sonyps4.ru

Сравнение типов флеш-памяти NAND. Как узнать, сколько времени проработает ваш твердотельный накопитель SSD

Современному человеку нравится быть мобильным и иметь при себе различные высокотехнологичные гаджеты (англ. gadget - устройство), облегчающие жизнь, да что там скрывать, делающие ее более насыщенной и интересной. И появились-то они всего за 10-15 лет! Миниатюрные, легкие, удобные, цифровые… Всего этого гаджеты достигли благодаря новым микропроцессорным технологиям, но все же больший вклад был сделан одной замечательной технологией хранения данных, о которой сегодня мы и будем говорить. Итак, флэш-память.

Бытует мнение, что название FLASH применительно к типу памяти переводится как «вспышка». На самом деле это не совсем так. Одна из версий его появления говорит о том, что впервые в 1989-90 году компания Toshiba употребила слово Flash в контексте «быстрый, мгновенный» при описании своих новых микросхем. Вообще, изобретателем считается Intel, представившая в 1988 году флэш-память с архитектурой NOR. Годом позже Toshiba разработала архитектуру NAND, которая и сегодня используется наряду с той же NOR в микросхемах флэш. Собственно, сейчас можно сказать, что это два различных вида памяти, имеющие в чем-то схожую технологию производства. В этой статье мы попытаемся понять их устройство, принцип работы, а также рассмотрим различные варианты практического использования.

NOR

С помощью нее осуществляется преобразование входных напряжений в выходные, соответствующие «0» и «1». Они необходимы, потому что для чтения/записи данных в ячейке памяти используются различные напряжения. Схема ячейки приведена на рисунке ниже.

Она характерна для большинства флэш-чипов и представляет из себя транзистор с двумя изолированными затворами: управляющим (control) и плавающим (floating). Важной особенностью последнего является способность удерживать электроны, то есть заряд. Также в ячейке имеются так называемые «сток» и «исток». При программировании между ними, вследствие воздействия положительного поля на управляющем затворе, создается канал - поток электронов. Некоторые из электронов, благодаря наличию большей энергии, преодолевают слой изолятора и попадают на плавающий затвор. На нем они могут храниться в течение нескольких лет. Определенный диапазон количества электронов (заряда) на плавающем затворе соответствует логической единице, а все, что больше его, - нулю. При чтении эти состояния распознаются путем измерения порогового напряжения транзистора. Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток. В технологиях различных производителей этот принцип работы может отличаться по способу подачи тока и чтению данных из ячейки. Хочу также обратить ваше внимание на то, что в структуре флэш-памяти для хранения 1 бита информации задействуется только один элемент (транзистор), в то время как в энергозависимых типах памяти для этого требуется несколько транзисторов и конденсатор. Это позволяет существенно уменьшить размеры выпускаемых микросхем, упростить технологический процесс, а, следовательно, и снизить себестоимость. Но и один бит далеко не предел: Intel уже выпускает память StrataFlash , каждая ячейка которой может хранить по 2 бита информации. Кроме того, существуют пробные образцы, с 4-х и даже 9-битными ячейками! В такой памяти используются технология многоуровневых ячеек. Они имеют обычную структуру, а отличие заключается в том, что заряд их делится на несколько уровней, каждому из которых в соответствие ставится определенная комбинация бит. Теоретически прочитать/записать можно и более 4-х бит, однако, на практике возникают проблемы с устранением шумов и с постепенной утечкой электронов при продолжительном хранении. Вообще, у существующих сегодня микросхем памяти для ячеек характерно время хранения информации, измеряемое годами и число циклов чтения/записи - от 100 тысяч до нескольких миллионов. Из недостатков, в частности, у флэш-памяти с архитектурой NOR стоит отметить плохую масштабируемость: нельзя уменьшать площадь чипов путем уменьшения размеров транзисторов. Эта ситуация связана со способом организации матрицы ячеек: в NOR архитектуре к каждому транзистору надо подвести индивидуальный контакт. Гораздо лучше в этом плане обстоят дела у флэш-памяти с архитектурой NAND.

NAND

Устройство и принцип работы ячеек у нее такой же, как и у NOR. Хотя, кроме логики, все-таки есть еще одно важное отличие - архитектура размещения ячеек и их контактов. В отличие от вышеописанного случая, здесь имеется контактная матрица, в пересечениях строк и столбцов которой располагаются транзисторы. Это сравнимо с пассивной матрицей в дисплеях:) (а NOR - с активной TFT). В случае с памятью такая организация несколько лучше - площадь микросхемы можно значительно уменьшить за счет размеров ячеек. Недостатки (куда уж без них) заключаются в более низкой по сравнению с NOR скорости работы в операциях побайтового произвольного доступа.

Существуют еще и такие архитектуры как: DiNOR (Mitsubishi), superAND (Hitachi) и пр. Принципиально нового ничего они не представляют, а лишь комбинируют лучшие свойства NAND и NOR.

И все же, как бы там ни было, NOR и NAND на сегодняшний день выпускаются на равных и практически не конкурируют между собой, потому как в силу своих качеств находят применение в разных областях хранения данных. Об этом и пойдет далее речь…

Где нужна память…

Сфера применения какого-либо типа флэш-памяти зависит в первую очередь от его скоростных показателей и надежности хранения информации. Адресное пространство NOR-памяти позволяет работать с отдельными байтами или словами (2 байта). В NAND ячейки группируются в небольшие блоки (по аналогии с кластером жесткого диска). Из этого следует, что при последовательном чтении и записи преимущество по скорости будет у NAND. Однако с другой стороны NAND значительно проигрывает в операциях с произвольным доступом и не позволяет напрямую работать с байтами информации. К примеру, для изменения одного байта требуется:

  1. считать в буфер блок информации, в котором он находится
  2. в буфере изменить нужный байт
  3. записать блок с измененным байтом обратно

Если еще ко времени выполнения перечисленных операций прибавить задержки на выборку блока и на доступ, то получим отнюдь неконкурентоспособные с NOR показатели (отмечу, что именно для случая побайтовой записи). Другое дело последовательная запись/чтение - здесь NAND наоборот показывает значительно более высокие скоростные характеристики. Поэтому, а также из-за возможностей увеличения объема памяти без увеличения размеров микросхемы, NAND-флэш нашел применение в качестве хранителя больших объемов информации и для ее переноса. Наиболее распространенные сейчас устройства, основанные на этом типе памяти, это флэшдрайвы и карты памяти. Что касается NOR-флэша, то чипы с такой организацией используются в качестве хранителей программного кода (BIOS, RAM карманных компьютеров, мобилок и т. п.), иногда реализовываются в виде интегрированных решений (ОЗУ, ПЗУ и процессор на одной мини-плате, а то и в одном чипе). Удачный пример такого использования - проект Gumstix: одноплатный компьютер размером с пластинку жвачки. Именно NOR-чипы обеспечивают требуемый для таких случаев уровень надежности хранения информации и более гибкие возможности по работе с ней. Объем NOR-флэш обычно измеряется единицами мегабайт и редко переваливает за десятки.

И будет флэш…

Безусловно, флэш - перспективная технология. Однако, несмотря на высокие темпы роста объемов производства, устройства хранения данных, основанные на ней, еще достаточно дороги, чтобы конкурировать с жесткими дисками для настольных систем или ноутбуков. В основном, сейчас сфера господства флэш-памяти ограничивается мобильными устройствами. Как вы понимаете, этот сегмент информационных технологий не так уж и мал. Кроме того, со слов производителей, на нем экспансия флэш не остановится. Итак, какие же основные тенденции развития имеют место в этой области.

Во-первых, как уже упоминалось выше, большое внимание уделяется интегрированным решениям. Причем проекты вроде Gumstix лишь промежуточные этапы на пути к реализации всех функций в одной микросхеме.

Пока что, так называемые on-chip (single-chip) системы представляют собой комбинации в одном чипе флэш-памяти с контроллером, процессором, SDRAM или же со специальным ПО. Так, например, Intel StrataFlash в сочетании с ПО Persistent Storage Manager (PSM) дает возможность использовать объем памяти одновременно как для хранения данных, так и для выполнения программного кода. PSM по сути дела является файловой системой, поддерживающейся ОС Windows CE 2.1 и выше. Все это направлено на снижение количества компонентов и уменьшение габаритов мобильных устройств с увеличением их функциональности и производительности. Не менее интересна и актуальна разработка компании Renesas - флэш-память типа superAND с встроенными функциями управления. До этого момента они реализовывались отдельно в контроллере, а теперь интегрированы прямо в чип. Это функции контроля бэд-секторов, коррекции ошибок (ECC - error check and correct), равномерности износа ячеек (wear leveling). Поскольку в тех или иных вариациях они присутствуют в большинстве других брендовых прошивок внешних контроллеров, давайте вкратце их рассмотрим. Начнем с бэд-секторов. Да, во флэш-памяти они тоже встречаются: уже с конвейера сходят чипы, имеющие в среднем до 2% нерабочих ячеек - это обычная технологическая норма. Но со временем их количество может увеличиваться (окружающую среду в этом винить особо не стоит - электромагнитное, физическое (тряска и т. п.) влияние флэш-чипу не страшно). Поэтому, как и в жестких дисках, во флэш-памяти предусмотрен резервный объем. Если появляется плохой сектор, функция контроля подменяет его адрес в таблице размещения файлов адресом сектора из резервной области.


Собственно, выявлением бэдов занимается алгоритм ECC - он сравнивает записываемую информацию с реально записанной. Также в связи с ограниченным ресурсом ячеек (порядка нескольких миллионов циклов чтения/записи для каждой) важно наличие функции учета равномерности износа. Приведу такой редкий, но встречающийся случай: брелок с 32 Мбайт, из которых 30 Мбайт заняты, а на свободное место постоянно что-то записывается и удаляется. Получается, что одни ячейки простаивают, а другие интенсивно исчерпывают свой ресурс. Чтобы такого не было, в фирменных устройствах свободное пространство условно разбивается на участки, для каждого из которых осуществляется контроль и учет количества операций записи.

Еще более сложные конфигурации класса «все-в-одном» сейчас широко представлены такими компаниями как, например, Intel, Samsung, Hitachi и др. Их изделия представляют собой многофункциональные устройства, реализованные в одной лишь микросхеме (стандартно в ней имеется процессор, флэш-память и SDRAM). Ориентированы они на применение в мобильных устройствах, где важна высокая производительность при минимальных размерах и низком энергопотреблении. К таким относятся: PDA, смартфоны, телефоны для сетей 3G. Приведу пример подобных разработок - чип от Samsung, объединяющий в себе ARM-процессор (203 МГц), 256 Мбайт NAND памяти и 256 SDRAM. Он совместим с распространенными ОС: Windows CE, Palm OS, Symbian, Linux и имеет поддержку USB. Таким образом на его основе возможно создание многофункциональных мобильных устройств с низким энергопотреблением, способных работать с видео, звуком, голосом и прочими ресурсоемкими приложениями.

Другим направлением совершенствования флэш является уменьшение энергопотребления и размеров с одновременным увеличением объема и быстродействия памяти. В большей степени это касается микросхем с NOR архитектурой, поскольку с развитием мобильных компьютеров, поддерживающих работу в беспроводных сетях, именно NOR-флэш, благодаря небольшим размерам и малому энергопотреблению, станет универсальным решением для хранения и выполнения программного кода. В скором времени в серийное производство будут запущены 512 Мбит чипы NOR той же Renesas. Напряжение питания их составит 3,3 В (напомню, хранить информацию они могут и без подачи тока), а скорость в операциях записи - 4 Мбайт/сек. В то же время Intel уже представляет свою разработку StrataFlash Wireless Memory System (LV18/LV30) - универсальную систему флэш-памяти для беспроводных технологий. Объем ее памяти может достигать 1 Гбит, а рабочее напряжение равно 1.8 В. Технология изготовления чипов - 0,13 нм, в планах переход на 0,09 нм техпроцесс. Среди инноваций данной компании также стоит отметить организацию пакетного режима работы с NOR-памятью. Он позволяет считывать информацию не по одному байту, а блоками - по 16 байт: с использованием 66 МГц шины данных скорость обмена информацией с процессором достигает 92 Мбит/с!

Что ж, как видите, технология развивается стремительно. Вполне возможно, что к моменту выхода статьи появится еще что-нибудь новенькое. Так что, если что - не взыщите:) Надеюсь, материал был вам интересен.

В 1989 году состоялся анонс Nand Flash памяти, данная разработка была представлена компанией Toshiba на International Solid-State Circuits Conference. До этого существовали только разработки NOR памяти, основными недостатками которой были: скорость работы и большая площадь чипа. Основным отличием NAND Flash от Nor Flash являются особенности адресации, если в NOR Flash можно адресовать произвольную ячейку, то в NAND Flash применена страничная адресация (обычно размер страницы 528, 2112, 4224, 4304, 4320, 8576 байт).

На сегодня существует масса устройств, где используются микросхемы NAND Flash в том числе и в различных носителях информации, таких как SSD накопители, USB Flash, различные Flash card (MMC, RS-MMC, MMCmicro, SD, miniSD, MicroSD, SDHC, CF, xD, SmartMedia, Memory Stick и т.д.)

Принципиально носители информации на NAND Flash из себя представляют микроконтроллер, который обеспечивает работу с микросхемами памяти, а также работу с различными устройствами по заданному стандартами интерфейсу. В большинстве устройств это выглядит как небольшая плата, на которой размещены одна или несколько микросхем NAND Flash памяти в конструктивном исполнении TSOP-48, short TSOP-48 или TLGA-52 и микроконтроллер. Миниатюрные устройства, как правило выполнены в виде одного чипа в который интегрированы как микросхема Nand Flash, так и микроконтроллер.

Основные недостатки NAND Flash памяти - это недостаточно высокая скорость и не очень большое количество циклов записи, которые способна выдержать микросхема. Для обхода этих проблем, производители контроллеров идут на некоторые ухищрения, такие как организация записи в NAND Flash в несколько потоков, для поднятия быстродействия и организация логических банков разбитых на достаточно крупные блоки и организация сложной системы трансляции.

Для равномерного износа NAND Flash практически во всех контроллерах организованно разделение адресного пространства на логические банки, которые в свою очередь разделяются на блоки (состоящие из нескольких страниц памяти), обычно на 256-2048 блоков. Контроллером ведется учет количества записей в каждый из блоков. Для того чтобы данные пользователя можно было свободно перемещать внутри банка, для этого имеется логическая нумерация блоков т.е. на практике при чтении микросхемы в дамп видим картину что данные пользователя в виде достаточно крупных блоков (16кб – 4Мб) хаотично перемешаны. Порядок работы с пользовательскими данными отражен в трансляторе в виде таблицы в которой указан порядок построения блоков для того чтобы получить упорядоченное логическое пространство.

Для увеличения операций чтения/записи производители контроллеров реализуют функции распараллеливания данных, то есть прямая аналогия с RAID массивом уровня 0 (stripe), только немного более сложная реализация. На практике это выглядит либо в виде внутриблочного распараллеливания (интерлива), на более мелкие подблоки (как правило от 1 байта, до 16Кб), также симметричное распараллеливание (страйп) между физическим банками микросхемы NAND Flash и между несколькими микросхемами.

Стоит понимать, что при таком принципе работы, транслятор накопителя – постоянно изменяющаяся таблица, практически при каждой записи в NAND Flash. Исходя из принципа работы с NAND Flash – чтение блока в буфер, внесение изменений и запись блока на место, очевидно, что наиболее опасны для данных являются незавершенные операции записи; например, когда происходит запись измененного транслятора. В результате необдуманного обращения с накопителями: внезапного извлечения их из USB разъема или из разъема кардридера во время записи, чревато разрушением служебных данных, в частности таблицы трансляции.

При разрушение служебных данных, накопитель не может функционировать или в некоторых случаях функционирует неверно. Извлечение данных программными средствами, как правило, не представляется возможным по многим причинам. Одно из решений – это выпаивание микросхем NAND Flash с последующим чтением на соответствующем считывателе (программаторе). Учитывая, что оригинальный транслятор отсутствует, либо поврежден, предстоит работа по разбору дампа извлеченного из микросхемы NAND Flash. Многие, наверное, обратили внимание на кажущийся странным размер страниц памяти в NAND Flash. Это объясняется тем, что в каждой странице, кроме данных пользователя имеются служебные данные обычно это представлено в виде 512/16; 2048/64; 4096/128; 4096/208 (существуют и значительно более сложные варианты организации данные/служебка). В служебных данных присутствую различные маркеры (маркер, номера блока в логическом банке; маркер ротации блока; ECC; и т.п.) Восстановление пользовательских данных сводится к устранению распараллеливания данных внутри блоков, между банков и между микросхемами памяти для получения цельных блоков. Если есть необходимость, то устраняются внутриблочные ротации, ренумерации и т.п. Дальнейшая задача, состоит в поблочной сборке. Для того чтобы ее осуществить необходимо четко уяснить количество логических банков, количество блоков в каждом логическом банке, количество используемых блоков в каждом банке (задействованы не все) местонахождение маркера в служебных данных, алгоритм нумерации. И только потом производить сбор блоков в конечный файл-образ из которого можно будет произвести чтение пользовательских данных. В процессе сбора подстерегают подводные камни в виде нескольких блоков-претендентов на одну позицию в конечный файл-образ. После решение данного круга задач, получаем файл-образ с пользовательской информацией.

В случаях, когда данные не играют никакой роли, но есть желание восстановить работоспособность самого накопителя, то лучшие вариант коррекции проблем со служебными данными – это выполнение процедуры форматирования фирменной утилитой с сайта производителя накопителя. Многие утилиты фактически переписывают всю служебную информацию, создают чистый транслятор, и выполняют процедуру форматирования с созданием новой файловой системы. Если же производитель не удосужился выложить Recovery-утилиту, тогда выход в виде поиска утилит форматирования накопителей на NAND Flash «по контроллеру», единственно, что покажется сложным пользователю – это обилие производителей контроллеров и сложности с идентификацией последнего.

Павел Янчарский

Перепечатка материалов разрешена только с указанием активной ссылки на оригинал статьи

Выбор SSD сейчас стоит на ключевом месте при сборке игрового ПК. Если раньше о твердотельном накопителе хотели, но боялись говорить из-за его стоимости, то сейчас некоторые смело переносят всю систему на этот тип диска. Поэтому, если вы решили улучшить свою систему, то вам придется узнать, что лучше: TLC или MLC? Либо есть еще какой-то вариант?

Преимущества

Давайте попробуем сначала разобраться, почему же все массово стали переходить с ЖД на твердотельный накопитель или использовать оба диска вместе.

Итак, относительно ЖД, SSD выделяются полной бесшумностью и высокой механической стойкостью. Это все вызвано тем, что они лишены движущихся элементов. Кроме того, твердотельный накопитель выделяется стабильным временем считывания файлов. Причем абсолютно не важно, где они спрятаны в системе. Диск быстро подгружает их без торможений.

Выше оказалась скорость чтения и записи. В некоторых случаях она приближается к пропускной способности небезызвестных Иногда для SSD применяют более быстрые слоты типа PCI Express, NGFF и т.п.

Следующее преимущество - это количество действий при вводе и выводе в секунду. Это реализовано благодаря одновременному запуску нескольких процессов и низкой латентности. Теперь не нужно ожидать, пока диск сделает оборот, чтобы дать доступ к данным.

Нельзя не упомянуть о низком энергопотреблении и небольшой чувствительности к внешним электромагнитным полям. Ну и, наконец, размеры SSD. Благодаря тому, что перед нами 2,5-дюймовый диск либо вовсе формата M.2, можно его поместить даже в нетбук.

Конструкция

Прежде чем разобраться, какой тип SSD лучше: TLC или MLC, нужно хотя бы приблизительно понимать, что это такое. Для этого рассмотрим конструкцию твердотельного накопителя.

Большинство стандартных моделей покрыты защитным корпусом. Если заглянуть внутрь, можно заметить контроллер. Это условно небольшой компьютер, у которого есть свои задачи. Он управляет обменом информации между устройством и ПК.

Еще одним элементом SSD стала буферная память. DDR реализована небольшим объемом, который не зависит от энергозатрат. нужна для хранения кэша. И третьим элементом является флэш-память. Она выполнена микросхемами памяти, которые уже зависят от энергопотребления. Как раз этот элемент и отвечает за то, чтобы записывать ваши личные данные.

Выбор

Прежде чем мы подробно разберем, что лучше: память TLC или MLC, немного общей информации. Помимо того что изначально выбор SSD - вещь непростая, оказывается, нам приходится разбираться в бесконечных технических характеристиках. Не всем подобная информация дается легко.

Но, к сожалению, в данном случае разобраться в типах памяти придется. Помимо основных, которые мы будем описывать дальше, есть вариации V-NAND или 3D NAND. О них также лучше вкратце знать.

Типы

Если вы когда-нибудь видели жесткий диск и твердотельный накопитель, тогда вы понимаете, что они отличаются конструктивно, а соответственно, имеют разный механизм работы. Последний вариант работает с флэш-памятью.

Она представлена специальными ячейками, которые размещают на плате в особом порядке. Все они реализованы на основе полупроводников. Отсюда и несколько типов SSD: TLC и MLC. Что лучше, каждый решает для себя самостоятельно либо же покупает устройства наобум.

Хранение памяти

Так получилось, что флэш-память на твердотельном накопителе можно реализовать за счет принципов хранения памяти. Отсюда есть две группы. В одной есть типы, основанные на принципе чтения и записи (NAND).

Есть вариант, при котором память хранится с разной технологией: SLC и MLC. Первый вариант представлен таким образом, что для одной ячейки есть лишь один бит информации. Во втором случае - 2 бита или больше.

Считается, что память TLC относится к MLC. Разница лишь в том, что для первого варианта можно хранить 2 бита, а для второго - 3 бита. Теперь осталось понять, что же это значит, и какой тип «ССД» лучше: TLC и MLC.

Преимущества

Поскольку TLC - это подвид MLC, то справедливо сказать, что второй тип преимущественный. В чем заключается его превосходство? Во-первых, у него более высокая скорость работы. Как показывает практика, он может прослужить несколько дольше. А также все его ресурсы не требуют больших затрат энергопотребления.

Но помимо этого, есть и некоторые недостатки. Главным из них, конечно же, стала стоимость устройства с MLC.

Разная ситуация

Есть и некоторые проблемы, с которыми вы можете столкнуться. Дело в том, что вышеописанные случаи - это общая ситуация. В реальности же разработчики могут хорошенько запутать покупателей. Поэтому, размышляя о том, что лучше: TLC или MLC, вы сможете увидеть:

  • Одинаковая скорость у обоих типов при подключении к SATA III. Некоторые модели могут выделиться особой скоростью на основе TLC, из-за того, что используют интерфейс PCI-E NVMe. Хотя, как показывает практика, чем дороже накопитель, тем он быстрее. И с большой вероятностью он будет основан на MLC.
  • Есть модели, при которых устройство с TLC имеет больший гарантийный срок, чем его старший «собрат».
  • Вопрос с энергопотреблением может отличаться от стандартного положения вещей. Разбираясь с тем, что лучше: TLC или MLC, присмотритесь к интерфейсам, с которыми они работают. К примеру, TLC на SATA III - намного экономней, нежели MLC с PCI-E.

Кстати, можете встретить разницу в показателях даже тогда, когда установите накопитель сначала в один порт, а потом в другой. В этом случае электропотребление может сильно отличаться.

Другие отличия

Вышеописанные ситуации не единственные в своем роде. Отличия в значениях параметров скорости, сроках эксплуатации и потребления энергии могут зависеть и от поколения устройства. Нетрудно догадаться, что если модель новая, то её старый образец будет несколько хуже.

Технологии производства твердотельных накопителей развиваются, а мы получаем увеличенные объемы и количества свободного пространства, повышенные показатели скорости и уменьшенные значения температур.

Как итог, сказать, какой SSD лучше: TLC или MLC - невозможно. Однозначно вы можете приобрести устаревшую модель MLC, которая заметно будет отличаться характеристиками от TLC в худшую сторону. При этом стоимость обоих устройств будет одинаковой.

Поэтому при выборе обращайте внимание на все параметры, лучше сравнивайте их сразу, чтобы потом не жалеть о покупке. Ну, и желательно сразу устанавливать себе бюджет. Так вам будет проще сгруппировать те модели, которые вам подходят и по стоимости, и по параметрам.

Идентификация

Если вы решили узнать, что лучше: SSD TLC vs MLC, уже когда приобрели твердотельный накопитель, то захотите идентифицировать тип памяти в своем устройстве. Так уже сложилось, что на самих дисках этой информации нет. Кроме того, даже установив какую-нибудь утилиту для теста, вы все равно не получите ответа. Что же в этом случае делать?

Самый простой способ - это отправиться в интернет. Тут вы сможете ввести название модели и по обзорам её проанализировать. Есть даже специальные сайты, в которых есть вся база твердотельных дисков. Там есть абсолютно вся спецификация по многим популярным моделям.

Проблемы

Но не все так гладко. Возможно, кто-то из пользователей сталкивался с SSD от компании Silicon Power Slim. Это довольно популярная модель, которая на рынке уже более 3 лет. В момент своего появления она выделилась низкой стоимостью.

Хотя эта история запутанная и долгая, вкратце стоит о ней знать. Дешевизна этого диска была продиктована выбором новой платформы от тайваньской компании. Она была революционной. Это было сразу понятно по характеристикам устройств. Но было несколько проблем.

Во-первых, компания не позаботилась о том, чтобы перевести все свои модели на эту новую платформу, поэтому часть дисков продавались на устаревшей базе. Во-вторых, из-за желания стать популярным разработчику пришлось вносить постоянные изменения.

В итоге некоторые модели поменяли тип памяти и даже объем. В упаковке с SSD на 120 Гб мог находиться диск на 60 Гб. А указание микросхемы MLC совсем не означало то, что пользователь получит диск именно на основе этого типа. В результате: огромное количество недовольных владельцев, которые получили медленную память.

Производители

Как ни странно, но разработчиков, которые сами бы производили и продавали диски, мало. Это вызвано тем, что далеко не все фирмы могут иметь нужные ресурсы. Отсюда большое количество компаний, которые закупают отдельные детали, а у себя в офисе просто собирают все в кучу и лепят наклейку.

Самостоятельное производство организовано у единиц. Они заботятся о продукте, потому что им не все равно, какие отзывы получает их детище.

Над памятью работают следующие крупные производители:

  • Intel.
  • Micron.
  • Samsung.
  • Toshiba.
  • SanDisk.
  • Hynix.

Первые две компании выбрали себе одинаковые технологии производства. Это вызвано тем, что они используют совместное предприятие.

Другие варианты

Если вам уже стало понятно, что лучше: TLC или MLC, остается разобраться с еще одним типом памяти. Иногда в обзорах твердотельных накопителей можно встретить непонятные обозначения: V-NAND, 3D-NAND и т.п. Это еще один эксперимент, который предлагает производитель. Изготовлен такой диск по иным технологиям.

В этом случае ячейки памяти размещают не в один слой, а в несколько. Причем память используется именно TLC и MLC. Этот факт не во всех случаях указывается, но вы должны понимать, что сами микросхемы относятся к уже знакомому типу.

Если говорить о производительности, то можно сказать, что 3D-NAND немного лучше. Во-первых, это связано с низкой стоимостью и большими возможностями. Во-вторых, многослойное размещение более надежное и эффективное. Это можно доказать тестированием двух моделей: «плоской» и «объемной» MLC.

Выводы

Ответить на вопрос о том, что лучше для системы: TLC или MLC - невозможно. Очень часто, когда пользователи задают подобный вопрос, попадаешь в неловкое положение. Ну ведь сложно понять, какие цели и задачи преследует покупатель. Возможно ему нужна суперпроизводительная система. Тогда ему однозначно нужен диск с MLC.

А вдруг ему нужен обычный рабочий ПК. В этом случае может ему и вовсе не понадобится твердотельный накопитель. Все это индивидуальные проблемы, которые каждый должен решать самостоятельно.

Производительность и срок службы SSD в первую очередь зависят от флэш-памяти NAND и контроллера с прошивкой. Они являются основными составляющими цены накопителя, и при покупке логично обращать внимание именно на эти компоненты. Сегодня мы поговорим о NAND.

Тонкости технологического процесса производства флэш-памяти вы при желании найдете на сайтах, специализирующихся на обзорах SSD. Моя же статья ориентирована на более широкий круг читателей и преследует две цели:

  1. Приоткрыть завесу над невнятными спецификациями, опубликованными на сайтах производителей SSD и магазинов.
  2. Снять вопросы, которые могут у вас возникнуть при изучении технических характеристик памяти разных накопителей и чтения обзоров, написанных для «железных» гиков.

Для начала я проиллюстрирую проблему картинками.

Что указывают в характеристиках SSD

Технические характеристики NAND, публикуемые на официальных сайтах производителей и в сетевых магазинах, далеко не всегда содержат подробную информацию. Более того, терминология сильно варьируется, и я подобрал для вас данные о пяти различных накопителях.

Вам что-нибудь говорит эта картинка?

Ок, допустим, Яндекс.Маркет — не самый надежный источник информации. Обратимся к сайтам производителей — так легче стало?

Может быть, так будет понятнее?

А если так?

Или все-таки лучше так?

Между тем, во всех этих накопителях установлена одинаковая память! В это трудно поверить, особенно глядя на две последних картинки, не правда ли? Дочитав запись до конца, вы не только в этом убедитесь, но и будете читать подобные характеристики как открытую книгу.

Производители памяти NAND

Производителей флэш-памяти намного меньше, чем компаний, продающих SSD под своими брендами. В большинстве накопителей сейчас установлена память от:

  • Intel/Micron
  • Hynix
  • Samsung
  • Toshiba/SanDisk

Intel и Micron не случайно делят одно место в списке. Они производят NAND по одинаковым технологиям в рамках совместного предприятия IMFT .

На ведущем заводе в американском штате Юта одна и та же память выпускается под марками этих двух компаний почти в равных пропорциях. С конвейера завода в Сингапуре, который сейчас контролирует Micron, память может сходить также и под маркой ее дочерней компании SpecTek.

Все производители SSD покупают NAND у вышеперечисленных компаний, поэтому в разных накопителях может стоять фактически одинаковая память, даже если ее марка отличается.

Казалось бы, при таком раскладе с памятью все должно быть просто. Однако существует несколько типов NAND, которые в свою очередь подразделяются по разным параметрам, внося путаницу.

Типы памяти NAND: SLC, MLC и TLC

Это три разных типа NAND, главным технологическим отличием между которыми является количество битов, хранящихся в ячейке памяти.

SLC является самой старой из трех технологий, и вы вряд ли найдете современный SSD с такой NAND. На борту большинства накопителей сейчас MLC, а TLC - это новое слово на рынке памяти для твердотельных накопителей.

Вообще, TLC давно используется в USB-флэшках, где выносливость памяти не имеет практического значения. Новые технологические процессы позволяют снизить стоимость гигабайта TLC NAND для SSD, обеспечивая приемлемое быстродействие и срок службы, в чем логично заинтересованы все производители.

Занятно, что пока широкая публика обеспокоена ограниченным количеством циклов перезаписи SSD, по мере развития технологий NAND этот параметр только снижается!

Как определить конкретный тип памяти в SSD

Вне зависимости от того, приобрели вы твердотельный накопитель или только планируете покупку, после прочтения этой записи у вас может возникнуть вопрос, вынесенный в подзаголовок.

Ни одна программа тип памяти не показывает. Эту информацию можно найти в обзорах накопителей, но есть и более короткий путь, особенно когда нужно сравнить между собой несколько кандидатов на покупку.

На специализированных сайтах можно найти базы данных по SSD, и вот вам пример .

Я без проблем нашел там характеристики памяти своих накопителей, за исключением SanDisk P4 (mSATA), установленного в планшете.

В каких SSD установлена самая лучшая память

Давайте сначала пройдемся по основным пунктам статьи:

  • производителей NAND можно пересчитать по пальцам одной руки
  • в современных твердотельных накопителях используется два типа NAND: MLC и TLC, только набирающая обороты
  • MLC NAND различается интерфейсами: ONFi (Intel, Micron) и Toggle Mode (Samsung, Toshiba)
  • ONFi MLC NAND делится на асинхронную (дешевле и медленнее) и синхронную (дороже и быстрее)
  • производители SSD используют память разных интерфейсов и типов, создавая разнообразный модельный ряд на любой кошелек
  • официальные спецификации редко содержат конкретную информацию, но базы данных SSD позволяют точно определить тип NAND

Конечно, в таком зоопарке не может быть однозначного ответа на вопрос, вынесенный в подзаголовок. Вне зависимости от бренда накопителя, NAND соответствует заявленным спецификациям, иначе ОЕМ-производителям нет смысла ее покупать (они дают на SSD свою гарантию).

Однако… представьте, что лето вас порадовало небывалым урожаем земляники на даче!

Она вся сочная и сладкая, но вам просто не съесть столько, поэтому вы решили продать часть собранных ягод.

Самую лучшую землянику вы оставите себе или выставите на продажу? :)

Можно предположить, что производители NAND устанавливают самую лучшую память в свои накопители. Учитывая ограниченное количество компаний, выпускающих NAND, список производителей SSD получается еще короче:

  • Crucial (подразделение Micron)
  • Intel
  • Samsung

Опять же, это лишь предположение, не подкрепленное достоверными фактами. Но разве вы поступили бы иначе на месте этих компаний?

Флэш-память представляет собой тип долговечной памяти для компьютеров, у которой содержимое можно перепрограммировать или удалить электрическим методом. В сравнении с Electrically Erasable Programmable Read Only Memory действия над ней можно выполнять в блоках, которые находятся в разных местах. Флэш-память стоит намного меньше, чем EEPROM, поэтому она и стала доминирующей технологией. В особенности в ситуациях, когда необходимо устойчивое и длительное сохранение данных. Ее применение допускается в самых разнообразных случаях: в цифровых аудиоплеерах, фото- и видеокамерах, мобильных телефонах и смартфонах, где существуют специальные андроид-приложения на карту памяти. Кроме того, используется она и в USB-флешках, традиционно применяемых для сохранения информации и ее передачи между компьютерами. Она получила определенную известность в мире геймеров, где ее часто задействуют в промах для хранения данных по прогрессу игры.

Общее описание

Флэш-память представляет собой такой тип, который способен сохранять информацию на своей плате длительное время, не используя питания. В дополнение можно отметить высочайшую скорость доступа к данным, а также лучшее сопротивление к кинетическому шоку в сравнении с винчестерами. Именно благодаря таким характеристикам она стала настольно популярной для приборов, питающихся от батареек и аккумуляторов. Еще одно неоспоримое преимущество состоит в том, что когда флэш-память сжата в сплошную карту, ее практически невозможно разрушить какими-то стандартными физическими способами, поэтому она выдерживает кипящую воду и высокое давление.

Низкоуровневый доступ к данным

Способ доступа к данным, находящимся во флэш-памяти, сильно отличается от того, что применяется для обычных видов. Низкоуровневый доступ осуществляется посредством драйвера. Обычная RAM сразу же отвечает на призывы чтения информации и ее записи, возвращая результаты таких операций, а устройство флеш-памяти таково, что потребуется время на размышления.

Устройство и принцип работы

На данный момент распространена флэш-память, которая создана на однотранзисторных элементах, имеющих «плавающий» затвор. Благодаря этому удается обеспечить большую плотность хранения данных в сравнении с динамической ОЗУ, для которой требуется пара транзисторов и конденсаторный элемент. На данный момент рынок изобилует разнообразными технологиями построения базовых элементов для такого типа носителей, которые разработаны лидирующими производителями. Отличает их количество слоев, методы записи и стирания информации, а также организация структуры, которая обычно указывается в названии.

На текущий момент существует пара типов микросхем, которые распространены больше всего: NOR и NAND. В обоих подключение запоминающих транзисторов производится к разрядным шинам - параллельно и последовательно соответственно. У первого типа размеры ячеек довольно велики, и имеется возможность для быстрого произвольного доступа, что позволяет выполнять программы прямо из памяти. Второй характеризуется меньшими размерами ячеек, а также быстрым последовательным доступом, что намного удобнее при необходимости построения устройств блочного типа, где будет храниться информация большого объема.

В большинстве портативных устройств твердотельный накопитель использует тип памяти NOR. Однако сейчас все популярнее становятся приспособления с интерфейсом USB. В них применяется память типа NAND. Постепенно она вытесняет первую.

Главная проблема — недолговечность

Первые образцы флешек серийного производства не радовали пользователей большими скоростями. Однако теперь скорость записи и считывания информации находится на таком уровне, что можно просматривать полноформатный фильм либо запускать на компьютере операционную систему. Ряд производителей уже продемонстрировал машины, где винчестер заменен флеш-памятью. Но у этой технологии имеется весьма существенный недостаток, который становится препятствием для замены данным носителем существующих магнитных дисков. Из-за особенностей устройства флеш-памяти она позволяет производить стирание и запись информации ограниченное число циклов, которое является достижимым даже для малых и портативных устройств, не говоря о том, как часто это делается на компьютерах. Если использовать этот тип носителя как твердотельный накопитель на ПК, то очень быстро настанет критическая ситуация.

Связано это с тем, что такой накопитель построен на свойстве полевых транзисторов сохранять в «плавающем» затворе отсутствие или наличие которого в транзисторе рассматривается в качестве логической единицы или ноля в двоичной Запись и стирание данных в NAND-памяти производятся посредством туннелированных электронов методом Фаулера-Нордхейма при участии диэлектрика. Для этого не требуется что позволяет делать ячейки минимальных размеров. Но именно данный процесс приводит к ячеек, так как электрический ток в таком случае заставляет электроны проникать в затвор, преодолевая диэлектрический барьер. Однако гарантированный срок хранения подобной памяти составляет десять лет. Износ микросхемы происходит не из-за чтения информации, а из-за операций по ее стиранию и записи, поскольку чтение не требует изменения структуры ячеек, а только пропускает электрический ток.

Естественно, производители памяти ведут активные работы в направлении увеличения срока службы твердотельных накопителей данного типа: они устремлены к обеспечению равномерности процессов записи/стирания по ячейкам массива, чтобы одни не изнашивались больше других. Для равномерного распределения нагрузки преимущественно используются программные пути. К примеру, для устранения подобного явления применяется технология «выравнивания износа». При этом данные, часто подвергаемые изменениям, перемещаются в адресное пространство флеш-памяти, потому запись осуществляется по разным физическим адресам. Каждый контроллер оснащается собственным алгоритмом выравнивания, поэтому весьма затруднительно сравнивать эффективность тех или иных моделей, так как не разглашаются подробности реализации. Поскольку с каждым годом объемы флешек становятся все больше, необходимо применять все более эффективные алгоритмы работы, позволяющие гарантировать стабильность функционирования устройств.

Устранение проблем

Одним из весьма эффективных путей борьбы с указанным явлением стало резервирование определенного объема памяти, за счет которого обеспечивается равномерность нагрузки и коррекция ошибок посредством особых алгоритмов логической переадресации для подмены физических блоков, возникающих при интенсивной работе с флешкой. А для предотвращения утраты информации ячейки, вышедшие из строя, блокируются или заменяются на резервные. Такое программное распределение блоков дает возможность обеспечения равномерности нагрузки, увеличив количество циклов в 3-5 раз, однако и этого мало.

И другие виды подобных накопителей характеризуются тем, что в их служебную область заносится таблица с файловой системой. Она предотвращает сбои чтения информации на логическом уровне, например, при некорректном отключении либо при внезапном прекращении подачи электрической энергии. А так как при использовании сменных устройств системой не предусмотрено кэширование, то частая перезапись оказывает самое губительное воздействие на таблицу размещения файлов и оглавление каталогов. И даже специальные программы для карт памяти не способны помочь в данной ситуации. К примеру, при однократном обращении пользователь переписал тысячу файлов. И, казалось бы, только по одному разу применил для записи блоки, где они размещены. Но служебные области переписывались при каждом из обновлений любого файла, то есть таблицы размещения прошли эту процедуру тысячу раз. По указанной причине в первую очередь выйдут из строя блоки, занимаемые именно этими данными. Технология «выравнивания износа» работает и с такими блоками, но эффективность ее весьма ограничена. И тут не важно, какой вы используете компьютер, флешка выйдет из строя ровно тогда, когда это предусмотрено создателем.

Стоит отметить, что увеличение емкости микросхем подобных устройств привело лишь к тому, что общее количество циклов записи сократилось, так как ячейки становятся все меньше, поэтому требуется все меньше и напряжения для рассеивания оксидных перегородок, которые изолируют «плавающий затвор». И тут ситуация складывается так, что с увеличением емкости используемых приспособлений проблема их надежности стала усугубляться все сильнее, а class карты памяти теперь зависит от многих факторов. Надежность работы подобного решения определяется его техническими особенностями, а также ситуацией на рынке, сложившейся на данный момент. Из-за жесткой конкуренции производители вынуждены снижать себестоимость продукции любым путем. В том числе и благодаря упрощению конструкции, использованию комплектующих из более дешевого набора, ослаблению контроля за изготовлением и иными способами. К примеру, карта памяти "Самсунг" будет стоить дороже менее известных аналогов, но ее надежность вызывает гораздо меньше вопросов. Но и здесь сложно говорить о полном отсутствии проблем, а уж от устройств совсем неизвестных производителей сложно ожидать чего-то большего.

Перспективы развития

При наличии очевидных достоинств имеется целый ряд недостатков, которыми характеризуется SD-карта памяти, препятствующих дальнейшему расширению ее области применения. Именно поэтому ведутся постоянные поиски альтернативных решений в данной области. Конечно, в первую очередь стараются совершенствовать уже существующие типы флеш-памяти, что не приведет к каким-то принципиальным изменениям в имеющемся процессе производства. Поэтому не стоит сомневаться только в одном: фирмы, занятые изготовлением этих видов накопителей, будут стараться использовать весь свой потенциал, перед тем как перейти на иной тип, продолжая совершенствовать традиционную технологию. К примеру, карта памяти Sony выпускается на данный момент в широком диапазоне объемов, поэтому предполагается, что она и будет продолжать активно распродаваться.

Однако на сегодняшний день на пороге промышленной реализации находится целый комплекс технологий альтернативного хранения данных, часть из которых можно внедрить сразу же при наступлении благоприятной рыночной ситуации.

Ferroelectric RAM (FRAM)

Технология ферроэлектрического принципа хранения информации (Ferroelectric RAM, FRAM) предлагается с целью наращивания потенциала энергонезависимой памяти. Принято считать, что механизм работы имеющихся технологий, заключающийся в перезаписи данных в процессе считываниям при всех видоизменениях базовых компонентов, приводит к определенному сдерживанию скоростного потенциала устройств. А FRAM - это память, характеризующаяся простотой, высокой надежностью и скоростью в эксплуатации. Эти свойства сейчас характерны для DRAM - энергонезависимой оперативной памяти, существующей на данный момент. Но тут добавится еще и возможность длительного хранения данных, которой характеризуется Среди достоинств подобной технологии можно выделить стойкость к разным видам проникающих излучений, что может оказаться востребованным в специальных приборах, которые используются для работы в условиях повышенной радиоактивности либо в исследованиях космоса. Механизм хранения информации здесь реализуется за счет применения сегнетоэлектрического эффекта. Он подразумевает, что материал способен сохранять поляризацию в условиях отсутствия внешнего электрического поля. Каждая ячейка памяти FRAM формируется за счет размещения сверхтонкой пленки из сегнетоэлектрического материала в виде кристаллов между парой плоских металлических электродов, формирующих конденсатор. Данные в этом случае хранятся внутри кристаллической структуры. А это предотвращает эффект утечки заряда, который становится причиной утраты информации. Данные в FRAM-памяти сохраняются даже при отключении напряжения питания.

Magnetic RAM (MRAM)

Еще одним типом памяти, который на сегодняшний день считается весьма перспективным, является MRAM. Он характеризуется довольно высокими скоростными показателями и энергонезависимостью. в данном случае служит тонкая магнитная пленка, размещенная на кремниевой подложке. MRAM представляет собой статическую память. Она не нуждается в периодической перезаписи, а информация не будет утрачена при выключении питания. На данный момент большинство специалистов сходится во мнении, что этот тип памяти можно назвать технологией следующего поколения, так как существующий прототип демонстрирует довольно высокие скоростные показатели. Еще одним достоинством подобного решения является невысокая стоимость чипов. Флэш-память изготавливается в соответствии со специализированным КМОП-процессом. А микросхемы MRAM могут производиться по стандартному технологическому процессу. Причем материалами могут послужить те, что используются в обычных магнитных носителях. Производить крупные партии подобных микросхем гораздо дешевле, чем всех остальных. Важное свойство MRAM-памяти состоит в возможности мгновенного включения. А это особенно ценно для мобильных устройств. Ведь в этом типе значение ячейки определяется магнитным зарядом, а не электрическим, как в традиционной флеш-памяти.

Ovonic Unified Memory (OUM)

Еще один тип памяти, над которым активно работают многие компании, - это твердотельный накопитель на базе аморфных полупроводников. В его основу заложена технология фазового перехода, которая аналогична принципу записи на обычные диски. Тут фазовое состояние вещества в электрическом поле меняется с кристаллического на аморфное. И это изменение сохраняется и при отсутствии напряжения. От традиционных оптических дисков такие устройства отличаются тем, что нагрев происходит за счет действия электрического тока, а не лазера. Считывание в данном случае осуществляется за счет разницы в отражающей способности вещества в различных состояниях, которая воспринимается датчиком дисковода. Теоретически подобное решение обладает высокой плотностью хранения данных и максимальной надежностью, а также повышенным быстродействием. Высок здесь показатель максимального числа циклов перезаписи, для чего используется компьютер, флешка в этом случае отстает на несколько порядков.

Chalcogenide RAM (CRAM) и Phase Change Memory (PRAM)

Эта технология тоже базируется на основе фазовых переходов, когда в одной фазе вещество, используемое в носителе, выступает в качестве непроводящего аморфного материала, а во второй служит кристаллическим проводником. Переход запоминающей ячейки из одного состояния в другое осуществляется за счет электрических полей и нагрева. Такие чипы характеризуются устойчивостью к ионизирующему излучению.

Information-Multilayered Imprinted CArd (Info-MICA)

Работа устройств, построенных на базе такой технологии, осуществляется по принципу тонкопленочной голографии. Информация записывается так: сначала формируется двумерный образ, передаваемый в голограмму по технологии CGH. Считывание данных происходит за счет фиксации луча лазера на краю одного из записываемых слоев, служащих оптическими волноводами. Свет распространяется вдоль оси, которая размещена параллельно плоскости слоя, формируя на выходе изображение, соответствующее информации, записанной ранее. Начальные данные могут быть получены в любой момент благодаря алгоритму обратного кодирования.

Этот тип памяти выгодно отличается от полупроводниковой за счет того, что обеспечивает высокую плотность записи, малое энергопотребление, а также низкую стоимость носителя, экологическую безопасность и защищенность от несанкционированного использования. Но перезаписи информации такая карта памяти не допускает, поэтому может служить только в качестве долговременного хранилища, замены бумажного носителя либо альтернативы оптическим дискам для распространения мультимедийного контента.



Загрузка...