sonyps4.ru

Спектр сигналов с угловой модуляцией. Модуляция - чем отличаются виды модуляции AM, ЧМ (FM) и SSB: просто о сложном

При индексе модуляции М < 0,5 амплитуды высших гармонических составляющих малы и ширину спектра можно принять Δω = 2Ω. При значениях 0,5 < М < 1 становится заметной вторая пара гармонических колебаний с боковыми частотами (ω o - 2Ω) и (ω o + 2Ω) и ширина спектра принимается за 4Ω . При больших индексах модуляции М ширина близка к удвоенному значению девиации частоты. Δω 2Δω м. Как правило, реальные ЧМ сигналы имеют значение М >>1 . Они применяются в системах высококачественного радиовещания на метровых волнах, в системах спутниковой и кабельной связи.

Если модулирующим сигналом является скачкообразно изменяющийся, получают частотную манипуляцию. При этом амплитуда частотно-манипулированного сигнала, как и ЧМ сигнала остается постоянной.

Контрольные вопросы

1.Дать определение частотной модуляции

2.Дать определение девиации частоты.

3.От чего зависит девиация частоты при ЧМ?

4. Построить спектральную диаграмму ЧМ сигнала, если f нес = 900 кГц; F c = 3 кГц; индекс модуляции М = 4. Определить девиацию частоты. Определить ширину спектра.


Фазовая модуляция (ФМ)

1. Математическая модель

При фазовой модуляции фаза несущего колебания изменяется по закону модулирующего u(t). Приращение фазы несущего колебания можно записать ΔΨ(t)=aU(t), где а - коэффициент пропорциональности. Фаза ФМ колебания: Ψ(t)= ω o t+Ψ+ aU(t).

Общая математическая модель ФМ сигнала: S ФМ (t)=U m sin[ω o t+Ψ+ aU(t)]

Если модулирующий сигнал гармонический U(t)=U m sinΩt, то

S ФМ (t)=U m sin(ω o t+аU m sinΩt+Ψ)

ΔΨ m =аU m – наибольшее отклонение фазы называется индексом фазовой модуляции.

Частота ФМ сигнала ω(t)= = ω o +аU m ΩcosΩt= ω o +Δω m cosΩt

Δω m = аU m Ω – девиация частоты.

2. Временные диаграммы.

Рис. 18. Временные диаграммы

а) Гармонический сигнал несущей частоты.

б) Изменение фазы несущего колебания во времени

в) Модулирующий (первичный) сигнал.

г) Изменение фазы модулированного сигнала

д) Изменение частоты во времени при ФМ, пропорциональное дифференциалу изменения фазы, т.е. дифференциалу изменения модулирующего сигнала.

е) Фазо-модулированный сигнал.

3. Сравнение спектров ЧМ и ФМ сигналов

Сравнивая сигналы с ФМ и ЧМ можно обнаружить, что частота обоих сигналов изменяется по гармоническому закону, а девиация частоты оказывается разной: при частотной модуляции Δω m = аU m , при фазовой Δω m = аU m Ω, т. е. для ЧМ сигнала девиация частоты не зависит от частоты модулирующего сигнала Ω, для ФМ - зависит. Структура спектра ФМ сигнала такая же, как у ЧМ сигнала. Ширина спектра определяется по формуле

Δω =2(ΔΨ m +1)Ω.

Ширина спектра зависит от частоты модулирующего сигнала.

Конец работы -

Эта тема принадлежит разделу:

Теория электрической связи

Государственное образовательное учреждение высшего профессионального образования.. Санкт Петербургский государственный университет телекоммуникаций им проф.. Колледж телекоммуникаций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные определения
Информация- совокупность сведений о различных событиях, явлениях или объектах природы. Информация – сведения неизвестные получателю. Сообщение -фо

Виды сигналов электросвязи
Простые и сложные сигналы: Простые – сигналы синусоидальной (или косинусоидальной) формы – гармонические. Все остальные сигналы являются сложными, т.к. содержат несколько г

Способы представления сигналов
Временные диаграммы (рис. 3, 4, 5, 6) Спектральные диаграммы (рис.2.3, 3.5, 3.6б) Математические модели Векторные диаграммы Мат

Многоканальные системы передачи
Для одновременной передачи по линии связи большего числа каналов следует разделить эти каналы либо по частоте, либо во времени. На рис.8 приведена структурная схема системы связи с частот

Модуляция и детектирование
Модуляция- процесс изменения одного из параметров несущего колебания под управлением информационного первичного сигнала. Первичный сигнал (содержащий информацию) называется модулирующим. Он

Амплитудная модуляция
1. Математическая модель Пусть модулирующим сигналом является гармоническое колебание низкой частоты Ω: U(t)=UmusinΩt В качестве не

Однополосная амплитудная модуляция
Так как полезное сообщение содержится в обеих боковых полосах АМ сигнала, достаточно для передачи этого сообщения пропустить в виде электромагнитной волны только одну боковую полосу. В этом случае

Математическая модель частотно – модулированного (ЧМ) сигнала
Если модулирующим является гармонический сигнал u(t)=UmsinΩt, и он изменяет частоту несущего сигнала S(t)=Umsin(ωot + φ), то приращение частоты Δ

Спектральные диаграммы
Спектр ЧМ сигнала значительно сложней спектра АМ сигнала. В математической модели ЧМ-сигнала Sчм(t)=Umsin(ωot - М cosΩt + ψ)

Генерирование колебаний
Обобщенная структурная схема автогенератора. Автогенераторы (АГ) – это устройства, вырабатывающие колебания определенной величины, частоты и формы самостоятельно, т.е. без внешних в

Автогенераторы типа LC
Автогенератор LC с трансформаторной обратной связью Рис. 22 LC-генератор с трансформаторной обратной связью При включении питания в схеме рис. 22 начинаются

Автогенераторы типа RC с фазосдвигающими цепочками
Обобщенная структурная схема АГ показана на рис.20. В любом автогенераторе для получения на выходе гармонических колебаний определенной частоты требуется выполнение баланса фаз и баланса амплитуд

Электрические фильтры
Электрические фильтры – линейные четырехполюсники Электрические фильтры – четырехполюсники, предназначенные для изменения частотного состава сигнала. Они обладают в некоторой област

Как у всякого четырехполюсника, характеристическое сопротивление фильтра
. Через параметры конкретной схемы характеристическое сопротивление рассчитывается: - для Т – образной схемы, - для П – образной схемы.

Фильтры верхних частот ФВЧ
Фильтры верхних частот должны пропустить в нагрузку высокие частоты, а низкие и постоянную составляющую пропускать не должны или должны значительно их ослаблять. Реактивные элементы здесь

Полосовые фильтры
У этих фильтров ослабление в диапазоне частот ωH... ωB - мало, а на остальных частотах велико (рис. 39). Полосовой фильтр можно представить как ФНЧ и ФВЧ, соед

Заграждающие фильтры
Как и полосовые, заграждающие фильтры относятся к категории избирательных (содержат колебательные контуры), но колебательные контуры поменялись местами (рис. 42). Рис. 42. С

RC - фильтры
Пассивные RC-фильтры На низких частотах LС фильтры оказываются неэффективными, т.к. имеют невысокую добротность - большие потери, но большие габариты и стоимость. В RC-фильтрах нет

Свойства нелинейных электрических цепей
Важнейшая особенность любой нелинейной цепи – для нее несправедлив принцип суперпозиции: отклик устройства на сумму воздействийнеравен сумме откликов на каждое воздействие в отдельности. В

Аппроксимация характеристик нелинейных элементов
Как правило, ВАХ нелинейных элементов (НЭ) получают экспериментально. Отображение графика ВАХ в математической форме, пригодной для расчетов называется аппроксимацией. Требуется подобрать такую апп

Методы анализа отклика нелинейных цепей
Задачей анализа является определение токов и напряжений в этой цепи. Для определения формы и гармонических составляющих тока на выходе, если задана форма и гармонические составляющи

Вместо модуляции по амплитуде, как в AM, DSBSC и SSB, можно передавать информацию, модулируя частоту или фазу несущего сигнала:

ЧМ и ФМ тесно связаны и иногда их вместе относят к так называемой «угловой модуляции». ЧМ хорошо известна как тип модуляции, используемый в СВЧ радиовещательном диапазоне 88-108 МГц (диапазон УКВ), тогда как AM используют в полосе МГц радиовещательного диапазона. Тот, у кого есть настраиваемый ЧМ-приемник, вероятно, обратил внимание на «успокоение» фонового шума при ЧМ-приеме. Это свойство (возрастание отношения или увеличение канала) и делает широкополосную ЧМ предпочтительнее AM для высококачественных передач.

Еще о ЧМ: если девиация частоты велика по сравнению с модулирующей частотой (в ) сохранены самые верхние частоты), вы имеете «широкополосную ЧМ», как в УКВ радиовещательном диапазоне. Индекс модуляции , равный отношению девиации частоты к модулирующей частоте, в этом случае больше единицы. Широкополосная ЧМ предпочтительнее, так как при правильных условиях приема возрастает на 6 дБ при каждом удвоении девиации ЧМ. Правда, при этом увеличивается ширина полосы канала, поскольку сигнал при широкополосной ЧМ занимает приблизительно , где максимальное отклонение несущей частоты. ЧМ-радиовещание в полосе 88-108 МГц использует максимальное отклонение/дев , т. е. каждая станция занимает полосу около . Этим объясняется, почему широкополосная ЧМ не используется, например в АМ-диапазоне средних волн ( МГц): в этом случае во всем диапазоне могли бы работать только шесть станций данной радиовещательной зоны.

Рис. 13.44. Спектр широкополосной ЧМ.

Спектр ЧМ.

Спектр несущего колебания, частотно-модулированного синусоидальной волной, подобен приведенному на рис. 13.44. Многочисленные боковые частоты отстоят от несущей частоты на расстояниях, кратных модулирующей частоте, а их амплитуды определяются функциями Бесселя. Число значащих боковых полос, грубо говоря, соответствует индексу модуляции. Для узкополосной ЧМ (индекс модуляции имеется только по одной боковой с каждой стороны от несущей частоты. Внешне это похоже на спектр AM, но если учесть фазу боковых полос, то окажется, что эти волны имеют постоянную амплитуду и переменную частоту, а не постоянную частоту и переменную амплитуду (AM). При широкополосной ЧМ амплитуда несущей может быть очень малой, что обусловливает высокую эффективность ЧМ; это значит, что большая часть передаваемой энергии содержится в боковых частотах, несущих информацию.

Генерация и детектирование.

ЧМ легко получается при изменении параметров элементов настраиваемого контура генератора; варикап (диод, использумый как емкость, управляемая напряжением, (разд. ) здесь идеален. Другие методы включают в себя интегрирование модулирующего сигнала с последующей фазовой модуляцией. В каждом случае лучше вести модуляцию при малых отклонениях, а затем применить умножение частоты, чтобы увеличить индекс модуляции. Это основано на том, что скорость отклонения частоты не меняется при умножении частоты, в то время как значение самого отклонения умножается вместе с несущей частотой.

Для детектирования используют обычный супергетеродинный приемник с двумя особенностями. Первая - это наличие ограничителя в оконечном каскаде усиления ПЧ, на этом этапе амплитуда постоянна (насыщение). Вторая - следующий за ограничителем детектор (называемый дискриминатором) должен преобразовывать отклонения частоты в амплитуду. Приведем несколько распространенных методов детектирования.

1. «Детектор - это всего лишь параллельный контур LC, настроенный со сдвигом в одну сторону по отношению к промежуточной частоте; в результате у него получается нарастающая кривая чувствительности в зависимости от частоты во всей полосе ПЧ; при этом ЧМ преобразуется в AM, а обычный детектор преобразует потом AM в звуковые частоты. В улучшенных детекторах наклона используется сбалансированная пара -цепей, настроенных симметрично относительно центральной ПЧ.

2. Детектор Foster-Seely или его вариант «детектор отношений» состоит из одного резонансного контура, подключенного к дьявольски хитроумному диодному устройству для получения на выходе линейной зависимости амплитуды от частоты во всей полосе пропускания ПЧ. Такие дискриминаторы лучше простых детекторов наклона (рис. 13.45).

3. Фазовая автоподстройка частоты (ФАПЧ). Это устройство изменяет частоту внутреннего генератора, управляемого напряжением, так, чтобы согласовать ее с частотой выходного сигнала; оно было описано в разд. 9.31. Если на входе его действует сигнал ПЧ, то управляющее генератором напряжение в контуре ФАПЧ линейно зависит от частоты входного сигнала, т. е. его можно использовать как выход звуковой частоты.

4. Усредняющая схема, в которой сигнал ПЧ преобразуется в последовательность идентичных импульсов, имеющих частоту входного сигнала.

Рис. 13.45. ЧМ-дискриминаторы. А-дробный детектор; Б-балансный квадратурный детектор.

В результате усреднения этой последовательности импульсов на выходе вырабатывается сигнал, пропорциональный ПЧ, т. е. звуковому сигналу, сложенному с некоторой постоянной составляющей.

5. «Балансный квадратурный детектор» является комбинацией фазового детектора (см. разд. 9.27 и 9.31) и фазосдвигающей цепи. Сигнал ПЧ пропускается через контур, в котором сдвиг фазы меняется линейно с частотой в полосе пропускания ПЧ (-цепи прекрасно выполняют эти функции). Сдвинутый по фазе и первичный сигналы подаются на фазовый детектор, на выходе которого сигнал изменяется пропорционально относительному сдвигу фаз. Этот выход и является искомым звуковым сигналом (рис. 13.45).

Часто указывают, что ЧМ, если канал имеет достаточное отношение , обеспечивает прием с существенно меньшими шумами по сравнению с AM, где помехи мало уменьшаются с ростом мощности сигнала. Напомним, что это становится ощутимым, если ЧМ-сигналы ограничиваются по амплитуде перед детектированием. В этом случае система становится относительно нечувствительной к интерферирующим сигналам и шумам, которые проявляются как изменения амплитуды, накладываемые на передаваемый сигнал.

Амплитудно-модулированные сигналы и их спектры

При амплитудной модуляции (АМ) амплитуда несущего сигнала подвергается воздействию сигнала сообщения. Мгновенное значение АМ колебания с гармонической несущей может быть записано в виде

где U m (t) – «переменная амплитуда» или огибающая амплитуд;

– круговая частота несущего сигнала;

– начальная фаза несущего сигнала.

«Переменная амплитуда» U m (t) пропорциональна управляющему сигналу (сигналу сообщения) U с (t):

, (2.17)

где U m 0 – амплитуда несущего сигнала до амплитудной модуляции, то есть поступающего на модулятор;

– коэффициент пропорциональности.

При модуляции несущего сигнала сигналом сообщения необходимо обеспечить, чтобы U m (t) была величиной положительной. Это требование выполняется выбором коэффициента .

Для исключения влияния переходных процессов в радиоэлектронной цепи модулятора и других цепях преобразования модулированного сигнала на спектр сигнала сообщения необходимо выполнение следующего условия: наивысшая по частоте спектральная составляющая в ограниченном спектре сигнала сообщения должна иметь частоту , – что обеспечивается выбором частоты несущего сигнала.

На рис. 2.10 и 2.11 показаны два примера построения графиков АМ колебаний. На рисунках изображены следующие графики:

а – сигнал сообщения u c (t);

б – несущий сигнал u 0 (t);

в – огибающая амплитуд U m (t);

г – АМ сигнал u(t).

Для понимания образования спектра АМ сигнала рассмотрим простой случай: однотональное амплитудно-модулированное колебание. В этом случае модулирующий сигнал является гармоническим (однотональным):

с амплитудой U mc , частотой и начальной фазой .

Огибающая амплитуд однотонального АМ колебания имеет вид:

где – максимальное приращение амплитуды. Мгновенное значение однотонального АМ колебания

Отношение называется коэффициентом глубины модуляции или просто коэффициентом модуляции . Так как U m (t)> 0, то 0< m< 1. Часто m измеряют в процентах, тогда 0< m< 100%. С учетом введения коэффициента модуляции однотональное модулированное колебание запишем в виде:

Графики, поясняющие процесс однотональной амплитудной модуляции, приведены на рис. 2.12.

Рис. 2.12. Однотональная амплитудная модуляция

Для нахождения спектра однотонального амплитудно-модулированного сигнала необходимо сделать следующие преобразования:

(2.20)

При выводе выражения (2.20) использована тригонометрическая формула

Таким образом, при однотональной амплитудной модуляции несущего сигнала спектр содержит три составляющие: одна на несущей частоте имеет амплитуду U m 0 и две на боковых частотах с амплитудами mU m 0 /2, зависящими от коэффициента модуляции; при m< 1 их амплитуды составляют не более половины амплитуды несущей гармоники. Начальные фазы колебаний боковых спектральных составляющих отличаются от начальной фазы на величину . На рис. 2.13 показаны графики АЧС и ФЧС однотонального амплитудно-модулированного колебания.

Рис. 2.13. Спектр однотонального амплитудно-модулированного колебания

Из анализа спектра следует, что АЧС является четным относительно частоты , а ФЧС нечетным относительно точки с координатами ( , ).

При условии все составляющие спектра являются высокочастотными, следовательно, такой сигнал может эффективно передаваться с помощью ЭМВ.

Рассмотрим энергетические параметры однотонального АМ сигнала. Средняя за период несущего сигнала мощность, выделяемая на единичном сопротивлении,

В отсутствии модуляции эта мощность равна

а при модуляции изменяется в пределах от

.

Если m=100%, то , а P min = 0. Средняя мощность сигнала за период модуляции будет складываться из мощностей спектральных составляющих

В случае m=100% Р ср = 1,5Р 0 .

Перейдем к рассмотрению общего случая к так называемому многотональному АМ сигналу. Модулирующий сигнал, то есть сигнал сообщения, имеет спектр вида (1.22)

.

Огибающая амплитуд имеет вид:

где – максимальное приращение амплитуды n-ой гармоники модулирующего сигнала.

Выражение для многотонального АМ сигнала примет следующий вид:

(2.23)

где – коэффициент модуляции n-ой гармоники модулирующего сигнала. Применяя аналогичные, как это было сделано для однотональной амплитудной модуляции, тригонометрические преобразования, получим

(2.24)

Выражение (2.24) представляет спектр амплитудно-модулированного сигнала. Относительно колебания с частотой имеют место два ряда составляющих с верхними и нижними боковыми частотами. Эти составляющие образуют так называемые верхнюю и нижнюю боковые полосы спектра.

Передать весь спектр АМ сигнала по каналу информации невозможно по следующим причинам. Во-первых, нельзя создать идеальную линейную цепь в области частот , см. п.1.4. Во-вторых, при увеличении полосы пропускания линейной цепи может уменьшиться отношение мощности сигнала к мощности шумов (см. п.1.5). В-третьих, полоса пропускания, по возможности, должна быть минимальной, чтобы в заданном частотном диапазоне работало как можно больше радиолиний (радиоканалов), не влияющих друг на друга, то есть не создающих друг другу помех. Следовательно, спектр сигнал ограничивается частотой , наиболее удаленной от частоты несущего сигнала. На рис. 2.14 приведенный амплитудный спектр АМ сигнала. Ширина спектра определяется максимальной частотой в спектре модулирующего сигнала и составляет 2 . Примерные значения ширины спектра для некоторых АМ сигналов представлены в табл. 1.1.

Общие сведения о модуляции. Для передачи сигналов на большие расстояния необходимо, чтобы они обладали большой энергией. Известно, что энергия сигнала пропорциональна четвертой степени его частоты, то есть сигналы с большей частотой обладают большей энергией. В практике часто сигналы, несущие в себе информацию, например, речевые сигналы, имеют низкую частоту колебаний и поэтому, чтобы передать их на большое расстояние необходимо частоту информационных сигналов повышать. Добиваются этого путем “накладывания” информационного сигнала на другой сигнал, который имеет высокую частоту колебаний.

Рассмотрим гармоническое колебание, которое имеет частоту ω достаточную для распространения на большие расстояния и изменяется по закону:

Наложить информацию на это колебание можно путем медленного, по сравнению с периодом, изменения его амплитуды Um, частоты ω или фазы φ. Такой процесс называется модуляцией.

В зависимости от того, какой параметр изменяют, различают амплитудную, частотную и фазовую модуляцию.

Амплитудно-модулированный сигнал получается путем перемножения двух сигналов. Один содержит информацию, а другой является несущим. Пусть сигнал информации, (рис.2.14) и несущее колебание (рис. 2.15) изменяются в соответствии со следующими выражениями:

U1(t) = U0 + U1m cosΩt,

U2(t) = U2m cost,

где U0 - постоянная составляющая сигнала, U1mи U2m - амплитуды информационного сигнала и несущего колебания, Ω, ω – частота информационного сигнала и несущего колебания.

Рис. 2.14. Информационный сигнал.

Рис. 2.15. Несущее колебание.

Перемножим эти сигналы:

Введем обозначения:

где Um – амплитуда промодулированного сигнала, М - коэффициент модуляции.

С учетом введенных обозначений, получим выражение для амплитудно - модулированного сигнала в следующем виде:

Вид амплитудно-модулированного сигнала показан на рис. 2.16, а его спектр на рис. 2.17.

Рис. 2.16. Амплитудно-модулированный сигнал.

Таким образом, спектр радиочастотного колебания при амплитудной модуляции гармоническим колебанием состоит из трех составляющих: нижней боковой, несущей и верхней боковой гармоник. Видно, что амплитуды боковых составляющих зависят от коэффициента модуляцииМ.

Рис.2.17. Спектр амплитудно - модулированного сигнала.

На практике бывает случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав:

. (2.55)

Здесь частоты Ωi образуют упорядоченную возрастающую последовательность Ω1 < Ω2 <…< ΩN, в то время, как амплитуды Ui и начальные фазы ϕi произвольны. Вид сигнала показан на рис. 2.18. В этом случае амплитудно - модулированный сигнал будет иметь вид:

Введем обозначение:

Тогда выражение (2.56) примет вид:

Выполним преобразования будем иметь:

(2.57)

Рис. 2.18. Спектр низкочастотного модулирующего сигнала.

Спектральная диаграмма многотонального АМ - сигнала приведена на рис. 2.19.

Рис. 2.19. Спектр многотонального АМ - сигнала.

Видно, что в спектре сложномодулированного АМ - сигнала, помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. Спектр верхних боковых колебаний является масштабной копией спектра модулирующего сигнала, сдвинутой в область высоких частот на величинуω0. Спектр нижних боковых колебаний располагается зеркально относительно несущей частоты ω0 и также повторяет спектральную диаграмму модулирующего сигнала. Ширина спектра АМ - сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Частотно- и фазомодулированные сигналы. Частотно-модулированный сигнал – это колебание, у которого мгновенная частота изменяется по закону модулирующего сигнала. Пусть модулирующий сигнал и несущее колебание изменяется, как показано на рис. 2.20, 2.21.

Рис.2.20. Модулирующий сигнал.

Рис.2.21. Несущий сигнал.

Тогда мгновенная частота при частотной модуляции равна:

здесь Δω – девиация (отклонение) частоты под действием модулирующего сигнала, это отклонение в принципе пропорционально амплитуде модулирующего колебания. Мгновенную фазу частотно-модулированного сигнала найдем, проинтегрировавω (t) по времени:

(2.59)

В соответствии с рис. 2.21 и выражением (2.59) частотно-модулированное колебание запишется в следующем виде:

где – есть индекс частотной модуляции. Вид частотно - модулированного сигнала показан на рис. 2.22.

Рис. 2.22. Частотно - модулированный сигнал.

Преобразуем выражение (2.60) по формуле косинуса суммы двух аргументов, получим:

Применим для выражений cos(m sin Ωt) и sin(m sin Ωt) преобразования по функциям Бесселя:

Тогда выражение (2.61) для частотно-модулированного сигнала будет иметь вид:

. (2.62)

Из (2.62) видно, что частотно - модулированный сигнал имеет дискретный спектр рис. 2.23. с гармониками на частотах (ω0± nΩ), где n=1, 2, 3, 4, 5…

Рис. 2.23. Спектр частотно - модулированного сигнала.

Вид спектра модулированного колебания зависит от индекса частотной модуляции m, теоретически спектр бесконечен, но на практике он ограничивается двумя – тремя составляющими, так как функции Бесселя высших порядков интенсивно убывают.

Фазомодулированным колебанием называется колебание, у которого фаза изменяется по закону модулирующего сигнала. Выражение, описывающее такое колебание, имеет вид:

Частотно-модулированное колебание является в то же время и фазомодулированным. Иногда оба вида модуляции называют угловой модуляцией. Однако при частотной модуляции изменение частоты, а не фазы совпадает с законом изменения модулирующего сигнала. Кроме того, при частотной модуляции индекс модуляции обратно пропорционален модулирующей частоте, тогда как при фазовой модуляции такой зависимости нет.

Когда колебание промодулировано гармоническим сигналом, отличить частотную модуляцию от фазовой можно, только сравнив изменения мгновенной фазы модулированного колебания с законом изменения модулирующего напряжения.



Загрузка...