sonyps4.ru

Типы алгоритмов — Гипермаркет знаний. Понятие алгоритма

В рамках структурного программирования задачи, имеющие алгоритмическое решение, могут быть описаны с использованием следующих алгоритмических структур:

  • Следование . Предполагает последовательное выполнение команд сверху вниз. Если алгоритм состоит только из структур следования, то он является линейным.
  • Ветвление . Выполнение программы идет по одной из двух, нескольких или множества ветвей. Выбор ветви зависит от условия на входе ветвления и поступивших сюда данных.
  • Цикл . Предполагает возможность многократного повторения определенных действий. Количество повторений зависит от условия цикла.
  • Функция (подпрограмма) . Команды, отделенные от основной программы, выполняются лишь в случае их вызова из основной программы (из любого ее места). Одна и та же функция может вызываться из основной программы сколь угодно раз.

Описание различных алгоритмических структур на языке блок-схем

Ветвление if
Это самый простой тип ветвления. Если результат вычисления выражения-условия возвращает true (правда), то выполнение алгоритма идет по ветке «Да», в которую включены дополнительные выражения-действия. Если условие возвращает false (ложь), то выполнение алгоритма идет по ветке «нет», т.е продолжает выполняться основная ветка программы.

Ветвление if-else
Если выражение-условие возвращает true (правда), то выполнение алгоритма идет по ветке «Да», если условие не выполняется (false), то выполнение идет по ветке «Нет». При любом результате выражения-условия нельзя вернуться в основную ветку программы, минуя дополнительные действия.

Ветвление if-elif-else
Количество условий может быть различно. Если выполняется первое, то после выполнения действий, программа переходит к основной ветке, не проверяя дальнейшие условия. Если первое условие возвращает ложь, то проверяется второе условие. Если второе условие возвращает правду, то выполняются действия, включенные в вторую ветку конструкции. Последнее условие проверяется лишь в том случае, если ни одно до него не дало в результате true. Данную алгоритмическую конструкцию (if – elif – else) не следует путать с алгоритмической конструкцией «Выбор».

Цикл while
Пока условие выполняется (результат логического выражения дает true), будут выполняться действия тела цикла. После очередного выполнения вложенных действий условие снова проверяется. Для того чтобы выполнение алгоритма не зациклилось, в теле цикла (помимо прочих действий) должно быть выражение, в результате выполнения которого будет изменяться переменная, используемая в условии. Тело цикла может ни разу не выполнится, если условие с самого начала давало false.

Цикл do
В этом цикле первый раз условие проверяется лишь после выполнения действий тела цикла. Если условие возвращает true, то выражения-действия повторяются снова. Каким бы ни было условие, тело данного цикла хотя бы раз, но выполнится.

Цикл for
Данный цикл также называют циклом «Для» (for). В его заголовке указывается три параметра: начальное значение переменной (от), конечно значение (до) и ее изменение с помощью арифметической операции на каждом «обороте» цикла (шаг).

Программирование - это записывание чего-то с использованием чужого малознакомого языка. С развитием этой области знания разработчики пошли еще дальше и научились записывать "что-то", даже не понимая, как оно звучит на русском языке. Новички учатся писать код сразу на C++ или php, используя множество библиотек, и толком даже не понимают, как то, что они создают, звучит на их родном языке. Алгоритмизация занимается разъяснением и доведением до понятного этого "что-то".

Алгоритмизация

Большинство примеров алгоритмов по информатике даже в вузах изучается на посредственном уровне. Общепринятой практикой является бесконечное написание все более сложного кода. Попытки неопытных программистов приступать к написанию программ сразу на языке программирования можно сравнить с работой журналиста, который, едва овладев основами иностранного языка, пишет статью для журнала. Избежать подобную проблему можно, если начать записывать свое произведение сначала на родном языке, отредактировать его, проверить на ошибки и в конце перевести на необходимый язык.

Преимущество такого подхода заключается главным образом в том, что переводом разработчик будет заниматься только 25 % времени, в то время как при написании программы на новом языке он потратит на работу с малознакомым языком все 100 %. При этом он окажется в стесненных условиях и не сможет провести хорошую проверку на ошибки и доработку проекта.

Алгоритмизация помогает при реализации проекта на компьютере описать процесс решения на родном и понятном языке в виде схемы взаимосвязанных алгоритмов, провести анализ идей и получить наиболее качественный и продуманный код, который будет устойчивее к ошибкам и эффективнее работать.

Понятие алгоритма

Компьютер не умеет решать задачи, он способен только выполнять простые действия в указанном порядке. "Как же калькулятор?" - спросите вы. Он тоже является плодом трудов программистов, которые создали программу, использующую определенные алгоритмы для получения необходимых результатов. Рассмотрим абстрактную ситуацию. Что следует сделать, если попросить найти корни квадратного трехчлена человека, который не знаком с методами решения уравнений?

Очевидно, что его необходимо обучить решать квадратные уравнения. Происходит это по следующей схеме:

  1. Выбрать способ решения.
  2. Изучить все детали выбранного способа.
  3. Объяснить первые два пункта будущему исполнителю на понятном ему языке.

Затем можно будет давать исполнителю задания на решение квадратного уравнения. И если первые два шага просты и понятны - все способы решения описаны в соответствующей литературе, то третий шаг представляет сложность.

Как можно гарантировать, что идеи, используемые при решении задачи, будут восприняты исполнителем так же, как это понимаете вы? Здесь мы вплотную подходим к понятию алгоритма. Практика показывает, что для правильного объяснения чего-то кому-то необходимо соблюдать следующие шаги:

  • определить исходные данные (переменная и коэффициенты квадратного уравнения);
  • разбить процесс решения на однозначно известные компоненты для исполнителя (формулы дискриминанта и нахождения корней);
  • указать порядок выполнения этапов (сначала вычислить дискриминант, затем корни);
  • установить условие, при котором решение считается завершенным (проверить найденные корни, подставив их в уравнение на место переменных);
  • обозначить, каким именно должен быть результат решения (корни принадлежат множеству действительных чисел).

Описанный набор шагов в общем смысле и являет собой алгоритм. Таким образом под алгоритмом можно понимать способ решения поставленной задачи, записанный при помощи определенных правил, позволяющих обеспечить однозначное понимание выполняемых действий и их порядка. Ниже будут подробнее рассмотрены алгоритмы и примеры задач.

Основные свойства алгоритма

Дискретность. Процесс решения задачи всегда состоит из строго отделенных друг от друга действий, называемых шагами, имеющими определенный порядок выполнения.

Определенность. Каждый шаг должен быть понятным и однозначным как по смыслу, так и в ключе действия, которое предстоит совершить.

Результативность. Алгоритм должен давать результат. При этом количество шагов может исчисляться тысячами или миллионами, но они всегда должны приводить к результату.

Массовость. Любой алгоритм, разработанный для решения какой-либо задачи, должен быть применим ко всем задачам этого типа для всех допустимых исходных данных.

Возможности компьютера

Для правильного создания алгоритмов под компьютеры важно понимать их возможности. Рассмотрим сначала величины, с которыми работает ЭВМ. В общем случае их можно разделить на числовые и текстовые, постоянные и переменные.

Под постоянными числами понимаются все числа: 3,15, 100, 10 5 , их особенностью является неизменность в течение всей работы программы. Переменные величины меняют свое значение в ходе выполнения кода и обозначаются, как правило, буквами: x, y, max, min и т. д.

Текстовые переменные аналогично числовым бывают постоянными или переменными. В первом случае это просто текст: "хорошо", "a и b" и пр. Во втором - такое же символьное обозначение, как и числовых переменных: name, city и т. п. Отличие между ними заключается главным образом в выделяемой памяти компьютера под хранение такой переменной.

Операции, которые способен выполнять компьютер:

  1. Считывать данные с устройств ввода (клавиатура, мышь, файлы).
  2. Вычисление значений с использованием математические функции: сложение, вычитание, sin, cos, ln и т. д. - в каждом языке программирования свой набор встроенных функций.
  3. Вывод данных (на экран, на бумагу, в сетевой интерфейс).
  4. Переход между этапами выполнения программы.
  5. Сравнение двух величин (больше, меньше, равно).

Это основные операции, которые могут выполняться большинством языков программирования.

Способы описания алгоритмов

Словесный. Это самый простой способ. Его примером может служить кулинарный рецепт. Допускается использование простых математических формул.

Графический. Описание с помощью схем. Это особый способ записи алгоритмов с использованием своего рода общепринятого алгоритмического языка - фигур и блоков, имеющих определенное значение: прямоугольник - простой действие, наклонный параллелограмм - ввод/вывод, ромб - условие и т. д.

Использование алгоритмического языка. Аналогично графическому, это также особенный способ записи алгоритма. Существует множество алгоритмических языков. Их правила не являются строгими, иначе это был бы язык программирования. Рассмотрим пример алгоритма расчета заработной платы в зависимости от стажа, записанный при помощи алгоритмического языка.

алг заработная плата (int ST, real ZP) арг ST рез ZP начало если ST < 5 то zp = 150 иначе если ST <= 15 то ZP = 180 иначе ZP = 180 + (ST - 15)*10 конец

Алгоритмический язык можно назвать более строгой формой записи по сравнению со словесной. Используется ограниченный набор слов и их конструкций, а также оформление с отступами. Минусом словесной формы и алгоритмического языка является ухудшающаяся наглядность алгоритма при увеличении его размеров. Поэтому данные способы могут быть использованы только для передачи смысла небольших алгоритмов.

Виды алгоритмов

Существует огромное множество алгоритмов, созданных для решения самых разных задач. Например, любой учебник высшей математики содержит сотни алгоритмов: решение системы линейных уравнений, нахождение экстремумов функции, вычисление интеграла и т. д. Однако при детальном рассмотрении их структуры оказывается, что все алгоритмы можно разделить на несколько видов. Рассмотрим эти виды алгоритмов с примерами.

  • линейный (вычисление результата сложения или умножения, обмен значениями нескольких переменных);
  • разветвляющийся (определение наибольшего из нескольких чисел);
  • циклический (сортировка массива, вычисление факториала).

Это базовые виды. Стоит также отметить, что в ряде литературы выделяется еще и четвертый вид - рекурсивный. Но особого обозначения в схематической записи он не имеет и реализуется через базовые.

Подробнее о каждом алгоритме вычисления с примерами будет рассказано ниже.

Принципы алгоритмизации

  1. Определить исходные данные.
  2. Выбрать способ решения.
  3. Разбить выбранные способ на шаги исходя из возможностей компьютера (языка программирования).
  4. Выполнить алгоритм в виде схемы, определив четкий порядок шагов.
  5. Вывод результатов вычислений.
  6. Обозначить переход к выходу схемы.

Отладка алгоритма

Человек допускает ошибки, и это факт. Главным параметром любого алгоритма должна быть правильность его работы. Отладка - это процесс выявления и исправления ошибок алгоритма. Для этого берется определенный набор исходных данных, называемых тестовыми. Они представляют собой, как правило, всевозможные типы исходных данных. Например, если на ввод подается число, то алгоритм следует проверить на корректную работу с учетом: положительных, отрицательных, целых и вещественных чисел, нулевые значения и т. п.

Главным инструментом для проверки точности алгоритма остается человеческий мозг. Конечно, допустимо использование других компьютерных инструментов для автоматизации проверки, но так или иначе подготовкой тестов и анализом результатов занимается человек. В таком случае возникает вопрос, а зачем нужен алгоритм, если человек выполняет все сам? Затем, что главная задача алгоритма - многократное решение определенного типа задач.

Линейные алгоритмы

Линейным является алгоритм, в котором шаги идут последовательно друг за другом. Любой алгоритм, не содержащий ветвлений и циклов, является линейным. Рассмотрим пример алгоритма, решающего следующую задачу: в двух клетках сидят волк и заяц, нужно поменять их местами.

Ключом к решению данной задачи является дополнительная клетка temp, которую следует использовать, чтобы поменять местами животных.

Разветвляющиеся алгоритмы

Как и следует из названия, алгоритм имеет несколько ветвей. Суть работы заключается в выборе одного из возможных вариантов вычислительного процесса в зависимости от каких-либо условий. Схематическое ветвление изображается ромбовидным блоком, внутри которого указывается условие, а по сторонам от него располагаются ветви выбора в зависимости от того, истинно условие или ложно. Разветвляющийся алгоритм и примеры его применения можно найти повсеместно. В программировании это типичная конструкция if-else, которая есть почти в любом языке.

Приведем пример алгоритма для решения задачи о нахождении наибольшего среди трех чисел.

Циклический алгоритм

Циклическим является алгоритм, в котором происходит многократное повторение одних и тех же шагов, в которых меняться может только значение конкретной переменной, над которой производятся расчеты. Виды циклического алгоритма и пример будут рассмотрены ниже, а пока перечислим основные шаги для построения цикла.

  1. Присваивание начального значения переменных. Без выполнения этого условия цикл, скорее всего, не сможет работать или будет совершать ошибки.
  2. Блок вычисления результатов. Это основное тело цикла.
  3. Проверка условия окончания циклического процесса. Если забыть указать условие, при котором следует завершить цикл, алгоритм будет выполняться бесконечно.
  4. Изменение переменных. Этот блок вступает в силу после проверки условия окончания, если оно было ложным. Если забыть про этот блок, то цикл будет вечно выполнять одно действие и никогда не завершится. Поэтому важно, чтобы переменные претерпевали какие-либо изменения на каждой итерации цикла.

Существует несколько видов циклических алгоритмов: с постусловием, предусловием и параметром.

Построим циклический алгоритм на примере нахождения факториала числа N.

Другие типы алгоритмов

Существует еще ряд алгоритмов, которые отличаются по классификации или происхождению.

  • Механические алгоритмы. Например, работа двигателя внутреннего сгорания или сборочного конвейера.
  • Вероятностные алгоритмы. Их работа основана на теории вероятности и математической статистике.
  • Эвристические алгоритмы. Используют практические соображения в своей работе, без строгого математического обоснования.
  • Генетические алгоритмы. Применяют биологические идеи в своей работе.

В информатике план действий называют алгоритмом .
Алгоритм состоит из отдельных шагов – команд . Ни одну из них нельзя пропустить, чаще всего никакие команды нельзя поменять местами.
Исполнитель – человек, животное или машина, способные понимать и выполнять некоторые команды.
Среда исполнителя – предметы, которые окружают исполнителя и с которыми он работает.
Список Команд Исполнителя (СКИ) – набор команд, понятных исполнителю. Исполнитель может выполнить только те команды, которые входят в его СКИ.

Для решения большинства задач недостаточно отдать одну команду исполнителю, надо составить для него алгоритм – план действий, состоящий из команд, которые ему понятны (входят в его СКИ).
Алгоритм – точно определенный план действий исполнителя, направленный на решение какой-то задачи. В алгоритм можно включать только те команды, которые есть в СКИ.

Какие бывают алгоритмы

Линейный алгоритм
В линейном алгоритме команды выполняются последовательно, одна за другой. Примером линейного алгоритма может служить алгоритм заварки чая.

Разветвляющийся алгоритм

В разветвляющемся алгоритме порядок следования команд может быть разный в зависимости от того, какова окружающая обстановка. Примером разветвляющегося алгоритма может служить алгоритм перехода улицы.

Циклический алгоритм
В циклическом алгоритме некоторые действия повторяются несколько раз (в информатике говорят, что выполняется цикл). Существуют два вида циклических алгоритмов. В одном из них мы знаем заранее, сколько раз надо сделать эти действия, в другом мы должны остановиться лишь тогда, когда выполним работу, то есть наши действия прекращаются при выполнении какого-то условия.
Примером цикла первого типа является наша жизнь в рабочие дни (от понедельника до субботы) – мы выполняем 6 раз почти одни и те же действия.
Пример цикла второго типа – алгоритм распилки бревна: мы не можем заранее сказать, сколько раз нам надо провести пилой от себя и на себя - это зависит от плотности дерева, качества пилы и наших усилий. Однако мы точно знаем, что надо закончить работу, когда очередное отпиленное полено упадет на землю.

Способы записи алгоритмов

Выделяют три наиболее распространенные на практике способа записи алгоритмов:

  • словесный (запись на естественном языке);
  • графический (запись с использованием графических символов);
  • программный (тексты на языках программирования).

Словесный способ записи алгоритмов

Словесный способ – способ записи алгоритма на естественном языке . Данный способ очень удобен, если нужно приближенно описать суть алгоритма. Однако при словесном описании не всегда удается ясно и точно выразить логику действий.

В качестве примера словесного способа записи алгоритма рассмотрим алгоритм нахождения площади прямоугольника

где S – площадь прямоугольника; а, b – длины его сторон.

Очевидно, что a, b должны быть заданы заранее, иначе задачу решить невозможно.

Словестный способ записи алгоритма выглядит так:

  • Начало алгоритма.
  • Задать численное значение стороны a.
  • Задать численное значение стороны b.
  • Вычислить площадь S прямоугольника по формуле S=a*b.
  • Вывести результат вычислений.
  • Конец алгоритма.

Графический способ описания алгоритмов

Для более наглядного представления алгоритма используется графический способ. Существует несколько способов графического описания алгоритмов. Наиболее широко используемым на практике графическим описанием алгоритмов является использование блок-схем. Несомненное достоинство блок схем – наглядность и простота записи алгоритма.

Каждому действию алгоритма соответствует геометрическая фигура (блочный символ). Перечень наиболее часто употребляемых символов приведен в таблице ниже.

Так как в линейном алгоритме команды выполняются последовательно, то блок-схема будет иметь вид:

Так как в разветвляющемся алгоритме порядок следования команд может быть разный в зависимости от того, какова окружающая обстановка, то блок-схема примет вид:

В циклическом алгоритме некоторые действия повторяются несколько раз и для него блок-схема примет вид:

Программный способ записи алгоритмов

Для того, чтобы алгоритм был понятен роботу, компьютеру или другой машине, недостаточно только написать команды, надо еще и оформить алгоритм в таком виде, в котором его понимает машина (написать программу), т.е. записать его с использованием команд из СКИ, соблюдая правила оформления.

Правила оформления программы:

  1. любой алгоритм имеет название;
  2. алгоритм начинается с открывающей фигурной скобки “{“ и заканчивается закрывающей фигурной скобкой “}”; команды, расположенные между этими скобками, называются телом алгоритма;
  3. в алгоритм могут входить только те команды, которые есть в СКИ исполнителя;
  4. каждая команда заканчивается знаком “;”, который обозначает конец команды;
  5. для того, чтобы нам было легче разбираться в программах, используют комментарии - текстовые пояснения, которые начинаются знаками “/*” и заканчиваются знаками “*/”; исполнитель не обращает внимания на комментарии в алгоритме.

Практические задания:

  1. Составить блок-схему для нахождения периметра квадрата.
  2. Составить блок схему для заваривания чая.
  3. Составить блок-схему для перехода перекрестка со светофором.

Использован материал из книг:

  1. "Современные информационные технологии", авторы преподаватели центра "Турбо"
  2. "Алгоритмы и исполнители", автор Поляков К.
Разработала учитель информатики

ГУ «Средняя школа № 19 отдела образования

акимата горда Костаная»

Елеусизова Айнаш Досымхановна

Тема:

Цели:

повышение интереса к изучению предмета; воспитание навыка быстрого мышления; развитие творческой активности учащихся; развитие познавательных интересов.

Задачи:

1. Образовательные

    Закрепить с учащимися понятия алгоритма, исполнителя, системы команд исполнителя, способы представления алгоритмов;

    Познакомить учащихся с типами алгоритмов: линейным, разветвляющимся, циклическим;

    Научить представлению алгоритмов в виде блок-схем;

2. Развивающие

    Активизировать познавательную активность учащихся через мультимедийные средства обучения;

    Развивать образное, критическое, дивергентное мышление;

3. Воспитательные

    Повышение мотивации учащихся на уроке;

    Достижение сознательного уровня усвоения материала учащимися;

    Формирование чувства коллективизма и здорового соперничества;

    Формирование алгоритмического мышления.

Требования к знаниям и умениям:

    Знать типы алгоритмов;

    знать понятия: линейный, разветвляющийся, циклический алгоритмы;

    уметь применять полученные знания при выполнении практических заданий.

Тип урока: комбинированный.

Технология: формирование коммуникативной компетенции;

Методы:

    частично-поисковый, практический.

    информационный (словесный);

    наглядно-иллюстративный;

Ход урока:

I .Организационный момент.

    Приветствие ребят.

Здравствуйте, ребята! Садитесь! Какое у вас настроение? Если хорошее -улыбнитесь всем! Если нет - посмотрите друг на друга и улыбнитесь! Начнем урок!

Я представила вам алгоритм в словесной форме. Посмотрите на доску. Этот же алгоритм изображен графически. Сегодня на уроке мы научимся с вами представлять типы алгоритмов с помощью блок – схем (страница флипчарта 1).

Эпиграфом к нашему уроку будут слова знаменитого французского ученого Гюстава Гийома “Дорогу осилит идущий, а информатику мыслящий”.

2. Объявление целей урока.

II . Актуализация знаний учащихся

Но прежде чем приступим к изучению нового материала. Мы должны вспомнить, что изучали на прошлом уроке.

1. Проверка домашнего задания.

Проверить кроссворды, решенные учениками дома.

Ответы:

    графический

    конечность

    информация

    исполнитель

    алгоритм

    программный

    компьютер

    инструмент

2. Работа с Activote (приложение 4) под музыкально-звуковое сопровождение (ссылка на звуковой файл).

“Повторение – мать учения” так говорили великие.

Учитель объясняет алгоритм решения тестовых заданий. Дети на местах работают с Activote .

III . Изучение нового материала.

1. Теоретическая часть.

Ребята, чтобы познакомиться с типами алгоритмов, мы с вами сейчас просмотрим следующие страницы флипчарта, необходимые определения нужно записать в тетрадь.

Для начала, нам надо запомнить, какие геометрические фигуры используются при составлении блок- схем.

Условные обозначения для блок-схем (страница флипчарта 5-6)

Начало или конец программы

- ввод данных

- действия

-условие решения программы

-вывод данных или текста

--цикл с параметром

-подпрограмма

Алгоритмы бывают трех типов: (страница флипчарта 7)

Линейный

Разветвляющийся

Циклический

Линейные алгоритмы


Пример 1 (страница флипчарта 9). Сказка «Курочка Ряба»

Разветвляющийся алгоритм - алгоритм, в котором в зависимости от

выполнения некоторого условия совершается либо одна, либо другая последовательность действий (страница флипчарта 10)

Полная форма (страница флипчарта 11)

Неполная форма

Пример 2. (страница флипчарта 12-13)

Если пошёл дождь, то откройте зонт (неполная форма разветвляющегося алгоритма).и какие действия не выполняются.

Пример 3. (страница флипчарта 12-13)


“Купить мороженое” .


Циклический алгоритм- (страница флипчарта 14)


Пример 4. (страница флипчарта 15.) Алгоритм «Наполнение».

Начало

Конец

2. Первичное закрепление. Решение задач-тренингов (коллективно)

(страница флипчарта 16-17).

Учащиеся по очереди подходят и заполняют блок-схемы во флипчарте.

Тренинг-задача №1 (страница флипчарта 18). «Почисти ковер»

На интерактивной доске, с помощью указателя, перенести правильный порядок действий)

Тренинг-задача № 2 (страница флипчарта 19).

    Заполнить блок-схему пословицей «Болен - лечись, а здоров - берегись».

    Назови тип алгоритма.

Тренинг-задача № 3 (страница флипчарта 20).


Проверить, перетащив рисунок на свободное место.

    Физкультминутка (страница флипчарта 21).

Мы руками поведем -

Будто в море мы плывем.

Раз, два, три, четыре -

Вот мы к берегу приплыли,

Чтобы косточки размять,

Начнем наклоны выполнять -

Вправо, влево, вправо, влево.

Не забудем и присесть -

Раз, два, три, четыре,

Мы выполнили алгоритм, и достигли определенной цели: отдохнули, расслабились.

4. Выполнение практической работы. Работа по разноуровневым карточкам.

(страница флипчарта 22).

И возвращаемся к словам французского ученого Гюстава Гийома “Дорогу осилит идущий, а информатику мыслящий”.

Укажите стрелочками, к какому типу алгоритма относятся данные изображения.

Дайте названия алгоритмам (страница флипчарта 23).

Заполнить таблицу двумя примерами на каждый тип алгоритма (страница флипчарта 24)..

Paint

Вариант 1.(страница флипчарта 25).

«Посадка саженца».

Вариант 2.(страница флипчарта 26).

IV . Домашнее задание (страница флипчарта 27).

1. Выучить конспект.

2. Нарисовать на А4 формате пример циклического алгоритма и блок – схему к сказке «Колобок».

V . Итог урока. (страница флипчарта 28).

На этом урок заканчивается. Наша цель достигнута. Мы повторили основные понятия алгоритма, познакомились типами алгоритмов, успешно применили знания на практике, вспомнили сказки, пословицы.

VI . Рефлексия. . (страница флипчарта 29).

–Что вам сегодня понравилось на уроке?
– Что вы запомнили?
– Что было интересного?

VII .Оценивание.

Сегодня у вас будут вместо отметок – смайлики, которыми я оценю ваши успехи на уроке.

Приложение 2

Технологическая карта №1

Тема урока: Типы алгоритмов: линейные, разветвляющиеся, циклические.

Цели урока : Научимся составлятьклассификацию типов алгоритмов;

Научимся представлять алгоритмы в виде блок-схем.

1. Проверка домашнего задания.

Выполнение тестовых заданий по тестеру

2. Теоретическая часть

Условные обозначения для блок-схем:

Начало или конец программы

- ввод данных

- действия

-условие решения программы

-вывод данных или текста

--цикл с параметром

-подпрограмма

- стрелки – направление процесса

Алгоритмы бывают трех типов: -линейный

Разветвляющийся

Циклический

Линейные алгоритмы – алгоритм, в котором команды выполняются в порядке их записи, т. е. последовательно друг за другом. (страница флипчарта 8)

Пример 1 . Сказка «Курочка Ряба»

Разветвляющийся алгоритм - алгоритм, в котором в зависимости от выполнения некоторого условия совершается либо одна, либо другая последовательность действий.

В словесном описании разветвляющегося алгоритма используются слова "если", "то", "иначе".

Полная форма : «если выполняется условие, то …, иначе …» . Действия предусмотрены и при выполнении условия, и при его невыполнении.

Неполная форма : «если выполняется условие, то …». Действия предусмотрены только при выполнении условия. При невыполнении условия.

Пример 2.

Если пошёл дождь, то откройте зонт, иначе – зонт положите в сумку (полная форма разветвляющегося алгоритма);

Если пошёл дождь, то откройте зонт (неполная форма разветвляющегося алгоритма).


Пример 3.

“Купить мороженое” .

Циклический алгоритм- алгоритм, в котором действия повторяются конечное число раз.

П
ример 4.
Алгоритм «Наполнение».

Начало

1. Пока ведро неполное, повторять:

2. Налить в ведро кружку воды.

Конец

3. Решение задач-тренингов (коллективная работа).

Тренинг-задача № 1.

Составить алгоритм «Почисти ковер».

Тренинг-задача № 2.

1.Назови тип алгоритма.

2. Заполни алгоритм.

Записать с помощью блок-схемы пословицу «Болен – лечись, а здоров – берегись».


Тренинг-задача № 3.

Мальчик учит наизусть четверостишие, заданное по литературе. Он один раз прочитывает четверостишие и пытается воспроизвести его по памяти. Так он будет делать до тех пор, пока не расскажет четверостишие без единой ошибки. Составить действия мальчика в виде блок-схемы.

4. Физкультминутка.

Мы руками поведем -

Будто в море мы плывем.

Раз, два, три, четыре -

Вот мы к берегу приплыли,

Чтобы косточки размять,

Начнем наклоны выполнять -

Вправо, влево, вправо, влево.

Не забудем и присесть -

Раз, два, три, четыре,

На счет пять - за парты сесть.


Примеры

линейного алгоритма

Примеры

разветвляющегося алгоритма

Примеры

циклического алгоритма


Составьте алгоритм в программе Paint , используя команды перемещения и копирования.

Вариант 1.(страница флипчарта 25).

«Посадка саженца».

Вариант 2.(страница флипчарта 26).

Эпизод из сказки «Гуси-лебеди».

Основными свойствами алгоритма являются:

1.

2.

3.

4.

·линейный;

·ветвящийся;

· циклический.

Линейным

Ветвящимся

циклическим

Структура программы на Паскале.

Pascal – это язык, который учит аккуратности и четкости (разделы программы нельзя менять местами, необходимо четко представлять работу программы и т.д.). Вот почему необходимо четко знать и понимать структуру программы на языке Pascal.

PROGRAM имя программы;
(английскими буквами, одно слово. Хотите глубже? То необходимо воспользоваться правилами написания идентификаторов)

USES подключаемые библиотеки (модули);
(дополнительные возможности, их можно подключать к программе в этой строке)

LABEL список меток;
(из одного места программы «прыгать» в другое)



CONST раздел описания констант;
(постоянные величины, их нельзя изменять)

TYPE описание типов переменных; (тайп)

VAR определение глобальных переменных;
(описание всех переменных величин, которые в программе могут изменяться)

ОПРЕДЕЛЕНИЕ ПРОЦЕДУР;

ОПРЕДЕЛЕНИЕ ФУНКЦИЙ;

основной блок программы

Почти после каждой строчки ставится знак "; ". Этот знак говорит о том, что строка закончена. Знак "; " не ставится после служебного слова BEGIN и последнего END. (который означает конец программы), после которого ставиться точка.

3.Условный оператор, оператор выбора. Логические операции в Паскале, таблицы истинности, основные законы алгебры логики.
Условные операторы

IF [логическое выражение] Then [оператор 1]; Else [оператор 2];

Оператор IF работает следующим образом: вначале проверяется результат логического выражения. Если результат Истина(TRUE), то выполняется [оператор_1], следующий за служебным словом Then, а [оператор_2] пропускается. Если результат Ложь(FALSE), то [оператор_1] пропускается, а [оператор_2] исполняется.

FOR [параметр_цикла] := [н_з_п_ц] To [к_з_п_ц] Do [оператор];

FOR, To, Do – служебные слова. [параметр_цикла] – параметр цикла. [н_з_п_ц] – начальное значение параметра цикла. [к_з_п_ц] – конечное значение параметра цикла. [оператор] – произвольный оператор.

Параметр цикла должен быть переменой порядкового типа. Начальное и конечное значения параметра цикла должны быть того же типа, что и параметр цикла.

WHILE [условие] Do [оператор];

WHILE, Do – служебные слова. [условие] – выражение логического типа. [оператор] – обыкновенный оператор.

Оператор While работает следующим образом: вначале работы проверяется результат логического условия. Если результат истина, то выполняется оператор, после которого осуществляется возврат на проверку условия с новым значением параметров в логическом выражении условия. Если результат ложь, то осуществляется завершение цикла.



REPEAT [тело_цикла]; UNTIL [условие];

Оператор REPEAT работает следующим образом: сначала выполняются операторы тела цикла, после чего результат проверяется логического условия. Если результат ложь, то осуществляется возврат к выполнению операторов очередного тела цикла. Если результат истина, то оператор завершает работу.

Логическая операция И (AND)

Логическая операция И выполняется с двумя битами, назовем их a и b. Результат выполнения логической операции И будет равен 1, если a и b равны 1, а во всех остальных (других) случаях, результат будет равен 0. Смотрим таблицу истинности логической операции and.

a b a & b

Типы данных.

Порядковые:

Целые; Логические; Символьные; Перечисляемые; Интервальные;

Вещественные:

Структуированные:

Массивы; Строки; Множества; Записи; Файлы;

Указатели

6.Массивы. Определение, описание, размещение в памяти и использование.
Массив-это структурированный тип данных состоящий из фиксированных чисел элементов имеющий один и тот же тип.

Свойство:

все элементы массива имеют один и тот же тип;

массив имеет одно имя для всех элементов;

доступ к конкретному элементу массива осуществляется по индексу (индексам).

7.Процедуры и функции. Заголовок и тело процедур и функций, классификация параметров. Вызов процедур и функций, особенности их использования.

Подпрограмма это часть программы, оформленная в виде отдельной синтаксической конструкции и снабженная именем. "Вызов" подпрограммы, т.е. выполнение действий, заданных в подпрограмме в виде операторв, может быть произведен в некоторой точке программы посредством указания имени этой подпрограммы. Кроме задания последовательности действий, любая подпрограмма может содержать описание некоторой совокупности локальных объектов - констант, типов, переменных и т.д. Эти объекты предназначены для организации действий внутри подпрограммы и имеют смысл (т.е. доступны или видимы) только внутри данной подпрограммы

Механизм подпрограмм в языке Турбо Паскаль реализован в виде процедур и функций. Они имеют почти одинаковую структуру, один и тот же смысл, но различаются назначением и способом вызова.

Процедуры служат для задания последовательности действий, направленных на изменение внешней по отношению к программной обстановки. Вызов процедуры осуществляется указанием ее имени в том месте программы, где предполагается выполнение операторов, заданных в процедуре.

Функции служат, прежде всего, для определения алгоритма вычисления некоторого значения (простого типа). В соответствии с этим вызов функции является одним из допустимых операндов выражения, обозначая в нем то значение, которое вычисляет ("возвращает") функция.

PROCEDURE ИмяПроцедуры (СписокФормальныхПараметров);
LABEL
Перечисление меток внутри тела процедуры
CONST
Описание локальных констант
TYPE
Описание локальных типов
VAR
Описание локальных переменных
BEGIN
Тело процедуры
END .

Понятие алгоритма. Свойства, способы описания. Типы алгоритмов.

Алгоритмом называется точное и понятное предписаниe исполнителю совершить последовательность действий, направленных на решение поставленной задачи.

Основными свойствами алгоритма являются:

1. детерминированность (определенность). Предполагает получение однозначного результата вычислительного процecca при заданных исходных данных. Благодаря этому свойству процесс выполнения алгоритма носит механический характер;

2. результативность. Указывает на наличие таких исходных данных, для которых реализуемый по заданному алгоритму вычислительный процесс должен через конечное число шагов остановиться и выдать искомый результат;

3. массовость. Это свойство предполагает, что алгоритм должен быть пригоден для решения всех задач данного типа;

4. дискретность. Означает расчлененность определяемого алгоритмом вычислительного процесса на отдельные этапы, возможность выполнения которых исполнителем (компьютером) не вызывает сомнений.

При всем многообразии алгоритмов решения задач в них можно выделить три основных вида вычислительных процессов:

·линейный;

·ветвящийся;

· циклический.

Линейным называется такой вычислительный процесс, при котором все этапы решения задачи выполняются в естественном порядке следования записи этих этапов.

Ветвящимся называется такой вычислительный процесс, в котором выбор направления обработки информации зависит от исходных или промежуточных данных (от результатов проверки выполнения какого-либо логического условия).

Циклом называется многократно повторяемый участок вычислений. Вычислительный процесс, содержащий один или несколько циклов, называется циклическим . По количеству выполнения циклы делятся на циклы с определенным (заранее заданным) числом повторений и циклы с неопределенным числом повторений.



Загрузка...