренным образом отличаются друг от друга. Условно можно сказать, что они находятся на разных концах одного и того же спектра. Из-за таких существенных различий между двумя типами сигналов для организации "моста" между ними приходится использовать промежуточные устройства, наподобие цифро-аналоговых преобразователей (они рассматриваются ниже в текущей главе). Основное различие между аналоговыми и цифровыми сигналами заключается в самой структуре сигнального потока. Аналоговые сигналы представляют собой непрерывный поток, характеризующийся изменениями частоты и амплитуды. Это означает, что форма аналогового сигнала обычно похожа на синусоиду (т.е. гармоническую волну), представленную на рис. 1.2. Зачастую на иллюстрациях, изображающих гармоническую волну, весь сигнал характеризуется одним и тем же соотношением частоты и амплитуды, однако при графическом представлении сложной волны видно, что такое соотношение изменяется в зависимости от частоты.
Цифровым сигналам соответствуют дискретные электрические значения, которые передаются индивидуально по некоторой физической передающей среде. В отличие от аналоговых сигналов, в которых количество возможных значений амплитуды почти бесконечно, для цифровых сигналов она может принимать одно из двух (или четырех) различных значений - как положительных, так и отрицательных. Цифровые сигналы передаются в виде единиц и нулей, которые обычно называют двоичными. Более подробно потоки цифровых сигналов рассматриваются в главе 3, "Аналого-цифровое преобразование". Как и в любой другой технологии, для описания аналоговых сигналов используются базовые концепции и собственная терминология. Непрерывные аналоговые сигналы имеют три основные характеристики: амплитуду; длину волны; частоту.

Загрузка...