sonyps4.ru

Уровень шумов а большой динамический. Что такое динамический диапазон (DR) и его влияние на качество звучания

(от греч. ἀκούω (аку́о) - слышу) - наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием.

Акустическая система – это электрическое устройство (рис. 2), предназначенное для преобразования тока переменной частоты в звуковые колебания при помощи электро-акустического преобразования.

Громкоговоритель, динамик, динамическая головка (рис. 3) – основной элемент акустической системы, который, собственно, и преобразует ток переменной (звуковой) частоты в звуковые колебания или, просто, в звук.

Звуковой сигнал можно представить, как совокупность различных синусоидальных составляющих. Каждая составляющая характеризуется рядом параметров (рис. 4):

Звуковой диапазон от 20 до 20000 Гц (примерно) – это звук, который мы слышим. Естественно, это усреднённый интервал, и у каждого человека он индивидуален.

Громкость звука определяется амплитудой сигнала (рис. 5). Чем выше амплитуда звуковой волны, тем больше громкость.

Звуковое давление – это переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны.

Высота звука определяется частотой звуковой волны (или, периодом волны). Чем выше частота, тем выше звучание и, соответственно, наоборот (рис. 6).

Тембр звука – это «окраска звука». Дело в том, что звуки различных источников (музыкальные инструменты, голоса людей) представляют собой совокупность гармонических колебаний разных частот. Составляющая наибольшего периода (наименьшей частоты) называется основным тоном. Высота сложного звука определяется именно высотой его основного тона. Остальные составляющие сложного звука называют обертонами (у них высота больше, чем у основного) – рис. 7. Набор этих составляющих и создаёт «краску», тембр звука.

Динамический диапазон звука – это диапазон между самым тихим уровнем, и самым громким .

Инфразвук (от лат. infra - ниже, под) - упругие волны, аналогичные звуковым, но имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16-25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Ультразвук – это упругие колебания и волны с частотами приблизительно от 1,5- 2 ×104 Гц (15-20 кГц) и до 109Гц(1 ГГц). Ультразвуковую область частот подразделяют на три подобласти: ультразвук низких частот (1,5×104-105 Гц) - УзНЧ, ультразвук средних частот (105 - 107 Гц) - УзСЧ, ультразвук высоких частот (107-109 Гц) - УзВЧ. Каждая из этих подобластей характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.

Гиперзвук – это упругие волны с частотой от 109 до 1012-1013 Гц. По физической природе гиперзвук ничем не отличается от ультразвука.

2. Воспроизведение звука
Для того, чтобы в воздухе возникла звуковая волна, необходим источник звуковых колебаний – некое тело или система тел, которые совершают механические колебания с частотой от 20 Гц до 20 кГц. Таким источником является, например, динамический громкоговоритель (динамик) – рис.3.

Динамический громкоговоритель (рис. 8) состоит из диффузора 6, дифузородержателя 5, центрирующий шайбы 4, звуковой катушки 3, и магнитной системы 1, 2, 8. Бумажный конус-диффузор 6 приклеен к металлическому или пластмассовому дифузородержателю 5 своим краем (гофром) 7 и центрирующий шайбой 4, назначение которой – центрировать положение звуковой катушки 3 в зазоре магнитной системы. Кольцевой магнит 2 и сердечник 1 (так называемый керн) приклеены к дифузородержателю 5 и шайбе из мягкого железа 8. Между керном 1 и магнитом 2 является зазор 0,5-2,0 мм, в котором создается сильное магнитное поле. На бумажном кольце, приклеенном к узкой части диффузора, намотанная тонким изолированным проводом (40-80 витков), звуковая катушка 3. Концы катушки приклеены к диффузору и соединены гибким проводом с выводами.

Принцип действия громкоговорителя очень прост и основан на явлении движения проводника с током в магнитном поле. На этот проводник действует сила Ампера. Если по звуковой катушке протекает переменный ток звуковой частоты, то соответственно меняется сила Ампера, действующая со стороны магнитного поля постоянного магнита. Катушка совершает колебания и вместе с ней совершает колебания диффузор, который и создаёт звуковую (поперечную) волну в воздухе – рис. 9.

Сам по себе динамик не может качественно воспроизвести звук . Для этого его надо поместить в полый корпус, и тогда динамик, установленный в корпусе будет представлять собой акустическую систему. Параметры корпуса (размеры, толщина стенок, расположение динамика, фазоинвертор и т.д.) должны быть рассчитаны по специальным формулам .
Всем известно, что для воспроизведения определённого диапазона частот используются разные динамики: низкочастотные, среднечастотные и высокочастотные. Есть динамики, которые называют широкополосными, но это – иллюзия. Ни один динамик не может качественно воспроизвести весь звуковой диапазон.

4. СТЕРЕОФОНИЯ
С точки зрения физики пространственная звуковая картина, которую воспринимает человек , является следствием интерференции звуковых волн. Причём, повторяю, анализатором звуковой картины является мозг.
Первые эксперименты 30-х годов ХХ века по получению объемного звучания (с помощью трех-семи каналов) дали удивительные результаты. Было установлено, что при воспроизведении даже 2-х раздельных каналов субъективное качество звука резко улучшается. А самое поразительное заключается в том, что эксперты предпочитали стереозвук даже в тех случаях, когда им предъявляли объективно более качественные, но монофонические фонограммы. Решающим преимуществом стала возможность пространственной локализации кажущихся источников звука. См. рис. 27 – распределение кажущихся источников звука на стереопанораме .

На начальном этапе разработчики решили ограничиться двумя каналами. Это, конечно, в первую очередь было обусловлено небогатыми возможностями аппаратуры тех времен: грампластинки реально позволяли разместить только два полноценных канала.
Стереозвук дает некоторую прозрачность звучания: партии отдельных инструментов становятся более различимыми на фоне оркестра. Кроме того, стереосистема способна воспроизвести подобие звуковой атмосферы помещения, в котором выполнялась запись. Началась эра 2-канальных стереофонических систем. Постепенно появились стереофонические грампластинки и стереопроигрыватели, стереомагнитофоны, стереофоническое радиовещание.
В свою очередь стереозвучание имеет существенный недостаток. Стереопанорама ограничена углом между направлениями на громкоговорители и получается плоской. Такое звучание лишено естественности реального звукового поля, когда человек способен воспринимать реальные источники практически со всех направлений и оценивать расстояние до источников звука. Создающееся у слушателя ощущение объемного звучания могло бы существенно обогатить тембры музыкальных инструментов и голосов певцов. При этом можно было бы имитировать реверберационный процесс , свойственный помещению, в котором произведена запись.
Одной из первых попыток преодоления недостатков, присущих стереофоническим системам, стала квадрофония. Для воспроизведения квадрофонических фонограмм используются 4 акустические системы: см. рис. 28 – распределение кажущихся источников звука на квадропанораме.
Первые бытовые квадросистемы появились в начале 70-годов прошлого века. Казалось, что их ждет славное будущее. Однако этого не произошло. Причин тому есть несколько. Одна из них традиционна для многих новинок техники и заключается в том, что производители квадрофонической аппаратуры так и не смогли прийти к единому стандарту записи и воспроизведения 4-канального звука. Свою роль сыграли несовершенство и большая стоимость аппаратуры четырехканальной записи-воспроизведения. Но главное заключается в другом: с переходом от «стерео» к «квадро» в те времена новое качество звука не возникло. Квадрофонические системы, так же как и стереофонические, не обеспечивали полной передачи свойств реального звукового поля. Недостатков было только два, но они существенны:

Следует заметить, что эти недостатки обусловлены не столько ограниченными возможностями четырехканального воспроизведения звука, сколько трудностями реализации панорамирования кажущихся источников звука при записи. При подготовке фонограмм для современных многоканальных систем этот фактор учитывается. Важную роль при этом играет компьютер, способный справиться с моделированием объемных реверберационных процессов и предоставляющий звукорежиссеру удобные регуляторы для перемещения источников звука по круговой панораме.
Но в те далекие времена квадрофония отступила, а стереофония победила и стала развиваться по линии миниатюризации аппаратуры, улучшения ее технических и потребительских качеств, перехода к новым носителям: компакт-кассетам и компакт-дискам. Перед звукозаписывающими компаниями и производителями аудиоаппаратуры все еще существовал широчайший фронт работ и ёмкий рынок сбыта. В который раз они предлагали слушателям смену фонотек. Накопленный на грампластинках за предшествующие десятилетия музыкальный материал, обновленный и адаптированный сначала под монофонические катушечные магнитофоны, затем реализованный на компакт-кассетах в стереоформате, в очередной раз предлагался меломанам, но теперь уже на лазерных дисках.

5. ПРОЩАЙ, СТЕРЕОФОНИЯ?!
Однако в самом конце XX века стереофония, кажется, все-таки начала сдавать свои позиции. Цифровые технологии записи звука, а также ёмкие, удобные и дешевые носители сняли ранее существовавшую проблему хранения многоканальных фонограмм большой длительности. Кроме того, в звуке, передающем акустические свойства окружающего пространства, появилась острая потребность. Виртуальные графические миры компьютерных игр становятся все более сложными и похожими на реальность, а значит, требуют и адекватного звукового оформления. Кинематограф, переживший кризис в состязании с телевидением, возродился в виде домашних кинотеатров и кинозалов нового формата, основное отличие которых от предшественников кроется не в изображении, а в принципиально новом звуке (хотя и качество изображения тоже улучшилось, благодаря DVD и современным проекционным средствам).
Новая эра в звукозаписи началась в результате исследований, выполненных инженерами Dolby Laboratories . Это был принципиально новый подход к передаче многоканального звука. Отличие от традиционного способа заключалось, прежде всего, в том, что для хранения аудиосигналов двух дополнительных каналов использовалось матричное кодирование, т.е. их подмешивание к основным двум каналам. Изменился и способ размещения акустических систем: дополнительно к традиционному для квадрофонии расположению акустических систем по углам помещения добавлен центральный канал, размещенный между правым и левым фронтальными каналами, чтобы сохранить широкую стереобазу для зрителей, сидящих на боковых местах, а за спинами размещен канал эффектов (Surround). Так появилась система нового кинотеатрального звучания Dolby Stereo . См. рис. 29 – размещение излучателей звука в системе Dolby Stereo.
Как уже было сказано, этот четырехканальный формат является матричным форматом, при котором звук, предназначенный для каждого из четырех каналов, кодируется и записывается на два канала, а при воспроизведении декодируется вновь в четыре канала: левый, центральный, правый и задний. Сигнал заднего канала, как правило, направляется на две тыловые акустические системы одновременно. Впервые формат Dolby Stereo был применен в фильме "Star Wars" в 1975 году.

Системой воспроизведения совершенно нового качества, совместимой со старым стандартом звукозаписи, стала система Dolby Pro Logic . В ней был применен декодер, реализующий пространственную фокусировку звуковых образов: технологию, используемую для снижения взаимного проникновения сигналов одного канала в другой. В Dolby Pro Logic также появилась возможность создавать задержку звукового сигнала в тыловом канале. Тем самым было обеспечено согласование геометрических и акустических характеристик конкретного помещения с характеристиками «эталонного кинозала», под который при производстве сводился мультитрековый звук. Очень важно, что к настоящему времени накоплено огромное количество музыки, фильмов, телепрограмм, записанных на различных современных носителях со звуком в формате Dolby Pro Logic. А потом наступила эпоха цифрового кодирования и цифровой записи многоканального объемного звука, и появилась система Dolby Digital . Для кодирования цифрового звука в ней используется алгоритм, называемый АС-3 (Dolby"s third generation audio coding algorithm – алгоритм кодирования звука Dolby третьего поколения). АС-3 представляет собой алгоритм компрессии многоканального звука (количество независимых каналов от 1 до 6) с потерями. Достижения в области психоакустики , учитывающие особенности человеческого слухового аппарата, используются в нём для принятия решения о том, какую часть информации в аудиосигнале можно отбросить, чтобы это было не очень заметно для человеческого уха. При кодировании алгоритмом АС-3 могут использоваться битрейты от 32 Кбит/с (для одного монофонического канала с минимальным качеством) до 640 Кбит/с (для каналов 5.1 с минимальными потерями качества). Типичный битрейт для 5.1 записей составляет 385 Кбит/с.
Используется сжатие данных с потерями, однако качество звука все равно получается выше, чем у предшествующих аналоговых систем.
Dolby Digital может обеспечить кодирование до 6 каналов в формате 5.1 , где 5 – это каналы с полным частотным диапазоном (20 – 20 000 Гц) и .1 – канал низкочастотных (менее 120 Гц) эффектов (LFE).
Объемность акустических сцен, более четкая детализация, естественность перемещений источников звука из фронтальной области в тыловую, стереофоническое звучание в тыловой области – все это обеспечило успех системы.
Обозначение «5.1 » указывает на количество каналов, но не несет в себе информации о каком-либо определённом способе кодирования многоканального звука. Используется пять каналов с полным частотным диапазоном (левый передний, центральный, правый передний, левый задний и правый задний), а также один низкочастотный канал (с диапазоном от 3 до 120 Гц), подключаемый к сабвуферу (рис. 30 - размещение излучателей звука в системе 5.1).
В этой системе 5.1 формируется круговая стереопанорама. Поскольку на сверхнизких частотах наш слух практически лишен способности определять направление на источник звука, место расположения сабвуфера не имеет существенного значения.
Сабвуфер применяется и в обычных стереосистемах. В его канал подается низкочастотная часть спектра суммарного сигнала стереоканалов, в результате чего обеспечивается гарантированное воспроизведение басовых звуков. Однако в системе 5.1 канал низкочастотных эффектов играет особую роль. Его стоит рассматривать не как низкочастотную компоненту многополосной акустической системы, а именно как независимый канал низкочастотных эффектов.
По мнению специалистов, формат 5.1 является наиболее перспективным, поскольку поддерживается основными разработчиками. Важно, что имеются подходящие носители (DVD).
И хотя пока не принят единый стандарт и одновременно существует несколько систем кодирования для 5.1, однако фиаско «первобытной» квадрофонии вряд ли повторится, даже если «выживет» не одна, а несколько различных систем кодирования. Принципиальное отличие формата 5.1 от квадрофонии тридцатилетней давности заключается в том, что в данном случае аудиосигнал имеет цифровую форму, поэтому создание универсального декодера, способного работать со звуком, закодированным различными системами, не вызовет особых трудностей и не приведёт к заметному удорожанию аппаратуры.
В успехе формата 5.1 заинтересованы производители аудио-, видеоаппаратуры, компьютеров, компьютерных комплектующих и программ. К нему с интересом относятся потребители: зрители, слушатели, геймеры. Звукорежиссеры и музыканты находят в этом формате новые выразительные средства для реализации творческих замыслов и усиления влияния на наши эмоции. Формат действительно придает воспроизводимому звуку новое качество: слушатель окружен им. Правда, виртуальный звуковой мир и в этом случае не дотягивает до реального. В синтезированном звуковом пространстве источник звука может находиться справа, слева, спереди, сзади, перемещаясь в этих «координатах». А у настоящего звукового пространства, кроме того, есть еще «верх» и «низ».

6. Некоторые выводы

  • «Стереофоническое» и «пространственное» звучание – это совсем не одно и то же, хотя само слово «СТЕРЕО» переводится с греческого как «ПРОСТРАНСТВО». Но, как мы видим, одно дело – назвать эффект или процесс, и совсем другое – реализовать его практически.
  • Почти за 80 лет борьбы за «реальный» звук, системы воспроизведения прошли несколько этапов:
    • ПСЕВДОстерео – это когда один сигнал в одной (или нескольких) звуковой колонке воспроизводился через разделительные фильтры различными динамиками;
    • КВАЗИстерео – это когда один сигнал искусственно разделялся на два с разными параметрами, затем каждый из них усиливался своим усилителем и воспроизводился свой звуковой колонкой, как в предыдущем случае;
    • СТЕРЕО – когда два сигнала записывались отдельно, воспроизводились отдельно, и каждый из них усиливался своим усилителем и воспроизводился свой звуковой колонкой, как в предыдущем случае;
    • ПСЕВДОквадро – когда стереосигнал каждого канала с ослаблением подавался на соответствующие тыловые колонки, левую и правую;
    • КВАЗИквадро – когда стереосигнал подвергался специальной обработке с помощью приставки и далее подавался на соответствующие тыловые колонки, левую и правую;
    • КВАДРО – когда четыре сигнала записывались отдельно, воспроизводились отдельно, и каждый из них усиливался своим усилителем и воспроизводился свой звуковой колонкой, двумя фронтальными и двумя тыловыми;
    • Dolby Stereo à Dolby Pro Logic à Dolby Digital.
  • Ни одна, даже самая современная система не может создать реальную звуковую панораму.

Акустика - у этого термина есть и другие значения.

Не совсем правильное, зато довольно простое и понятное определение динамического диапазона .

Диффузор громкоговорителя при движении вперёд сжимает воздух впереди себя и разрежает его сзади. Такие сжатия и разрежения воздуха равномерно распределяются впереди и сзади диффузора. Огибая диффузор, они «накладываются» друг на друга и взаимно уничтожаются. При движении назад получается та же картина. Такой эффект называется акустическим «коротким замыканием ». Вместо того, чтобы передавать звуковые колебания диффузор перегоняет воздух с одной стороны на другую.

Математический расчёт акустических систем выходит далеко за пределы данной статьи.

Коронирующий электрод – это электрод, на котором возникает коронный электрический разряд.

Появился так называемый «широкий » или «широкоформатный » экран, который используется сейчас во всех кинотеатрах.

Ухо человека и весь слуховой аппарат служат ТОЛЬКО для передачи звуковых сигналов в мозг. Именно мозг обрабатывает и формирует в человеческом сознании пространственную (объёмную, стереофоническую) звуковую картину.

Звуковая панорама - это область пространства, в которой располагаются источники звука.

Реверберация - это процесс постепенного уменьшения интенсивности звука при его многократных отражениях от различных предметов в помещении. Практически этот эффект легко ощутить в пустом помещении – многократное отражение от стен.

Я лично с этим не согласен . Когда я слышал качественную квадрофоническую запись, я ощущал себя внутри оркестра. Может быть, мне это казалось, потому что я знал, что должен был услышать.

Возможно это и так , но по глубине (дальше-ближе) я различал источники звуки. А вот что выше или ниже – этого действительно не было.

Психоакустика - научная дисциплина, изучающая психологические и физиологические особенности восприятия звука человеком.

Термин битрейт используется в двух основных значениях:
- характеристика канала или устройства - максимальное количество бит, которое можно передать в единицу времени;
- величина потока данных, передаваемого в реальном времени (минимальный размер канала, который сможет пропустить этот поток без задержек). Частный случай - битрейт сжатого звука или видео.

Источник звуковых колебаний излучает в окружающее пространство энергию. Количество звуковой энергии, проходящей за секунду через площадь в 1 м2, расположенную перпендикулярно направлению распространения звуковых колебаний, называют интенсивностью (силой) звука.

Когда мы ведем обычный разговор, мощность потока энергии приблизительно равен 10 мкВт. Мощность самых громких звуков скрипки может составлять 60 мкВт, а мощность звуков органа - от 140 до 3200 мкВт.

Человек слышит звук в чрезвычайно широком диапазоне звуковых давлений (интенсивностей). Одной из опорных величин этого диапазона является стандартный порог слышимости - эффективное значение звукового давления, создаваемого гармоническим звуковым колебанием частоты 1000 Гц, едва слышимым человеком со средней чувствительностью слуха.

Порогу слышимости соответствует интенсивность звука Iзв0 = 10-12 Вт/м2 или звуковое давление pзв0 = 2Ч10-5 Па.

Верхний предел определяется значениями Iзв. макс. = 1 Вт/м2 или pзв. макс. = 20 Па. При восприятии звука такой интенсивности у человека появляются болевые ощущения.

В области звуковых давлений, существенно превышающих стандартный порог слышимости, величина ощущения пропорциональна не амплитуде звукового давления pзв, а логарифму отношения pзв/pзв0. Поэтому звуковое давление и интенсивность звука часто оценивают в логарифмических единицах децибелах (дБ) по отношению к стандартному порогу слышимости.

Диапазон изменения звуковых давлений от абсолютного порога слышимости до болевого порога составляет для разных частот от 90 дБ до 130 дБ.

Если ухо человека воспринимает одновременно два или несколько звуков различной громкости, то более громкий звук заглушает (поглощает) слабые звуки. Происходит так называемая маскировка звуков, и ухо воспринимает только один, более громкий, звук. Сразу после воздействия на ухо громкого звука снижается восприимчивость слуха к слабым звукам. Эта способность называется адаптацией слуха.

Таким образом, порог слышимости в значительной степени зависит от условий прослушивания: в тишине или же на фоне шума (или другого мешающего звука). В последнем случае порог слышимости повышается. Это свидетельствует о том, что помеха маскирует полезный сигнал.

Слуховой аппарат человека обладает определенной инерционностью: ощущение возникновения звука, а также его прекращения появляется не сразу.

Аудиосигнал является случайным процессом. Его акустические или электрические характеристики непрерывно изменяются во времени. Пытаться отследить случайные изменения реализаций этого хаоса - занятие, имеющее не много смысла. Обуздать его величество случай, придать ему черты детерминированности можно, используя усредненные параметры, такие, как уровень аудиосигнала.

Уровень аудиосигнала характеризует сигнал в определенный момент и представляет собой выраженное в децибелах выпрямленное и усредненное за некоторый предшествующий промежуток времени напряжение аудиосигнала.

Под динамическим диапазоном аудиосигнала понимают отношение максимального звукового давления к минимальному или отношение соответствующих напряжений. В таком определении нет сведений о том, какое давление и напряжение считается максимальным и минимальным. Наверное, поэтому определенный таким образом динамический диапазон сигнала, называется теоретическим. Наряду с этим динамический диапазон аудиосигнала можно определить и экспериментально как разность максимального и минимального уровней для достаточно длительного периода. Это значение существенно зависит от выбранного времени измерения и типа измерителя уровней.

Динамические диапазоны музыкальных и речевых акустических сигналов разных типов, измеренные с помощью приборов, составляют в среднем:

80 дБ для симфонического оркестра

45 дБ для хора

35 дБ для эстрадной музыки и солистов-вокалистов

25 дБ для речи дикторов

При записи уровни необходимо регулировать. Объясняется это тем, что исходные (необработанные) сигналы зачастую имеют большой динамический диапазон (например, до 80 дБ у симфонической музыки), а в домашних условиях аудиопрограммы прослушиваются в диапазоне порядка 40 дБ.

Ручной регулировке уровней присущ недостаток. Время реакции звукорежиссера составляет около 2 с даже если партитура композиции ему заранее известна. Это приводит к погрешности в поддержании максимальных уровней музыкальных программ до 4 дБ в обе стороны.

Усилители, акустические системы да и уши человека нужно защищать от перегрузок, вызванных резкими скачкообразными изменениями амплитуды аудиосигнала - ограничивать сигнал по амплитуде.

Динамический диапазон сигнала нужно согласовывать с динамическими диапазонами устройств записи, усиления, передачи.

Для увеличения дальности действия FM радиостанций динамический диапазон аудиосигнала нужно сжимать. Для снижения уровня шума в паузах динамический диапазон желательно увеличивать.

В конце концов, мода, диктующая свои условия во всех сферах человеческой деятельности, в том числе и в звукозаписи, требует насыщенного, плотного звучания современной музыки, которое достигается резким сужением ее динамического диапазона.

Звуковая волна (огибающая громкости) фрагмента оперы С. Рахманинова "Алеко",

и современной танцевальной музыки.

В классической музыке важны нюансы, танцевальная музыка должна быть "сильнодействующей".

Этим диктуется необходимость в применении устройств автоматической обработки уровней сигналов.

Не так давно мне попался довольно качественный HDCD релиз альбома «Mark Knopfler - Sailing To Philadelphia». Впервые я отметил столь низкий уровень фонового шума и динамический диапазон для музыки с живыми инструментами и голосом. Результат сканирования всего альбома гласил:

Left Right
Peak Amplitude: 0,00 dB 0,00 dB
True Peak Amplitude: 0,64 dBTP 0,58 dBTP
Maximum Sample Value: 8388607 8387420
Minimum Sample Value: -8388608 -8388608
Possibly Clipped Samples: 3 1
Total RMS Amplitude: -15,12 dB -15,20 dB
Maximum RMS Amplitude: -5,75 dB -5,80 dB
Minimum RMS Amplitude: -120,64 dB -123,81 dB
Average RMS Amplitude: -18,90 dB -19,01 dB
DC Offset: 0,00 % 0,00 %
Measured Bit Depth: 24 24
Dynamic Range: 114,89 dB 118,02 dB
Dynamic Range Used: 83,15 dB 82,95 dB
Loudness: -13,48 dB -12,87 dB
Perceived Loudness: -10,61 dB -10,63 dB
ITU-R BS.1770-2 Loudness: -12,72 LUFS

0dB = FS Square Wave
Using RMS Window of 50,00 ms
Account for DC = true

Краткий ликбез

Динамический диапазон - это разница (или соотношение) между самым громким и самым тихим звуком, выраженная в децибелах. Для определения динамического диапазона используют RMS значения, т.е. Root Mean Square - среднеквадратичные, или же, как принято у нас - «действующие» или «эффективные». Действующее значение выбирается потому, что именно оно (в отличие от пикового) напрямую связано с уровнем звукового давления, и, как следствие, воспринимаемой громкости.

Для анализа вышеуказанных характеристик был использован Adobe Audition. В данном случае алгоритм анализа ДД примерно такой: всё аудио разбивается на небольшие участки, именуемые окнами (в данном случае их размер равен 50 мс), затем для каждого такого участка вычисляется среднеквадратичное значение (путем интегрирования). Далее полученное значение соотносится с одним из следующих: 1. Среднеквадратичное значение для синусоиды с максимальной амплитудой и такой же продолжительностью. 2. Меандр с максимальной амплитудой и такой же продолжительностью. Как известно, меандр имеет максимально возможное значение RMS за период (т.к. модуль его амплитуды в любой момент равен максимуму), синусоида же имеет коэффициент 1/(корень из 2), т.е. 0.707 от максимального (или же пикового) значения. Если вы еще раз взглянете на отчет, то увидите, что там за 0 dB RMS взят меандр (square wave). Таким образом, полученные децибелы среднеквадратичного значения имеют опорный уровень (0 dBFS) равный среднеквадратичному значению для меандра.

Также надо отметить, что при расчете RMS может учитываться или не учитываться постоянная составляющая (в некоторых случаях колебания происходят не относительно нулевого значения, а относительно некоторой константы, которая и равна постоянной составляющей). В нашем случае учет постоянной составляющей включен.

После получения RMS значения для каждого окна производится поиск наименьшего и наибольшего значений. Разница между двумя этими значениями - и есть динамический диапазон.

Кроме того, Audition определяет параметр «Dynamic Range Used», который рассчитывается без учета тишины в начале и конце трека, а также без учета других продолжительных участков с тишиной внутри дорожки. Собственно, этот параметр и является наиболее информативным и важным при анализе динамического диапазона.

DVD-Audio

Так вот, сегодня я наконец заполучил DVD-Audio релиз того самого альбома, о котором писал выше. Результаты меня удивили еще больше. Многоканальная дорожка содержала записи с динамическим диапазоном более 100 дБ, хотя значения для отдельных каналов были довольно разными (кстати говоря, Audition показал для фронтальных каналов актуальную разрядность 24 бита, а для остальных - 20). Я решил произвести более детальный анализ записей: вручную выполнил сведение каналов в стерео (с помощью Channel Mixer в foobar2000), а затем проанализировал динамический диапазон 5.1 записи, стерео даунмикса с DVD диска и моего собственного даунмикса.

Результаты для каждого трека/канала приведены в таблице Excel .

Интересно, что динамический диапазон даунмиксов получились совершенно различным (разной была и громкость - у моего даунмикса она была ниже на несколько децибел). Но, так или иначе, например, для 4-го трека во всех трех случаях отмечается широкий динамический диапазон, более 90 дБ.

Но это что касается отдельных параметров. Наиболее же информативной является гистограмма громкости. Она показывает распределение громкости по частоте появления. Т.е. это значения RMS для всех окон, представленные в виде диаграммы, где по вертикали частота появления, по горизонтали уровень громкости. Таим образом можно видеть, какой уровень громкости преобладает в дорожке, насколько велика суммарная продолжительность тихих участков и т.д.

Например, вот гистограммы громкости для моего и DVD стерео даунмикса четвертого трека (правый канал), соответственно:

Высокая частота для громкости с уровнем около ~110 говорит о том, что это скорей всего уровень шумов звукозаписывающего оборудования. В общем же, наиболее интересными являются дорожки с довольно высоким процентом тихих фрагментов. Например, вот диаграмма для моего микса 7-го трека:

Подобный материал гипотетически может помочь выявить различия между 24- и 16-битным аудио. Именно с целью определить возможность выявления таких различий, а также вообще резонность использования 24-битного формата, я искал столь качественные аудиозаписи.

О результатах моих проверок я сообщу в следующих записях.

Добавлено: судя по всему, широкий динамический диапазон - лишь результат обработки записи. Т.е. тихие участки являются либо участками работы шумоподавления, либо фрагментами затухающих звуков (fade-in/fade-out). Реальных же продолжительных во времени звуков со столь низким уровнем (

"Чистые тоны субъективно воспринимаются громкими или тихими в зависимости от силы (интенсивности) звука. Сила звука (обозначаемая обычно символом I ) связана со звуковым давлением квадратичной зависимостью.

Это значит, что изменение силы звука пропорционально соответствующему изменению величины звукового давления, возведенному в квадрат ( I пропорционально р2). Так, рост звукового давления в 2 раза влечет увеличение силы звука в 4 раза, при росте звукового давления в 3 раза сила звука возрастает в 9 раз и т.д. Сила звука определяется потоком той звуковой энергии, которая при распространении в пространстве проходит ежесекундно через каждый квадратный метр плоскости, перпендикулярной к направлению распространения волны. Измеряют силу звука в Вт/м.

Человеческий слух по восприятию звуков разной силы ограничен. Человек начинает слышать при силе звука, превышающей или равной некоторой величине, называемой порогом слышимости (или слуховым порогом). Более слабые звуки слухового ощущения не вызывают. При увеличении силы звука достигается нормальная слышимость, а затем при еще больших амплитудах звуковых колебаний к воспринимаемому звуку добавляется осязаемое ощущение давления, и, наконец, при дальнейшем росте силы звука раздражение органа слуха становится болезненным.

Так называемый болевой порог ограничивает область Слышимости при больших уровнях интенсивности. Чувствительность человеческого уха зависит от частоты приходящего сигнала, поэтому уровень порога слышимости для разных частот различный.


При смешении из области оптимальной слышимости в сторону низких и высоких звуковых частот чувствительность человеческого уха резко падает. Это видно по поведению кривой порога слышимости вблизи краев диапазона слышимости. А вот болевой порог от частоты зависит слабо.

Звуковое давление, вызывающее у человека болевое ощущение, приблизительно равно 20 Па. На средних частотах звуковое давление, соответствующее болевому порогу, превышает порог слышимости примерно в миллион раз. Поскольку поток энергии звуковой волны с величиной звукового давления связан квадратичной зависимостью, то по силе звука у порога слышимости и болевого отличается в 1011 раз. Это отношение и определяет динамический диапазон слуха. При оценке динамического диапазона применяются специальные единицы измерения, не зависящие от способа вычисления.

Согласно психофизическому закону Вебера-Фехнера слух одинаково оценивает равные относительные изменения силы звука. Другими словами, изменение громкости кажется человеку одинаковым, если сила звука изменилась в одно и то же число раз (или на один и тот же процент относительно своей первоначальной величины), при этом восприятие не зависит от абсолютного уровня силы звука. Так двукратный рост уровня тихого и громкого звука воспринимаются одинаково, хотя абсолютные приращения звукового давления существенно различны.

Минимальное изменение интенсивности звука, воспринимаемое нашим ухом, соответствует изменению звукового давления примерно в 1,12 раза (т.е. на 12%), что соответствует изменению силы звука в 1,25 раза (т.е. на 25%).

Итак, наряду со способностью различать звуки, имеющие уровни, отличающиеся в сотни и тысячи миллионов раз, человеческое ухо хорошо реагирует и на очень малые изменения уровней. Это объясняется логарифмическим законом восприятия. Наши ощущения изменений громкости пропорциональны не изменениям силы звука, а логарифму этих величин.

L=C lg I 2 / I 1,

где

L - кажущееся изменение громкости,

I 1 , I 2 - сила звука соответственно до и после его изменения,

С- коэффициент пропорциональности.

Например, если сила звука изменится в 100 раз, то субъективное ощущение громкости изменится пропорционально 2 (т.к. lg100 = 2); если это изменение- 1000, то громкость возрастет в 3 раза (т.к. lg1000 = 3); рост силы звука в 10000 раз воспринимается как 4-кратное увеличение громкости. Поэтому принято измерять увеличение или уменьшение силы звука в специальных логарифмических единицах- "белах" (Б). Различие величин звуковой энергии (силы звука) в белах: N6 = lg I 2 / I 1 Б.

Иными словами, десятикратное изменение силы звука оценивается одним Белом. Например,

если I 2 = 10/ I 1 то lg I 2 / I 1 = lg10 = 1, т.е. N Б = 1 Б;

если I 2 = 100/ I 1 , то lg100 = 2 и N Б = 2 Б.

Мелкие изменения звуковых уровней измеряют в долях Бела. На практике в основном используется производная от Бела единица измерения, равная десятой части Бела, т.е. децибел (дБ).

Изменение уровня силы звука, выраженное в дБ, равно численному значению десятичного логарифма отношения сравниваемых уровней, умноженному на 10, т.е. N дБ = 10 lg I 2 / I 1 .

Обратимся к примерам.

Пусть N = I 2 / I 1 = 100 (I 2 > I 1 - усиление ), тогда N дБ = 10 lg100 = 10*2 = 20 дБ.

Пусть N = I 2 / I 1 = 1/100 (I 2 < I 1 - ослабление), тогда N дБ = 10 lg0,01 = 10·(-2) = -20 дБ.

Из этих примеров видно, что рост уровня выражается в децибелах положительным числом, а уменьшение - отрицательным.

Оценка изменений интенсивности звука в логарифмических единицах удобна еще и потому, что она дает возможность весь слышимый диапазон звуковых колебаний изобразить графически.

Громкостью называют субъективное качество, определяющее силу слухового ощущения, вызываемого звуком у слушателя. Громкость не может быть определена только величиной силы звука, так как она зависит от частотного состава звукового сигнала, от условий его восприятия и длительности воздействия. В акустике для количественной оценки громкости применяют метод субъективного сравнения измеряемого звука с эталонным, в качестве которого применяется синусоидальный тон частоты 1000 Гц. В процессе сравнения уровень эталонного тона изменяют до тех пор, пока эталонный и измеряемый звуки станут казаться равногромкими.

Как уже было сказано выше, чувствительность слуха зависит от частоты звукового сигнала. Порог слышимости, изображенный графически, представляет собой кривую, опускающуюся ниже всего в области частот 3000-4000 Гц и поднимающуюся к краям звукового диапазона. Из этой формы кривой следует, что для равногромкого ощущения интенсивность высоких и низких частот должна быть выше, чем средних.


Для практической работы важно помнить, что кривые равной громкости, как бы, выпрямляются с ростом общей громкости прослушивания. Другими словами, частотная зависимость слуха в большей степени сказывается при тихом прослушивании, чем при громком. Это важно учитывать, если, например, музыка, записанная при высоких уровнях громкости, будет прослушиваться тихо. В этом случае может возникнуть кажущееся изменение соотношений между частотными составляющими музыкального произведения. Так, при малой громкости прослушивания, из-за ослабления чувствительности слуха на низких и отчасти на высоких частотах звучание может казаться обедненным, лишенным сочности, естественности. Весьма желательно поэтому, чтобы в студиях звукозаписи громкоговорители работали с одинаковым уровнем громкости: это уменьшит возможность ошибок при субъективной оценке качества звучания.

Практически уровень громкости измеряется и настраивается в студиях при помощи специального электроакустического прибора – шумомера.

Примерные уровни громкости некоторых типичных звуковых источников приведены в таблице


Громкость зависит от условий, в которых звук воспринимается слушателем. Здесь, в первую очередь, следует учитывать эффект звуковой маскировки, напомнив, что в реальных условиях акустический сигнал не существует в условиях абсолютной тишины. Вместе с ним на слух воздействуют те или иные посторонние шумы, затрудняющие слуховое восприятие и, как в таких случаях говорят, маскирующие, в определенной степени, основной сигнал.

Так, при передаче оркестрового произведения из-за маскировки аккомпанементом может стать плохо разборчивой, невнятной партия солиста. Если одновременно существуют два сложных звуковых сигнала (например шум и музыка), возникает эффект взаимной маскировки. При этом, если основная энергия сигналов принадлежит к одной и той же области звуковых частот, то эффект взаимной маскировки будет наиболее сильным.

Речь в записи становится менее разборчивой не только из-за маскирования другими звуками, но и в результате самомаскировки при воспроизведении с громкостью большей, чем она звучит в природе. Этот недостаток в известной мере устраняется компрессированием. При воспроизведении скомпрессированной речевой фонограммы звук воспринимается достаточно громким, в то время как индикатор модуляции может показывать небольшие отклонения."- пишет Б.Я.Меерзон -"Акустические основы звукорежиссуры". Уч. изд. ГИТР

"В настоящее время существует огромное множество различных процессоров для динамической обработки звуковых сигналов - это различного рода компрессоры, гейты, экспандеры, левеллеры, лимитеры, и т.д. и т.п. В этом многообразии нетрудно и запутаться. Какой прибор необходим в конкретной ситуации?

Устройства динамической обработки сигналов применяются в двух случаях - либо в художественных целях, либо для получения более качественного звучания.

Заявляемые для распространённого сейчас носителя (CD) цифры - динамический диапазон в 96дБ - не совсем верны. То есть, если рассматривать их как отношение самого громкого сигнала к уровню шумов в паузе - цифры, безусловно, правильны. Однако это справедливо только для сигналов максимальной амплитуды. Динамический диапазон CD реально составляет величину, существенно меньшую, чем 96дБ.

Динамический же диапазон реальных сигналов может быть гораздо больше - например, для симфонического оркестра он может составлять до 120дБ! И как его “впихнуть” в ограниченный диапазон тракта?

Все устройства динамической обработки можно разделить на два больших класса - по характеру взаимосвязи их коэффициента усиления и уровня входного сигнала.

Если при увеличении уровня входного сигнала коэффициент передачи устройства уменьшается - то это компрессор и/или его разновидности. Такие, как лимитер, левеллер, “дакер”, и др.

Если же при увеличении входного сигнала коэффициент передачи устройства также увеличивается - то это экспандер или гейт.

Компрессор и его производные

Название компрессор происходит от английского глагола “to compress” - сжимать. Как следует из самого названия, компрессор - это устройство для сжатия, в данном конкретном случае - динамического диапазона исходного звукового сигнала.

Основными параметрами компрессии являются: степень компрессии “ratio”, порог срабатывания “threshold”, а также время срабатывания “attack” и время восстановления “release”. Первые две величины отражены на графике компрессии.

На этом рисунке по горизонтали отложено входное напряжение компрессора, выраженное для удобства в децибелах, по вертикали - выходное, а толстая линия - это проходная характеристика компрессора. На этом графике видно, что выходной сигнал - в точности равен входному, до точки срабатывания (начала работы) компрессора - THRESHOLD (порог срабатывания). Начиная с этой точки, выходной сигнал компрессора увеличивается в меньшей степени, чем входной, т.е. осуществляется компрессия. Мерой компрессии служит степень компрессии (RATIO).

Степень компрессии - это отношение величины приращения входного сигнала к величине вызванного им приращения выходного сигнала. (При этом - измеряемые величины должны быть выражены в децибелах!)

RATIO=dUвх(дБ)/dUвых(дБ)

Динамические характеристики компрессоров определяются временами срабатывания ATTACK и восстановления RELEASE.

Время срабатывания (ATTACK) - это промежуток времени между моментом, когда от источника подаётся скачок сигнала с уровнем на 6 дБ выше исходного, и моментом, когда выходной уровень достигает значения на 2 дБ выше установившегося значения выходного сигнала.


Время восстановления (RELEASE) - это промежуток времени между моментом, когда уровень сигнала источника уменьшается на 6 ДБ от исходного, и моментом, когда выходной уровень достигает значения на 2 дБ ниже его установившегося значения.


Естественно, что всё это должно происходить в области уровней входного сигнала, лежащих выше порога срабатывания!

По характеру реакции на входной сигнал все компрессоры можно разделить на две большие группы - с ручным управлением параметрами компрессии, и “автоматизированные”, с той или иной степенью автоматического управления этими параметрами.

В “ручных” - все динамические параметры задаются пользователем. Это обеспечивает очень большую свободу в их выборе, для получения тех или иных необходимых вам художественных результатов. Ведь не секрет, что компрессором можно изменить исходное звучание как угодно, хоть до “полной неузнаваемости”. Вот “ручной” компрессор - как раз и служит именно для этого, для специального преднамеренного изменения характера исходного звучания в нужную вам сторону. В зарубежной литературе этот тип компрессоров часто носит название CREATIVE - “творческий”, “созидательный”.

Соответственно, для их правильного использования - необходима достаточно высокая квалификация, а то ведь вместо улучшения звука можно его непоправимо испортить! Учтите: Перекомпрессированный сигнал исправить в дальнейшем невозможно!

В противоположность этому, в автоматизированных компрессорах - динамические параметры раз и навсегда установлены изготовителем, и их изменение пользователем невозможно. Хотя некоторые серьёзные производители, выпускающие действительно добротную продукцию, в ряде моделей предлагают пользователю на выбор несколько алгоритмов автоматизации, для различных вариантов обработки.


Как правило, большинство автоматизированных компрессоров не изменяют динамические параметры звука сколько-нибудь существенным образом, а только “выравнивают” исходное звучание, делают его более плотным и насыщенным.

Помимо основных, в некоторых моделях компрессоров имеются и некоторые дополнительные устройства, улучшающие их потребительские свойства.

Так, например, для уменьшения заметности момента включения компрессора в работу многие компрессоры имеют так называемый "мягкий порог" (Soft Threshold), обеспечивающий плавное вхождение в режим компрессии. На рисунке изображены проходные характеристики (зависимость уровня выходного сигнала от уровня входного) для двух компрессоров - обычного (ломаная линия 1) и компрессора с "мягким порогом" (кривая 2).

Как видно из рисунка, во втором случае по мере возрастания входного сигнала степень компрессии увеличивается плавно, а не включается скачкообразно, как в обычном компрессоре. Таким образом, удаётся сильно ослабить заметность начала компрессии, сделать этот момент практически неслышным.

Лимитер. В принципе, это не какой-то “отдельный вид” компрессоров, а всего лишь один из частных случаев работы компрессора. Лимитирование отличается от компрессирования, прежде всего степенью компрессии RATIO. Для лимитирования достаточно перевести этот регулятор в положение RATIO=бесконечность:1, при этом - независимо от приращения входного сигнала - уровень сигнала на его выходе увеличиваться не будет. (Естественно, что речь идёт о сигналах, лежащих выше порога срабатывания!) Но... Здесь есть одна тонкость.


Дело в том, что основное предназначение лимитера - защита последующих узлов тракта от перегрузок. Любых, даже малейших. При этом он должен на 100% не допускать превышения, установленного Вами выходного уровня, но абсолютно не трогать сигналы, лежащие ниже порога срабатывания. Отсюда - с неизбежностью следует вывод, что компрессоры с “мягким коленом” - принципиально непригодны для этих целей. Ведь для них само понятие “порога” имеет весьма расплывчатый смысл.

Лимитер, помимо большего RATIO, имеет и принципиально иные динамические характеристики. В самом деле - он должен очень быстро (в идеале - мгновенно!) “съесть” сигнал перегрузки, и столь же быстро вернуться к исходному состоянию. В автоматизированном компрессоре получить это - попросту невозможно.

Де-ессер, де-поппер.

Отличие де-ессера и де-поппера в том, что де-ессер работает на высокочастотных сигналах, убирая “цыканье” и шепелявость. Де-поппер - наоборот, работает в низкочастотной области спектра, убирая “пыханье” и бубнение. В остальном они принципиальных отличий не имеют. Главное отличие этих приборов от остальных устройств динамической обработки - это то, что порог срабатывания в них не фиксированный (ручкой управления THRESHOLD, как обычно), а “плавающий”. Что значит - плавающий? То, что он определяется разностью уровней обрабатываемой части спектра, с одной стороны, и всего остального - с другой стороны. Такое построение обеспечивает нормальное их функционирование, независимо от абсолютных уровней входных сигналов. Т.е. де-ессер постоянно анализирует спектр входного сигнала, и если “видит”, что уровень сигнала в установленной вами полосе превышает допустимое соотношение его и “всего остального”, то он уменьшает уровень сигналов в этой полосе до допустимой (установленной вами) величины.

Экспандер - это “компрессор наоборот”. Название - происходит от английского глагола “to expand” - расширять, растягивать. У него, как ранее уже отмечалось, коэффициент передачи пропорционален уровню входного сигнала, т.е. чем громче входной сигнал - тем громче выходной. Существуют две основных разновидности экспандера - “экспандер вверх” (Upward Expander) и “экспандер вниз” (Downward Expander).

Отличаются они по характеру реагирования на входной сигнал. “Экспандер вверх” - обрабатывает только сигналы, лежащие выше порога его срабатывания, делая громкие - более громкими. Тихие же сигналы, ниже порога срабатывания, он не трогает. В реальной практике почти не встречается, единственное исключение - гитарный бустер.


“Экспандер вниз” - наоборот, не трогает сигналы выше порога срабатывания, а только делает тише сигналы, лежащие ниже этого порога. В принципе, по характеру своего действия на сигнал - это устройство схоже с гейтом, и, как правило, применяется для аналогичных целей, для подавления слабых - но мешающих - сигналов. В этом качестве “экспандер вниз” входит составной частью практически во все шумоподавители (денойзеры).

Гейт - один из самых распространённых приборов динамической обработки. Его название происходит от английского слова “Gate” - клапан, ворота. Основное, “исходное” назначение гейта - отсечка сигналов малого уровня, для которых он и является своеобразным клапаном, не пропуская их на выход.


Динамика обработанного гейтом сигнала - будет отличаться от исходной. Сигналы, лежащие ниже порога срабатывания, будут полностью подавлены. У сигналов же выше порога - атаки будут зависеть от соотношения их исходной скорости и времени открывания гейта, т.е. результирующая - может быть как более “резкая”, так и более плавная. Аналогично - и с процессом затухания сигнала RELEASE. С той только разницей, что затухание исходного сигнала гейтом не удлинить. Можно только укоротить.

Именно это свойство гейта - менять динамику сигналов - как раз и является той главной причиной, по которой гейт получил столь широкое распространение."- написал М.Чернецкий. "Устройства динамической обработки сигналов ". "Звукорежиссёр"

Люди, увлеченные домашним звуком, демонстрируют интересный парадокс. Они готовы перелопатить комнату прослушивания, соорудить колонки с экзотическими излучателями, но смущенно отступают перед музыкальной консервой, будто волк перед красным флажком. А собственно, почему нельзя за флажок заступить, а из консервы попытаться приготовить что-то более съедобное?

Периодически на форуме возникают жалобные вопросы: «Посоветуйте хорошо записанные альбомы». Оно и понятно. Специальные аудиофильские издания хоть и порадуют слух первую минуту, но до конца их никто не слушает, уж больно уныл репертуар. Что же касается всей остальной фонотеки, то проблема, кажется, очевидна. Можно экономить, а можно не экономить и вбухать прорву денег в компоненты. Все равно мало кому нравится слушать свою любимую музыку на высокой громкости и возможности усилителя здесь ни при чем.

Сегодня даже в Hi-Res альбомах срезаны пики фонограммы и громкость загнана в клиппинг. Считается, что большинство слушает музыку на всяком барахле, а потому надо «поддать газку», сделать своего рода тонкомпенсацию.


Разумеется, делается это не специально, чтобы расстроить аудиофилов. О них вообще мало кто вспоминает. Вот разве что догадались сбагривать им мастер-файлы, с которых копируется основной тираж - компакт-диски, MP3 и прочее. Разумеется, мастер уже давно сплющен компрессором, никто сознательно не будет готовить специальные версии для HD Tracks. Разве что выполняется определенная процедура для винилового носителя, который по этой причине и звучит более гуманно. А для цифрового пути все заканчивается одинаково - большим толстым компрессором.

Итак, в настоящее время все 100% издаваемых фонограмм, за вычетом классической музыки, подвергаются компрессии при мастеринге. Кто-то выполняет эту процедуру более-менее умело, а кто-то совсем по-дурацки. В результате мы имеем пилигримов на форумах с линейкой плагина DR за пазухой, мучительные сравнения изданий, бегство в винил, где тоже нужно майнить первопресссы.

Самые отмороженные при виде всех этих безобразий превратились буквально в аудиосатанистов. Без шуток, они читают звукорежиссерское святое писание задом наперед! Современные программы редактирования звука имеют кое-какой инструмент восстановления звуковой волны, подвергшейся клиппингу.

Изначально этот функционал предназначался для студий. При микшировании бывают ситуации, когда клиппинг попал на запись, а переделать сессию по ряду причин уже невозможно, и здесь приходит на помощь арсенал аудиоредактора - деклиппер, декомпрессор и т.п.

И вот уже к подобному софту все смелее тянут ручки обычные слушатели, у которых идет кровь из ушей после очередной новинки. Кто-то предпочитает iZotope, кто-то Adobe Audition, кто-то операции разделяет между несколькими программами. Смысл восстановления прежней динамики заключается в программном исправлении клиппированных пиков сигнала, которые, упираясь в 0 дБ, напоминают шестеренку.

Да, о 100%-м возрождении исходника речи не идет, поскольку имеют место процессы интерполяции по довольно умозрительным алгоритмам. Но все-таки некоторые результаты обработки мне показались интересными и достойными изучения.

Например, альбом Ланы Дель Рей «Lust For Life», стабильно погано матерящейся, тьфу, мастерящейся! В оригинале песни «When the World Was at War We Kept Dancing» было вот так.


А после череды деклипперов и декомпрессоров стало вот так. Коэффициент DR изменился с 5 на 9. Скачать и послушать образец до и после обработки можно .


Не могу сказать, что метод универсальный и годится для всех угробленных альбомов, но в данном случае я предпочел сохранить в коллекции именно этот вариант, обработанный активистом рутрекера, взамен официального издания в 24 бит.

Даже если искусственное вытягивание пиков из звукового фарша не вернет истинную динамику музыкального исполнения, ваш ЦАП все равно скажет спасибо. Ему ведь так тяжело было работать без ошибок на предельных уровнях, где велика вероятность возникновения так называемых межсемпловых пиков (ISP) . А теперь до 0 дБ будут допрыгивать лишь редкие сполохи сигнала. Кроме того, притихшая фонограмма при сжатии во FLAC или другой lossless-кодек теперь будет меньше по размеру. Больше «воздуха» в сигнале экономит пространство хард-драйва.

Попробуйте оживить свои самые ненавистные альбомы, убитые на «войне громкости». Для запаса динамики сначала нужно понизить уровень трека на -6 дБ, а затем запустить деклиппер. Те, кто не верит компьютерам, могут просто воткнуть между CD-плеером и усилителем студийный экспандер. Данное устройство по сути занимается тем же самым - как может восстанавливает и вытягивает пики сжатого по динамике аудиосигнала. Стоят подобные устройства из 80-90-х не сказать чтобы очень дорого, и в качестве эксперимента попробовать их будет весьма интересно.


Контроллер динамического диапазона DBX 3BX обрабатывает сигнал раздельно в трех полосах - НЧ, СЧ и ВЧ

Когда-то эквалайзеры были само собой разумеющимся компонентом аудиосистемы, и никто их не боялся. Сегодня не требуется выравнивать завал высоких частот магнитной ленты, но с безобразной динамикой надо что-то решать, братцы.



Загрузка...