sonyps4.ru

Токи при размыкании и замыкании электрической цепи. Ток при замыкании и размыкании цепи

При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции. Экстра­токи самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы пре­пятствовать изменениям тока в цепи, т. е. направлены противоположно току, со­здаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнове­ния или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под дей­ствием внешней э.д.с. в цепи течет по­стоянный ток

I 0 =ξ/R

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t= 0отключим источник тока. Ток через катушку индук­тивности L начнет уменьшаться, что при­ведет к возникновению э.д.с. самоиндук­ции ξ s =-LdI/dt, препятствующей, со­гласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξ s /R, или

IR=-LdI/dt. (127.1)

Разделив в выражении (127.1) переменные, получим dI/I =-(R/L)dt. Интегрируя

это уравнение по I (от I 0 до I) и t (от 0 до t), находим ln(I/I 0)=-Rt/L, или

где t=L/R - постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и опре­деляется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопро­тивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξ s =-LdI/dt, препятствующая, согласно

правилу Ленца, возрастанию тока. По за­кону Ома, IR=ξ+ξ s , или

IR =ξ-LdI/dt .

Введя новую переменную u=IR-ξ, пре­образуем это уравнение к виду du/u=-dt/t,

где 1 - время релаксации.

В момент замыкания (t=0) сила тока I =0 и u=-ξ. Следовательно, интегри­руя по и (от -ξ до IR - ξ) и t (от 0 до t).



находим ln(IR -ξ)/-ξ=-t/t, или

где I 0 =ξ/R - установившийся ток (при t®¥)

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и опре­деляется кривой 2 на рис. 183. Сила тока возрастает от начального значения I =0 и асимптотически стремится к устано­вившемуся значению I 0 =ξ/R. Скорость нарастания тока определяется тем же вре­менем релаксации t=L/R, что и убыва­ние тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндук­ции ξ s , возникающей при мгновенном уве­личении сопротивления цепи постоянного тока от R 0 До R. Предположим, что мы размыкаем контур, когда в нем течет уста­новившийся ток I 0 =ξ/R 0 . При размыка­нии цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t, получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопро­тивления цепи (R/R 0 >> 1) обладающей большой индуктивностью, э.д.с. самоин­дукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учиты­вать, что контур, содержащий индуктив­ность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. само­индукции) может привести к пробою изо­ляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндук­ции не достигнет больших значений.

Взаимная индукция

Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в конту­ре 1 течет ток I 1 , то магнитный поток, со­здаваемый этим током (поле, создающее этот поток, на рисунке изображено сплош­ными линиями), пропорционален I 1 . Обоз
начим через Ф 21 ту часть потока, которая пронизывает контур 2. Тогда

Ф 21 =L 21 /I 1 , (128.1)

где L 21 - коэффициент пропорциональ­ности.

Если ток I 1 изменяется, то в конту­ре 2 индуцируется э.д.с. ξ i 2 , которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости из­менения магнитного потока Ф 21 , созданно­го током в первом контуре и пронизываю­щего второй:

Аналогично, при протекании в конту­ре 2 тока I 2 магнитный поток (его поле изображено на рис. 184 штриховой линией) пронизывает первый контур. Если Ф 12 - часть этого потока, пронизывающего кон­тур 1 , то

Ф 12 =L 12 I 2 .

Если ток I 2 изменяется, то в контуре 1 ин­дуцируется э.д.с. ξ i 1 , которая равна и противоположна по знаку скорости из­менения магнитного потока Ф 12 , созданно­го током во втором контуре и пронизываю­щего первый:

Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L 21 и L 12 называются взаимной индуктивно­стью контуров. Расчеты, подтверждаемые опытом, показывают, что l 21 и L 12 равны друг другу, т. е.

L I 2 = L 2 I . (128.2)

Коэффициенты L 12 и L 21 зависят от гео­метрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры сре­ды. Единица взаимной индуктивности та же, что и для индуктивности,- ген­ри (Гн).

Рассчитаем взаимную индуктивность двух катушек, намотанных на общий торо­идальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Магнитная индукция поля, со­здаваемого первой катушкой с числом вит­ков N 1 , током I 1 и магнитной проницаемо­стью m, сердечника, согласно (119.2),

B=m 0 mN 1 I 1 /l, где l - длина сердечника

по средней линии. Магнитный поток через один виток второй катушки Ф 2 =BS=m 0 m(N 1 I 1 /l )S Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмот­ку, содержащую N2 витков,

Поток yсоздается током I 1 , поэтому, со­гласно (128.1), получаем

Если вычислить магнитный поток, создава­емый катушкой 2 сквозь катушку 1 , то для L 12 получим выражение в соответст­вии с формулой (128.3). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сер­дечник,

Трансформаторы

Принцип действия трансформаторов, при­меняемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электро­техником П. Н. Яблочковым (1847-1894) и русским физиком И. Ф. Усагиным (1855-1919). Принципиальная схема трансформатора показана на рис. 186.

Первичная и вторичная катушки (обмот­ки), имеющие соответственно n 1 и N 2 вит­ков, укреплены на замкнутом железном сердечнике. Так как концы первичной об­мотки присоединены к источнику перемен­ного напряжения с э.д.с. ξ 1 , то в ней возникает переменный ток I 1 , создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сер­дечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вто­ричной обмотке появление э.д.с. взаим­ной индукции, а в первичной - э.д.с. самоиндукции.

Ток I 1 первичной обмотки определяется согласно закону Ома:

где R 1 - сопротивление первичной обмот­ки. Падение напряжения I 1 R 1 на сопро­тивлении R 1 при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому

Э.д.с. взаимной индукции, возникающая во вторичной обмотке,

Сравнивая выражения (129.1) и (129.2), получим, что э.д.с. , возникающая во вто­ричной обмотке,

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе.

Отношение числа витков N 2 /N 1 , по­казывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора боль­ше (или меньше), чем в первичной, на­зывается коэффициентом трансформации.

Пренебрегая потерями энергии, кото­рые в современных трансформаторах не превышают 2 % и связаны в основном с выделением в обмотках джоулевой теп­лоты и появлением вихревых токов, и при­меняя закон сохранения энергии, можем записать, что мощности тока в обеих об­мотках трансформатора практически оди­наковы:

ξ 2 I 2 »ξ 1 I 1 , откуда, учитывая соотношение (129.3), найдем

ξ 2 /ξ 1 =I 1 /I 2 = N 2 /N 1 ,

т. е. токи в обмотках обратно пропорцио­нальны числу витков в этих обмотках.

Если N 2 /N 1 >1, то имеем дело с повы­шающим трансформатором, увеличиваю­щим переменную э.д.с. и понижающим ток (применяются, например, для переда­чи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N 2 /N 1 <1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, на­пример, при электросварке, так как для нее требуется большой ток при низком напряжении).

Мы рассматривали трансформаторы, имеющие только две обмотки. Однако

трансформаторы, используемые в радио­устройствах, имеют 4-5 обмоток, обла­дающих разными рабочими напряжениями. Трансформатор, состоящий из одной об­мотки, называется автотрансформатором. В случае повышающего автотрансформа­тора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей об­мотки. В понижающем автотрансформато­ре напряжение сети подается на всю об­мотку, а вторичная э.д.с. снимается с части обмотки.

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. E i , сопротивление R и индуктивность L . Под действием внешней э.д.с. в цепи течет постоянный ток I o =E/R (внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток через катушку индуктивности начнет уменьшаться, что приведет к возникновению эдс самоиндукции E s = –L (dI /dt ), препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I =E s /R , или

IR =–L (dI /dt ). (18.1)

Разделив переменные, получим dI /I = – R dt /L . Интегрируя это уравнение по I (от I o до I ) и t (от 0 до t ), находим ln(I /I o) = – Rt /L , или

I (t ) =I o exp (– t /τ ), (18.2)

где τ =L /R – постоянная, называемая временем релаксации, равная времени, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (18.2) и определяется кривой 1 на рис. (19). Чем больше индуктивность цепи и меньше сопротивление, тем больше τ и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с E возникает э.д.с самоиндукции E s = –L (dI /dt ), препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома IR = E + E s или

IR = E –L (dI /dt ). Введя новую переменную u = IR – E, преобразу- Рис.19. ем это уравнение к виду du /u = – dt /τ , где τ – время релаксации.

В момент замыкания (t = 0) сила тока I =0 и u = –E. Следовательно, интегрируя по u (от –E до IR –E) и t (от 0 до t ), находим ln[(IR –E)/(–E)] = –t /τ , или

I (t )=I o , (18.3)

где I o = E/R – установившийся ток (при t → ¥).

Таким образом, в процессе включения источника э.д.с нарастание силы тока в цепи задается функцией (18.3) и определяется кривой 2 на рис.19. Сила тока возрастает от начального значения I =0 и асимптотически стремится к установившемуся значению I o = E/R . Скорость нарастания тока определяется тем же временем релаксации τ =L /R , что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.


Трансформаторы.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Первые трансформаторы были сконструированы и введены в практику русским электротехником П.Н.Яблочковым (1847 – 1894) и русским физиком И.Ф.Усагиным (1855 – 1919). Принципиальная схема трансформатора показана на рис. 20.

Первичная и вторичная катушки (обмотки), имеющие соответственно n 1 и n 2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. E 1 , то в ней возникает переменный ток создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в

железном сердечнике и, следовательно, почти целиком

пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. электромагнитной индукции, а в первичной – э.д.с. самоиндукции .

По закону Ома, ток I 1 , первичной обмотки определяется алгебраической суммой внешней э.д.с. и э.д.с. самоиндукции: I 1 R 1 =, где R 1 – сопротивление первичной обмотки. Падение напряжения I 1 R 1 на сопротивлении R 1 , при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому E 1 »n 1 dФ/dt .

Э.д.с. электромагнитной индукции, возникающая во вторичной обмотке,

E 2 = –[(dn 2 Ф)/dt ] = – n 2 (dФ/dt ). (19.1)

Сравнивая выражения для E 1 и E 2 , получим, что э.д.с., возникающая во вторичной обмотке,

E 2 = –(n 2 /n 1) E 1 , (19.2)

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков n 1 /n 2 показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации .

Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:

E 2 I 2 ≈ E 1 I 1 , (19.3)

откуда, учитывая соотношение (19.2), найдем E 2 /E 1 = I 1 /I 2 = n 2 /n 1 , т.е. токи в обмотках трансформатора обратно пропорциональны числу витков в этих обмотках .

Если n 2 /n 1 >1, то имеем дело с повышающим трансформатором , увеличивающим переменную э.д.с. и понижающим ток (применяется, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются). Если n 2 /n 1 <1, то имеем дело с понижающим трансформатором , уменьшающим э.д.с. и повышающим ток (применяется, например, при электросварке, так как для нее требуется большой ток при низком напряжении).

Трансформаторы, используемые в радиотехнике, имеют 4–5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором . В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки.

По правилу Ленца дополнительные токи, возникающие вследствие самоиндукции, всегда направлены так, чтобы противодействовать изменениям тока в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

Найдем сначала характер изменения тока при размыкании цепи. Пусть в цепь с не зависящей от индуктивностью L и сопротивлением R включен источник тока э.д.с. (рис. 65.1).

В цепи будет течь постоянный ток

(сопротивление источника тока считаем пренебрежимо малым). В момент времени отключим источник тока, замкнув одновременно цепь накоротко переключателем П. Как только сила тока в цепи начнет убывать, возникнет э. д. с. самоиндукции, противодействующая этому убыванию. Сила тока в цепи будет удовлетворять уравнению

Уравнение (65.2) представляет собой линейное однородное дифференциальное уравнение первого порядка. Разделив переменные, получим

(имея в виду дальнейшие преобразования, мы постоянную интегрирования написали в виде ). Потенцирование этого соотношения дает

(65.3)

Выражение (65.3) является общим решением уравнения (65.2). Значение найдем из начальных условий. При сила тока имела значение (65.1). Следовательно,

Подставив это значение в (65.3), придем к выражению

Итак, после отключения источника э. д. с. сила тока в цепи не обращается мгновенно в нуль, а убывает по экспоненциальному закону (65.4). График убывания дан на рис. 65.2 (кривая ).

Скорость убывания определяется имеющей размерность времени величиной

которую называют постоянной времени цепи. Заменив в (65.4) через получим

В соответствии с этой формулой есть время, в течение которого сила тока уменьшается в раз. Из (65.5) видно, что чем больше индуктивность цепи L и меньше ее сопротивление R, тем больше постоянная времени и тем медленнее спадает ток в цепи.

Для упрощения расчетов мы считали, что цепь в момент отключения источника тока замыкается накоротко. Если просто разорвать цепь с большой индуктивностью, возникающее высокое индуцированное напряжение создает искру или дугу в месте разрыва.

Теперь рассмотрим случай замыкания цепи. После подключения источника э. д. с., до тех пор пока сила тока не достигнет установившегося значения (65.1), в цепи кроме э. д. с. будет действовать э. д. с. самоиндукции. Следовательно, в соответствии с законом Ома

Мы пришли к линейному неоднородному дифференциальному уравнению, которое отличается от уравнения (65.2) лишь тем, что в правой части вместо нуля в нем стоит постоянная величина Из теории дифференциальных уравнений известно, что общее решение линейного неоднородного уравнения можно получить, прибавив любое его частное решение к общему решению соответствующего однородного уравнения (см. § 52 1-го тома). Общее решение однородного уравнения имеет вид (65.3). Легко убедиться в том, что является частным решением уравнения (65.7).

Следовательно, общим решением уравнения (65.7) будет функция

В начальный момент сила тока I равна нулю. Отсюда Таким образом,

Эта функция описывает нарастание тока в цепи после подключения к ней источника э. д. с. График функции (65.8) дан на рис. 65.2 (кривая 2).

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L . Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t =0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент време­ни ток в цепи определяется закономОмаI = s /R , или

Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I 0 до I ) и t (от 0 до t ), находим ln (I /I 0) = –Rt /L , или

где t =L / R - постоянная, называемая временем релаксации. Из (127.2) следует, что t есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или

Введя новую переменную преобразуем это уравнение к виду

где t - время релаксации.

В момент замыкания (t =0) сила тока I = 0 и u = – . Следовательно, интегрируя по и (от –до IR – ) и t (от 0 до t ), находим ln [(IR – )]/– = -t /t , или

где - установившийся ток (при t ®¥ ).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I = 0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации t =L /R , что и убывание тока. Установление тока происходит тем быстрее, чем меньше индук­тивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R . Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t , получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопротивления цепи (R /R 0 >>1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндук­ции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, все­гда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t =0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент време­ни ток в цепи определяется закономОмаI = s /R, или

(127.1)

Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I 0 до I ) и t (от 0 до t ), находим ln (I /I 0) = –Rt/L, или

где t=L/R - постоянная, называемаявременем релаксации. Из (127.2) следует, что t есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или

Введя новую переменную преобразуем это уравнение к виду

где t - время релаксации.

В момент замыкания (t =0) сила тока I = 0 и u = – . Следовательно, интегрируя по и (от – до IR– ) и t (от 0 до t ), находим ln[(IR– )]/– = -t/t, или

где - установившийся ток (при t ®¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I= 0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации t=L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индук­тивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R . Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t , получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопротивления цепи (R/R 0 >>1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

Магнитные моменты атомов.

Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того чтобы разобраться в магнитных свойствах сред и их влиянии на магнитную индукцию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.

Опыт показывает, что все вещества, помещенные в магнитное поле, намагничива­ются. Рассмотрим причину этого явления с точки зрения строения атомов и молекул, положив в основу гипотезу Ампера, согласно которой в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах.

Для качественного объяснения магнитных явлений с достаточным приближением можно считать, что электрон движется в атоме по круговым орбитам. Электрон, движущийся по одной из таких орбит, эквивалентен круговому току, поэтому он обладаеторбитальным магнитным моментом (см. (109.2)) p m =IS n , модуль которого

(131.1)

где I=en - сила тока, n - частота вращения электрона по орбите, S - площадь орбиты. Если электрон движется по часовой стрелке (рис. 187), то ток направлен против часовой стрелки и вектор р m (в соответствии с правилом правого винта) направлен перпендикулярно плоскости орбиты электрона, как указано на рисунке.

С другой стороны, движущийся по орбите электрон обладает механическим момен­том импульса L e , модуль которого,

где v = 2pn, pr 2 = S. Вектор L e (его направление также определяется по правилу правого винта) называется орбитальным механическим моментом электрона .

Из рис. 187 следует, что направления р m и L e , противоположны, поэтому, учитывая выражения (131.1) и (131.2), получим

(131.3)

где величина

(131.4)

называется гиромагнитным отношением орбитальных моментов (общепринято писать со знаком «–», указывающим на то, что направления моментов противоположны). Это отношение, определяемое универсальными постоянными, одинаково для любой ор­биты, хотя для разных орбит значения v и r различны. Формула (131.4) выведена для круговой орбиты, но она справедлива и для эллиптических орбит.

Экспериментальное определение гиромагнитного отношения проведено в опытах Эйнштейна и де Гааза* (1915), которые наблюдали поворот свободно подвешенного на тончайшей кварцевой нити железного стержня при его намагничении во внешнем магнитном поле (по обмотке соленоида пропускался переменный ток с частотой, равной частоте крутильных колебаний стержня). При исследовании вынужденных крутильных колебаний стержня определялось гиромагнитное отношение, которое ока­залось равным (e/m ). Таким образом, знак носителей, обусловливающих молекуляр­ные токи, совпадал со знаком заряда электрона, а гиромагнитное отношение оказалось в два раза большим, чем введенная ранее величина g (см. (131.4)). Для объяснения этого результата, имевшего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орбитальных моментов электрон обладает собственным механическим моментом импульса L es , называ­емым спином . Считалось, что спин обусловлен вращением электрона вокруг своей оси, что привело к целому ряду противоречий. В настоящее время установлено, что спин является неотъемлемым свойством электрона, подобно его заряду и массе. Спину электрона L es , соответствует собственный (сотовый) магнитный момент р ms , пропорци­ональный L es и направленный в противоположную сторону.



Загрузка...