sonyps4.ru

Современные элт. ЭЛТ-Мониторы: выбор ЭЛТ с теневой маской(Shadow Mask)

История создания ЭЛТ - мониторов

ЭЛТ-мониторы – это мониторы, формирующие изображение с помощью электронно-лучевой трубки, из которой под действием электростатического поля исходит поток электронов, бомбардирующий внутреннюю поверхность экрана монитора, покрытую люминофором. Люминофор под воздействием электронов начинает светиться, формируя изображение на экране монитора.

Началом истории создания ЭЛТ-мониторов можно считать 1855 году. В то время немецким стеклодувом Генрихом Гейслером было сделано, на первый взгляд, не относящееся к монитором изобретение. Он создал вакуумный стеклянный сосуд.

Через несколько лет после этого изобретения другой немецкий ученый, физик и математик, друг Генриха Гейслера, - Юлиус Плюккер впаял в вакуумный сосуд два электрода и подал на них напряжение. В результате возникшей разности потенциала, от одного электрода к другому пошел ток, стремящийся выровнять разность потенциалов. Под действием тока в вакуумной трубке возникло свечение, характер которого зависел от глубины вакуума.

Свечение вызывалось столкновением атомов, оставшихся в сосуде газов, с электронами, идущими от электрода с большим потенциалом к электрону с меньшим потенциалом. Так как электрон с большим потенциалом называется катодом, а с меньшим потенциалом – анодом, то поток электронов, излучаемый катодом получил название – катодные лучи.

Итак, в 1859 году Юлиусом Плюккером было совершено знаковое открытие, позволившее в дальнейшем создать ЭЛТ-мониторы.

Исследования Юлиуса Плюккера продолжил Уильям Крукс, открывший, что катодные лучи исходят перпендикулярно к катоду и распространяются прямолинейно, но могут отклоняться под действием магнитного поля. Для доказательства этого явления Уильям Крукс в 1879 году создал газоразрядную трубку, названную трубкой Крукса. Опыты с газоразрядными трубками также показали, что, попадая на некоторые вещества, катодные лучи вызывают их свечение. Впоследствии такие вещества были названы катодолюминофорами.


Первое изображение с помощью электронно-лучевой трубки было сделано только через 18 лет после многочисленных опытов и исследований катодных лучей. И это открытие принадлежит Карлу Фердинанду Брауну. Именно он разработал принцип формирования изображения с помощью электронно-лучевой трубки, впоследствии названной трубкой Брауна.

В первой модели трубки Брауну не удалось получить полный вакуум, и использовался холодной катод, требующий сильного внешнего электрического поля для испускания электронов. Все это приводило к необходимости использовать большого ускоряющего напряжения (100 киловольт). К тому же магнитное отклонение луча осуществлялось только по вертикали. Отклонение по горизонтали (изменение сигнала по времени) осуществлялось с помощью вращающегося зеркала.

Свое изобретение Браун использовал, как осциллограф, для изучения электрических колебаний. Снаружи, вокруг узкой части стеклянной трубки между диафрагмой и экраном, располагался электромагнит. Исследуемый ток подводили к катушке электромагнита, в результате возникало электромагнитное поле, отклоняющее катодный луч. Катодный луч высвечивал на флуоресцирующем экране линию, соответствующую изменению магнитного поля под действием тока. Высвеченная линия позволяла определить изменение тока, подводимого к электромагниту.

Светящаяся линия проектировалась на внешний экран с помощью зеркала. Поворачивая зеркало, можно было наблюдать изменение сигнала по времени – двумерную кривую линию, форма которой зависела от амплитуды изменения подводимого к электромагниту тока и скорости поворота зеркала.

Фердинанд Браун не патентовал свое изобретение и демонстрировал его на всевозможных выставках и семинарах. В результате работу оценило множество ученых и вложило свой вклад в развитие и совершенствование электронно-лучевых трубок.

Так уже в 1899 году И. Ценнек, ассистент Брауна, добавил второе магнитное поле, перпендикулярное первому, и получил возможность отклонения катодного луча по вертикали.

В 1903 году Артур Венельт поместил в трубку цилиндрический электрод с отрицательным, относительно катода, потенциалом. Изменение потенциала позволяло менять интенсивность катодных лучей и тем самым яркость свечения люминофора.

В 1906 году М. Дикман и Г. Глаге доработали трубку Брауна и ввели возможность управления током, подаваемым на электромагниты. В результате они смогли отображать на экране не просто изменение тока от времени, а конкретные фигуры. В том же году они получили патент на использование трубки Брауна для передачи изображений букв и штрихов.

Электронно-лучевые трубки оказались незаменимыми в различных приборах, таких как осциллографы, позволяющих исследовать быстропротекающие процессы. Но на этом область их применения не ограничивалась. Возможность формирования изображения с помощью электронно-лучевых трубок заинтересовала множество ученых во всем мире, и вскоре стали появляться все более и более совершенные устройства.

Так в 1907 году русский физик Борис Львович Розинг разработал прибор на основе трубки Брауна, способный воспроизводить движущееся изображение, и получил патент на свою разработку в 1908-1910 гг. в России, Англии и Германии. Он же 9 мая 1911 года, на заседании Русского технического общества, продемонстрировал передачу, прием и воспроизведение на экране электронно-лучевой трубки телевизионных изображений - простых геометрических фигур.

В дальнейшем подобные приборы стали называться кинескопами, от греч. kinesis - движение и skopeo - смотреть.

Первые кинескопы были векторные. В таких кинескопах использовался один пучок катодных лучей, перемещающийся от одной точки к другой, оставляя на экране светящиеся линии, которые постепенно затухали. Затухание происходило очень быстро и обычно не превышало 0,1 секунды.

Для того, чтобы изображение оставалось на экране, его приходилось с частотой несколько десятков герц перерисовывать. Все это приводило к жестким ограничениям по количеству отображаемой на экране информации. Если требовалось отображение сложного объекта, то изображение могло начинать мерцать. Происходило это из-за того, что к концу прорисовки сложного объекта та часть его, которая выводилась первой, уже начинала гаснуть.

Так как векторные кинескопы не могли отображать сложные графические объекты, им быстро нашлась замена в виде растровых кинескопов. Но до сих пор в различных областях науки и техники используются векторные мониторы, в основном в виде измерительных приборов, таких как осциллографы, так как позволяют получить высокое разрешение, частоту регенерации и значительно проще устроены, а, следовательно, и дешевле, чем матричные кинескопы. Также именно векторные кинескопы стали первыми использоваться в качестве мониторов для ЭВМ.

В растровых кинескопах траектория перемещения луча по экрану всегда постоянна и не зависит от выводимых изображений. Луч пробегает по строкам экрана сверху вниз и с помощью модуляции яркости луча формирует изображение. В этом случае время вывода изображения не зависит от его сложности, но возникают ограничения по разрешению изображения, а именно по количеству и длине строк, пробегающих лучом, а также времени изменения модуляции яркости луча, определяющего сколько различных точек может быть выведено за время прохождения лучом одной строки.

Но, несмотря на эти ограничения, первые электронные телевизоры использовали именно растровые кинескопы, а вот в ЭВМ растровые мониторы стали использоваться значительно позже векторных, так как требовали значительного объема памяти для регенерации изображения и обладали маленькой разрешающей способностью.

Развитие электронно-лучевых трубок шло семимильными шагами, сильно этому способствовало и развитие телевидения. Так в 1935 году в Германии началось первое регулярное телевещание для электронных телевизоров. Регулярное телевещание для телевизоров с оптико-механической разверткой началось гораздо раньше, с 1927 года в Великобритании. В 1936 году электронное телевещание стало регулярным и в Англии, Италии, Франции, а затем инициативу подхватили и другие страны.

В скором времени ЭЛТ-телевизоры стали выпускаться серийно. Так уже в 1939 году был представлен первый электронный телевизор для массового производства. Эта модель, RCS TT-5, была разработана в США в научно-исследовательской лаборатории RCA, возглавляемой Владимиром Зворыкиным, русским эмигрантом, и представляла собой большой деревянный ящик с экраном с диагональю 5 дюймов.

Первый электронный телевизор в России ТК-1 был выпущен в конце 1938 года Ленинградским заводом имени Козицкого по американской документации (в Америке подобные телевизоры выпускались с 1934 года). Производство телевизоров было крайне трудоемким и сложным процессом, множество радиодеталей поставлялось из заграницы, и всего было выпущено около 6000 телевизоров, большинство из которых использовались в качестве экспериментальных установок в научно-исследовательских лабораториях.

Первый Российский серийный электронный телевизор был создан на ленинградском заводе «Радист» в конце 1939 года и назывался ""17ТН-1"". Он представлял собой громоздкую напольную тумбу с небольшим круглым экраном 17 дюймов. Производство телевизоров было все еще дорогостоящим и сложным процессом, поэтому до начала войны было выпущено всего 2000 экземпляров.

Первый массово-серийный и доступный простым потребителям в России стал телевизор КВН-49-1, разработанный в 1947 году в Ленинградском НИИ телевидения. Серийный выпуск телевизоров этой марки начался в 1949 году. Кстати, название КВН произошло от первых букв разработчиков телевизора: Кенигсона В.К, Варшавского Н.М и Николаевского И.А, ну а 49, как вы догадались, от года начала серийного выпуска.

В 1950 году произошел очередной прорыв в технологии. В США был разработан масочный цветной кинескоп с тремя электронными пушками.

Экран кинескопа был покрыт тремя типами люминофора, светящегося под действием электронных лучей красным, зеленым и синим цветом. Каждая точка изображения формировалась тремя участками люминофора разного типа, в совокупности воспринимающаяся глазом, как единая цветная точка.

В основании кинескопа располагалось три электронно-лучевые пушки. Если смотреть сверху на них, то они представляли собой вершины равностороннего треугольника. Лучи, излучаемые этими пушками, синхронно пробегали все строки развертки, также как это делал единственный луч в одноцветных кинескопах. Но каждый луч попадал на свой тип люминофора, и, модулируя интенсивность лучей, на экране можно было отобразить цветные точки.

Для того чтобы лучи, излучаемые электронными пушками, попадали на свой участок из трех типов люминофора и не засвечивали соседние участки, использовалась теневая решетка, состоящая из множества отверстий, через которые проходили лучи. Благодаря теневой решетке, повышалась контрастность изображения, так как лучи, переходя от одного участка экрана к другому, не задевали люминофоры чужого типа. Но, в свою очередь, уменьшалось количество проходящих электронов, что уменьшало яркость картинки.

В первых кинескопах в качестве маски использовался тонкий стальной лист с круглыми отверстиями. Такая маска назвалась теневой, она позволяла максимально точно позиционировать электронный лучи, но круглые отверстия задерживали достаточно большую часть электронов. Впоследствии отверстия стали делать коническими, что позволило увеличить их пропускную способность. Теневая маска обеспечивала высокую точность изображения, но меньшую яркость (по сравнению с щелевой и аппретурной решеткой). Такие маски чаще всего применялись в мониторах.

Впоследствии в телевизионных кинескопах электронные пушки стали располагать планарно, параллельно земле, что упрощало настройки кинескопа и позиционирование лучей. Для таких кинескопов в маске делались овальные отверстия, и называлась она – щелевая решетка. Щелевая решетка обеспечивает более насыщенные цвета, по сравнению с теневой маской, но менее насыщенные, чем у апертурной решетки. Но в то же время получаемое изображение более четкое, чем у апетурной решетки. Однако щелевая решетка склона к муарам. В результате основная область применения таких кинескопов – телевидение.

Впоследствии такие производители, как Sony или Mitsubishi в качестве маски стали использовать апертурную решетку – множество вертикально натянутых тонких проволок. При этом электронные лучи не ограничивались, как в двух предыдущих типах масок, а фокусировались в нужных точках экрана, за счет чего прозрачность апертурной решетки была в разы выше и достигала 80%, а соответственно была выше яркость и насыщенность изображения.

Первый цветной телевизор с электронно-лучевой трубкой был выпущен в США в марте 1954 года компанией Westinghouse и назывался H840CK15, и стоил 1295 долларов. Спустя несколько недель, в США был выпущен еще один цветной телевизор, но уже компанией RCA - RCA CT-100. Он был снабжен 15-ти дюймовым цветным кинескопом и стоил около 1000 долларов. В то время, к примеру, новый, шикарный автомобиль стоил 2000 долларов, так что цветные телевизоры рассчитывались не на массовое потребление, а скорее как дорогая игрушка для ограниченного круга элиты. Вскоре цветное телевидение перешло в массы, и во всех странах появилось огромное количество различных моделей цветных телевизоров. На сайте www.earlytelevision.org можно посмотреть фотографии и описания большинства первых цветных и монохромных телевизоров и мониторов.

Технология отображения на ЭЛТ-телевизорах совершенствовалась год от года, и, когда настала эра ЭВМ, электронно-лучевые трубки стали использоваться для отображения результатов их работы. Конечно, произошло это не сразу. Первые ЭВМ в качестве устройств вывода использовали, в основном, различные печатающие устройства или записывали результат вычислений на магнитную ленту. Но уже тогда многие ЭВМ оснащались электронно-лучевыми трубками, но использовались они не как мониторы, а как осциллографы, контролирующие исправность электрических цепей вычислительных машин или даже, как запоминающие устройства .

Ярким примером служит ЭВМ SSEM (Manchester Small-Scale Experimental Machine) – манчестерская малая экспериментальная машина, заработавшая в июне 1948 года.

В ней использовалось целых три электронно-лучевые трубки. Однако только одна из них отображала информацию, две других представляли собой оперативную память, позволившую избавиться от громоздких, трудоемких и опасных ртутных линий задержки.

На прообраз монитора в SSEM выводилась информация, содержавшаяся в двух других электронно-лучевых трубках.

ЭЛТ-мониторы для вывода информации использовались и в ЭВМ CSIRAC (Council for Scientific and Industrial Research Automatic Computer) - Автоматическом Компьютере Совета по Научным и Промышленным Исследованиям. CSIRAC был разработан в Австралии и заработал в ноябре 1949 года.

В этой ЭВМ вывод результатов работы осуществлялся все еще на телетайп, но для контроля процесса работы использовался ЭЛТ-монитор, отображавший состояние регистров ЭВМ, используемых при вычислении.

Еще один случай использования электронно-лучевой трубки для вывода результатов работы ЭВМ зафиксирован в 1950 году. Произошло это в Англии в Кембриджском университете. И использовалась она в электронно-вычислительной машине EDSAC (Electronic Delay Storage Automatic Computer).

Естественно, мониторы, используемые в EDSAC, SSEM, CSIRAC и в других ЭВМ того времени, сильно отличались от современных ЭЛТ-мониторов и больше походили на осциллографы. Но все же это были первые попытки вывода информации не на принтер, а на электронный монитор, в конечном итоге приведшие к созданию современного ЭЛТ-монитора.

Начиная с 50-х годов, практически все ЭВМ в том или ином виде использовали ЭЛТ-трубки. Наиболее показательной в этом плане является ЭВМ Whirlwind (Вихрь), созданная в 1951 году в США. Использовалась она в станции американской ПВО «SAGE 1» и предназначалась для обработки в режиме реального времени непрерывно поступающего потока данных о состояния воздушной обстановки и фиксации информации о вторжении самолетов в воздушное пространство США.

Естественно, просто обработать данные было недостаточно. Было необходимо в режиме реального времени отображать полученные данные, а именно положение обнаруженных воздушных объектов. Сделать это с помощью распространенного в то время телетайпа было невозможно. Во-первых, потребовалось бы огромное количество бумаги, а, во-вторых, распечатанная таким образом информация была ненаглядной и требующей значительных усилий и времени для принятия решений, которого у военных, в случае вторжения вражеской авиации, не было.

Поэтому было принято решение, в качестве основного устройства отображения, использовать ЭЛТ-монитор, позволяющий наглядно, а главное в режиме реального времени, отображать всю информацию, требующуюся для работы системы ПВО.

Демонстрация работы системы ПВО SAGE состоялась 20 апреля 1951 года. Данные с радара, установленного в заливе Кейп-Код, передавались в командный центр, где обрабатывались в ЭВМ Whirlwind, а затем отображались на экранах ЭЛТ-мониторов в виде движущихся точек, соответствующих положению обнаруженных самолетов.

В конечном итоге, в США была создана целая сеть из 23-х командных пунктов ПВО SAGE, обеспечивающих защиту воздушных границ США долгие годы.

В шестидесятых годах мониторами оснащались уже практически все ЭВМ, и их стали производить серийно. Для разгрузки центрального процессора ЭЛТ-мониторы оснащали своими вычислительными ресурсами, и они стали называться дисплейными станциями.

Первой такой дисплейной станцией была оснащена ЭВМ «DEC PDP-1». Дисплейная станция была монохромной, имела ЭЛТ-дисплей, диаметром 16 дюймов с разрешением 1024 х 1024 точки. Под разрешением в векторных мониторах понимается количество точек, которые могут быть заданы, в качестве граничных координат отображаемых отрезков.

Вскоре появился и первая коммерческая дисплейная станция IBM 2250. IBM 2250 была разработана в 1964 году и использовалась в ЭВМ серии System/360.

IBM 2250 имела дисплей размером 12х12 дюймов с разрешением 1024х1024 точки и поддерживала частоту обновления экрана в 40 Гц. Отображаемые символы, цифры и буквы состояли из отдельных отрезков и были максимально упрощены для увеличения производительности.

В памяти дисплейной станции были заложены специальные подпрограммы, отвечающие за форматирование символов на экране. Таким образом, центральному процессору ЭВМ требовалось только указать, какой символ и где вывести на экране. Расчет отображаемого символа и управление катодным лучом производилось уже в самой дисплейной станции, что сильно разгружало ЭВМ.

Описанные выше дисплейные станции, как и их прототипы, были векторными. Между тем популярность ЭВМ набирала рост. Многие предприятия использовали ЭВМ. Но в шестидесятых годах ЭВМ представляли собой дорогостоящие устройства, и обеспечить всех специалистов своей ЭВМ было невозможно. В результате, начали развиваться терминальные системы, в которых ЭВМ отдавалась в распоряжение сразу нескольким пользователям. Доступ к вычислительным ресурсам осуществлялись через специальные терминалы, оборудованные монитором, устройством ввода-вывода, и подключенные к удаленной ЭВМ.

Одной из первых терминальных систем, оборудованных терминалами с ЭЛТ-мониторами, была система IBM 2848. Разработана эта система была в 1964 году и состояла из одного устройства контроля IBM 2848, представляющего собой прообраз современных видеоадаптеров, к которому могло подключаться до 8 терминалов IBM 2260.

Терминалы системы были оснащены ЭЛТ-мониторами, способными отображать только текст с разрешением 12 строк по 80 символов в каждой строке. Всего отображалось 64 различных знака (26 букв, 10 цифр, 25 специальных символов и 3 контрольных символа). Причем текст отображался не на всей области ЭЛТ, а только на небольшом участке, размером 4 на 9 дюймов.

В основном эта терминальная система использовалась для работы с ЭВМ серии IBM system/360. Одна из таких систем функционировала с 1969 по 1972 года в компьютерном центре в Колумбии.

В 1972 был создан один из первых цветных терминалов - IBM 3279. Первоначально терминал IBM 3279 поддерживал 4 цвета: красный, зеленый, голубой и белый, и работал только в текстовом режиме. Причем при стандартных настройках вводимые символы окрашивались в зеленый или красный цвет, а выводимые - белым или голубым.

Позже были выпущены модификации, способные работать и в графическом режиме с поддержкой уже семи цветов. Примером такого терминала может служить IBM 3279G.

Но настоящий бум развития ЭЛТ- мониторов начался с появления персональных компьютеров. Например, ЭВМ IBM 5100, разработанная в 1975 году, имела встроенный пятидюймовый ЭЛТ- монитор, способный отображать 16 строк по 64 символа в каждой. Видеоадаптера, как такового, в ЭВМ не было, а изображение выводилось с помощью контроллера дисплея, имеющего прямой доступ к оперативной памяти по адресам 0x0200..0x05ff, где содержался текст для отображения.

Подобная технология отображения замедляла работу ЭВМ, так как для формирования изображения использовался центральный процессор. Также негативно сказывалось на быстродействие частое обращение к ОЗУ для считывания области, содержащей информацию для отображения.

Поэтому вскоре для отображения данных на мониторе были разработаны специальные видеоадаптеры, значительно разгружающие центральный процессор и ОЗУ, так как видеоадаптеры оснащались встроенным ОЗУ и не требовали постоянного обращения к основному ОЗУ для регенерации изображения.

Первый такой видеоадаптер был разработан в 1981 году, назывался он Monochrome Display Adapter (MDA) и использовался в IBM PC.

Как следует из названия, адаптер был монохромный, работал только в текстовом режиме с разрешением 80х25 символов (720х350 точек).

Стандартный видеоадаптер MDA основывался на чипе Motorola 6845 и содержал 4 КБ видеопамяти. Частота развёртки составляла 50 Гц.

Цвет выводимого текста определялся типом люминофора, используемого в кинескопе монитора. Обычно использовался люминофор P1 – зеленый цвет, люминофор P3 – светло-коричневый, или люминофор P4 – белый. В первых мониторах, выпускаемых для адаптера MDA, использовался зеленый люминофор, примером таких мониторы может быть IBM 5151.


Практически одновременно, в 1981 году, был выпущен цветной видеоадаптер CGA - Color Graphics Adapter. Видеоадаптер поддерживал максимальное разрешение 640х200 и палитру, состоящую из 16 цветов. Работал видеоадаптер в двух режимах – текстовом и графическом. В текстовом режиме можно было использовать все 16 цветов и разрешение, либо 40 на 25 символов, либо 80 на 25 символов.

В графическом режиме при разрешении 320 на 200 пикселей можно было использовать 4 цвета из стандартных политр: пурпурный, сине-зелёный, белый и черный или красный, зелёный, коричневый/жёлтый и черный. При разрешении 640х200 отображение было монохромным (черно-белым).

Дополнительные настройки позволяли формировать свои палитры из доступных 16 цветов и, например, делать отображение при разрешении 640х200 не черно-белым, а черно-зеленым и так далее.

В момент выпуска видеоадаптера не было мониторов, способных использовать все его возможности. Имеющиеся монохромные мониторы или NTSC-совместимый телевизор могли подключаться к видеоадаптеру только через композитный разъем. Но при этом качество отображения было ужасным, особенно при высоком разрешении (640х200).

Монитор, полностью поддерживающий все функции видеоадаптера, был выпущен компанией IBM только в 1983 году – это был 12-дюймовый монитор IBM 5153. Позже различными производителями было выпущено множество аналогов этого монитора.

В 1984 году компанией Hercules Computer Technology был выпущен еще один видеоадаптер - Hercules Graphics Card (Hercules) - графический адаптер Геркулес. Он поддерживал не только текстовый режим, как MDA, с разрешением 80х25 символов, но и графический, с разрешением 720х348. Hercules все еще оставался монохромным, но поддержка более высокого, чем CGA разрешения, совместимость с широко распространенными мониторами стандарта MDA, такими как IBM 5151, сделали его популярной альтернативой видеоадаптера CGA.

Однако не видеоадаптеры CGA, не видеоадаптеры Hercules не удовлетворяли растущим потребностям пользователей ЭВМ. Поэтому в том же 1984 году появился видеоадаптер Enhanced Graphics Adapter (EGA), что в переводе означает - усовершенствованный графический адаптер.

Видеоадаптер EGA значительно превосходил по техническим возможностям своих предшественников. Он мог формировать графическое изображение, используя 16 цветов из 64 цветной палитры при разрешении 640х350 точек.

Но для полноценного использования нового видеоадаптера потребовались мониторы нового стандарта, позволяющие работать с цветным изображением высокого разрешения (естественно высокого для того времени).

Чтобы не оказаться в невыгодной позиции на рынке, разработчики нового видеоадаптера предусмотрели возможность поддержки различных цветовых режимов и разрешений, повторяющих возможности предыдущих стандартов и возможность вывода изображения на мониторы предыдущих стандартов. Естественно, при этом страдало качество изображения, либо уменьшалась разрешающая способность, либо количество цветов, но при этом открывались дополнительные возможности для пользователей, которые могли модернизировать свои системы постепенно, не затрачивая сразу большие суммы.

Перед подключением монитора на плате необходимо было настроить конфигурацию видеоадаптера для работы с выбранным стандартом монитора и режима формирования изображения (графическое, тестовое, разрешение картинки и т.д.). Для этого предназначались шесть переключателей, обычно, располагающихся на задней стороне видеоадаптера. В частности, поддерживались следующие стандарты мониторов:

  • монохромные мониторы стандарта MDA, такие как IBM 5151;
  • цветные мониторы стандарта CGA, такие как IBM 5153;
  • цветные мониторы стандарта EGA, такие как IBM 5154.

Стоит отметить, что большинство видеоадаптеров EGA выпускались всего лишь с 64 кб памяти, что было недостаточно для отображения 16-цветного изображения с разрешением 640x350 точек, а позволяло использовать только 4 цвета или 16 цветов, но при разрешении 640x200.

Естественно, были видеоадаптеры с 128 кб памяти и даже с 256 кб, но стоили они значительно дороже, и далеко не все могли их себе позволить, впрочем, как и новые EGA-мониторы. Так что на практике в большинстве случаев возможности нового видеоадаптера использовались не полностью, но, несмотря на это, он пользовался большой популярностью, и замена ему вышла только спустя три года. Это был новый стандарт видеоадаптеров MCGA.

MultiColor Graphics Adapter (MCGA) ? многоцветный графический адаптер, выпущенный в 1987 году. Он значительно превосходил все существующие на тот момент видеоадаптеры по количеству цветов в палитре, составляющим 262144.

Но объем видеопамяти был маленький, всего 64 Кб, что сильно снижало его возможности, но это положительно сказалась на его цене.

Единовременно адаптер мог отображать 256 цветов, выбранных из палитры, но из-за ограниченной видеопамяти разрешение экрана при этом составляло всего 320х200. При монохромном отображении или в текстовом режиме разрешение было несколько выше.

Основные характеристики графического адаптера следующие:

Объем памяти: 64 Кб;

Тестовое разрешение: 640x400 (80х50 символов при размере символа 8х8 или 80х25 символов при размере символа 8х16);

Количество цветов: 256, выбираемых из палитры 262144 цветов;

Разрешение экрана при отображении 256 цветов: 320x200;

Разрешение экрана в монохромном режиме: 640?480;

Частота строчной развертки: 31,5 KГц.

Впервые этот адаптер использовался в ЭВМ IBM PS/2 Model 30, представленной второго апреля 1987 года. Причем он представлял собой не отдельную плату, а встраивался в материнскую плату ЭВМ. Позже MCGA использовался в IBM PS/2 Model 25 тоже в виде интегрированной в материнскую плату системы.

Адаптер не успел завоевать широкую популярность, так как очень быстро был вытеснен сильно превосходящим его графическим адаптером VGA. И после снятия с производства ЭВМ IBM PS/2 25 и 30 перестал выпускаться и адаптер MCGA.

Графический адаптер VGA (Video Graphics Array) был разработан компанией IBM в 1987 и впервые был использован в ЭВМ IBM PS/2 Model 50. Вскоре VGA стал общепризнанным стандартом мониторов и видеоадаптеров.

Основное разрешение, поддерживаемое адаптером VGA, было 640х480 пикселей, при этом одновременно отображалось 16 цветов, выбираемых из палитры 262144 оттенка. Новое разрешение позволяло более качественно отображать картинку и имело отношение сторон 4:3, которое надолго стало стандартом, и только в последние годы было вытеснено широкоформатным отображением, как в мониторах, так и в телевизорах, которые в принципе с каждым днем все меньше и меньше отличаются от мониторов.

Видеоадаптер VGA поддерживал и другие расширения:

  • 320x200 пикселей, 4 цвета;
  • 320x200 пикселей, 16 цветов;
  • 320x200 пикселей, 256 цветов;
  • 640x200 пикселей, 2 цвета;
  • 640x200 пикселей, 16 цветов;
  • 640x350 пикселей, монохромный;
  • 640x350 пикселей, 16 цветов;
  • 640x480 пикселей, 2 цвета;
  • 640x480 пикселей, 16 цветов,

и это не считая текстового режима отображения.

В отличие от предыдущих графических адаптеров, в VGA использовался аналоговый сигнал для передачи отображаемой информации монитору. Использование аналогового сигнала позволяло уменьшить количество проводов в кабеле, так как передавать требовалось только сигналы трех основных цветов и сигналы синхронизации, и отдельный канал выделялся для передачи служебной информации. Также новый аналоговый интерфейс связи между графическим адаптером и монитором позволял в дальнейшем увеличивать количество единовременно отображаемых цветов без изменения интерфейса связи с монитором и собственно без изменения самого монитора.

Но для работы с графическими адаптерами VGA были нужны новые многочастотные аналоговые мониторы. Эти мониторы могли работать с различной частотой кадров, что позволяло им поддерживать режимы с различной разрешающей способностью и практически неограниченное число цветов, и полностью обеспечивать весь потенциал графических адаптеров VGA.

Со временем графические интерфейсы операционных систем прочно вошли в нашу жизнь, появлялось огромное число видеоигр и различных приложений, требующих высокого разрешения и способности отображение более чем 256 цветов. Видеоадаптер VGA не был в состоянии удовлетворить возросшие потребности пользователей, в результате многие фирмы стали выпускать собственные расширенные версии видеоадаптера VGA, впоследствии получивших общее название Super VGA или SVGA. Со временем возможности видеоадаптеров SVGA росли. Стали поддерживаться режимы: High Color и True Color, в которых одновременно отображалось 32768 и более чем 16,7 миллионов различных цветов. Поддерживались разрешения: 800х600, 1024х760, 1280х1024, 1600х1200 и т.д.

Параллельно, с развитием видеоадаптеров SVGA, совершенствовались и мониторы. Увеличивалась частота развертки, поддерживаемые разрешения, качество цветопередачи и т.д.

Казалось, что ЭЛТ-мониторы прочно и надолго вошли в нашу жизнь, но буквально за несколько лет про них практически забыли, и сейчас мало у кого можно их встретить. Всему виной стали ЖК-мониторы, незаметно, в тени славы ЭЛТ-мониторов, достигнувшие вершин качества отображения, сравнимых с качеством отображения и цветопередачи ЭЛТ-мониторов. Но при этом ЖК-мониторы были более компактные и эргономичные. Естественно у них были свои недостатки, но они все менее и менее сказываются на их качестве. Но более подробно об истории ЖК-мониторов и их устройствах поговорим в одной из следующих статей.



Изготовители электронно-лучевых трубок еще не исчерпали своего потенциала и словно только пробуют силы, держа в руках давно испытанный, но по-прежнему дорогостоящий компонент, технологический прогресс которого идет болезненно медленно на фоне стремительно развивающихся новинок. Профессиональные мониторы становятся дешевле, и этот факт, несомненно, очень радует пользователей, нуждающихся в высоком качестве картинки на экране. Если раньше они предпочитали только мониторы brand name (от Sony или ViewSonic) - хорошие, конечно, но довольно дорогие, то теперь на рынке появляется все больше моделей, обладающих порой даже более высокими характеристиками и к тому же позволяющих сэкономить ощутимую сумму.

Как устроена электронно-лучевая трубка

Электронно-лучевая трубка (ЭЛТ; Cathode Ray Tube, или CRT) - это традиционная технология формирования изображения на «дне» герметично запечатанной стеклянной «бутылки». Мониторы получают сигнал от компьютера и преобразуют его в форму, воспринимаемую электронно-лучевой пушкой, расположенной в «горлышке» огромной колбы. Пушка «стреляет» в нашу сторону, а широкое дно (куда мы, собственно, и смотрим) состоит из «теневой маски» и люминесцентного покрытия, на котором создается изображение. Электромагнитные поля управляют пучком электронов: отклоняющая система изменяет направление потока частиц таким образом, что они достигают нужного места на экране, проходя через теневую маску, падают на фосфоресцирующую поверхность и формируют изображение (активизированный электронным лучом участок экрана испускает свет, видимый глазом; рис.1). Такая технология называется «эмиссионной».Экран монитора представляет собой матрицу, состоящую из гнезд-триад, определенной структуры и формы (зависящей от конкретной технологии изготовления - см. далее). Каждое такое гнездо состоит из трех элементов (точек, полос или других структур), формирующих RGB-триаду, в которой основные цвета располагаются настолько близко друг к другу, что отдельные элементы неразличимы для глаза.

Таким образом, электронно-лучевые трубки, используемые в современных мониторах, имеют следующие основные элементы:

  • электронные пушки (по одной на каждый цвет RGB-триады или одну, но испускающую три пучка);
  • отклоняющую систему, то есть набор электронных «линз», формирующих пучок электронов;
  • теневую маску, обеспечивающую точное попадание электронов от пушки каждого цвета в «свои» точки экрана;
  • слой люминофора, формирующий изображение при попадании электронов в точку соответствующего цвета.

С этими элементами и связана непрерывная борьба производителей за качество изображения.

Электронная пушка состоит из подогревателя, катода, испускающего поток электронов, и модулятора, ускоряющего и фокусирующего электроны.

В современных кинескопах применяются оксидные катоды, в которых электроны испускаются эмиссионным покрытием из редкоземельных элементов, нанесенным на никелевый колпачок с расположенной внутри него нитью накала. Подогреватель обеспечивает нагревание катода до температуры 850-880 °C, при которой и происходит испускание (эмиссия) электронов с поверхности катода. Остальные электроды трубки используются для ускорения и формирования пучка электронов.

Соответственно каждая из трех электронных пушек создает пучок электронов для формирования своего цвета. При этом различают ЭЛТ с дельтовидным и планарным расположением пушек.

В случае дельтовидного расположения электронные пушки размещаются в вершинах равностороннего треугольника под углом 1° к оси кинескопа.

Ошибка в значении угла наклона не должна превышать 1’. Наклон пушек выбирается таким образом, чтобы электронные лучи пересекались в некоторой точке (точке схождения) и дальше, расходясь на определенный угол, образовывали на маске небольшой круг, в пределах которого одновременно может находиться только одно отверстие теневой маски и одна RGB-триада (три точки люминофора основных цветов). Соответственно точки люминофора при этом также располагают по вершинам равностороннего треугольника, образующего эту триаду. Центр каждого отверстия в теневой маске расположен напротив оси симметрии данной триады точек люминофора.

Электронные лучи, расходясь после теневой маски, попадают на точки люминофора соответствующего цвета и заставляют их светиться.

Теневая маска

Электронный луч достигает экрана, пройдя через теневую маску, которая может иметь различную (точечную или линейную) структуру. Теневая маска, выполненная из тонкого сплава, направляет электронный луч на флуоресцирующий материал определенного цвета.

При этом маска задерживает 70-85% всех электронов, испускаемых катодами, в результате чего она нагревается до высокой температуры.

Раньше маски изготавливали из сплавов на основе железа, и при сильном нагревании они деформировались, в результате чего отверстия смещались относительно триад люминофора. Для компенсации смещений маска крепилась к экрану при помощи системы «замков» из материала со специально подобранным коэффициентом температурного расширения; при нагревании эти «замки» перемещали маску вдоль оси ЭЛТ в сторону экрана.

В современных моделях применяется теневая маска из инвара - специального сплава с оченьнебольшим коэффициентом температурного расширения, поэтому смещение масок при нагреве остается минимальным.

В кинескопах с планарным расположением пушек используются щелевые маски, а люминофор трех основных цветов наносится на экран в виде вертикальных чередующихся полосок таким образом, чтобы одному щелевидному отверстию соответствовала своя RGB-триада. В таких ЭЛТ все три электронные пушки соосны друг другу, расположены в одной вертикальной плоскости и наклонены под небольшим углом к горизонтальной плоскости. Такое расположение в значительной мере позволяет скомпенсировать воздействие на пучки электронов магнитного поля Земли и упростить сведение лучей.

Расходясь после точки схождения, лучи образуют эллипс, охватывающий одновременно только одно отверстие щелевой маски и соответственно три находящиеся за ней полоски люминофора. Отверстие щелевой маски находится напротив средней (зеленой) полоски люминофора.

Отношение площади отверстий к общей площади маски в электронно-лучевых трубках такого типа значительно выше, чем у теневой маски, поэтому та же яркость свечения может быть достигнута при значительно меньшей мощности электронных пучков и, следовательно, срок службы таких кинескопов существенно больше.

Экран монитора

По достижении поверхности экрана луч взаимодействует с ним, при этом энергия электронов преобразуется в световую. Экран представляет собой обладающую особыми оптическими свойствами стеклянную поверхность, на которой распылен специальный фосфоресцирующий материал. Высокое качество изображения достигается правильным выбором материалов и технологии. Фосфоресцирующий материал должен обеспечивать требуемую энергетическую эффективность, разрешающую способность, долговечность, точную цветопередачу и послесвечение.

Антибликовая панель (AR panel)

Для минимизации отражающих свойств экрана используются специальные антибликовые панели. Не ухудшая изображения, они ослабляют блики, а также уменьшают электромагнитное излучение монитора. Однако, ввиду высокой стоимости таких панелей, они используются в дорогих мониторах с большим разрешением, например в 21-дюймовых. В последнее время вместо антибликовой панели на мониторах с диагональю 21 дюйм и меньше используют антибликовое покрытие. Такое покрытие, как и панели, ограничивает излучение в соответствии со стандартами ТСО. Новые технологии позволяют перейти к коммерческому использованию мониторов с антибликовым покрытием.

Антистатическое покрытие

Антистатическое покрытие экрана обеспечивается с помощью напыления специального химического состава для предотвращения накопления электростатического заряда. Оно требуется в соответствии с рядом стандартов по безопасности и эргономике, в том числе MPR II.

Светопередача монитора

Отношение полезной световой энергии, прошедшей через переднее стекло монитора, к излученной внутренним фосфоресцирующим слоем называется коэффициентом светопередачи. Как правило, чем темнее выглядит экран при выключенном мониторе, тем ниже этот коэффициент. При высоком коэффициенте светопередачи для обеспечения требуемой яркости изображения требуется небольшой уровень видеосигнала и упрощаются схемотехнические решения. Однако при этом уменьшается перепад между излучающими участками и соседними, что влечет за собой ухудшение четкости и снижение контрастности изображения и, как следствие, - ухудшение его общего качества. В свою очередь, при низком коэффициенте светопередачи улучшаются фокусировка изображения и качество цвета, однако для получения достаточной яркости требуется мощный видеосигнал и усложняется схема монитора. Обычно 17-дюймовые мониторы имеют коэффициент светопередачи 52-53%, а 15-дюймовые - 56-58%, хотя в зависимости от конкретно выбранной модели эти значения могут варьироваться. Поэтому при необходимости определения точного значения коэффициента светопередачи следует обращаться к документации производителя.

Горизонтальная развертка

Время горизонтального перемещения луча от левого до правого края экрана называется периодом горизонтальной развертки. Величина, обратно пропорциональная этому периоду, называется частотой горизонтальной развертки, или просто горизонтальной разверткой (иногда встречаются названия «частота строчной развертки», или «строчная частота»), и измеряется в килогерцах (кГц). Например, для монитора с разрешением 1024 x 768 пикселов горизонтальная развертка обратно пропорциональна времени, за которое луч сканирует 1024 пиксела. При увеличении разрешающей способности за тот же период времени лучом должно быть отсканировано большее число пикселов. При увеличении частоты кадров частота горизонтальной развертки также должна быть увеличена.

Вертикальная развертка, или частота кадров

Монитор с электронно-лучевой трубкой обновляет изображение на экране десятки раз в секунду. Это число называется частотой вертикальной развертки, или частотой обновления экрана, и измеряется в герцах (Гц).

Монитор с вертикальной разверткой 60 Гц имеет такую частоту мерцания, как лампа дневного света в США (несколько выше, чем в Европе, где частота сети 50 Гц). Обычно при частотах выше 75 Гц мерцание незаметно для глаза (режим без мерцания). Стандарт VESA рекомендует работу на частоте 85 Гц, считая это важным потребительским показателем эргономичности монитора.

Расчет частоты горизонтальной развертки исходя из частоты кадров: Горизонтальная развертка = (число строк) x (вертикальная развертка) x 1,05. Например, требуемая горизонтальная развертка при вертикальной частоте 85 Гц и разрешении 1024 x 768 составляет: 768 x 85 x 1,05 = 68 500 Гц = = 68,5 кГц.

Разрешение

Разрешающая способность характеризует качество воспроизведения изображения монитором. Для получения высокого разрешения в первую очередьвысококачественным должен быть видеосигнал. Электронные цепи должны обработать его таким образом, чтобы обеспечить правильные уровни и сочетания фокусировки, цвета, яркости и контраста. Разрешающая способность характеризуется числом точек, или пикселов (dot) на число строк (line). Например, разрешение монитора 1024 x 768 означает возможность различить до 1024 точек по горизонтали при числе строк до 768.

Частота пикселов

Например, если горизонтальное разрешение 820 точек, а период отображения данных по горизонтали 10,85 нс = 10,85 x 10-6 с, то требуется частота пикселов (pixel rate) примерно 76 МГц. Монитор с высоким разрешением может выводить на экран в 24 раза больше информации, нежели телевизор.

Контраст, равномерность

Контраст характеризует яркость экрана по сравнению с темной зоной в отсутствие видеосигнала. Контраст можно настроить регулировкой «Усиление», воздействуя на входной видеосигнал.

Под равномерностью понимается постоянство уровня яркости по всей поверхности экрана монитора, которое обеспечивает пользователю комфортные условия для работы. Временная неравномерность цвета может быть устранена размагничиванием экрана. Принято различать «равномерность распределения яркости» и «равномерность белого».

Сведение: статическое, динамическое

Для получения четкого изображения и чистых цветов на экране монитора красный, зеленый и синий лучи, исходящие из всех трех электронных пушек, должны попадать в точно заданное место на экране. Термин «несведение лучей» означает отклонение красного и синего от центрирующего зеленого.

Под статическим несведением понимается несведение трех цветов (RGB), одинаковое на всей поверхности экрана, вызванное незначительной погрешностью при сборке электронной пушки. Изображение на экране может быть откорректировано регулировкой статического сведения.

В то время как в центре экрана монитора изображение остается четким, на его краях может проявиться несведение. Оно вызывается ошибками в обмотках или при их установке и может быть устранено с помощью магнитных пластин.

Динамическая фокусировка

Электронный луч, если не предприняты специальные меры, расфокусируется (увеличивается в диаметре) по мере удаления его от центра экрана. Для компенсации искажения формируется специальный компенсирующий сигнал. Величина компенсирующего сигнала зависит от свойств ЭЛТ и ее отклоняющей системы. Чтобы устранить смещение фокуса, вызванное различием в путях пробега луча (расстоянии) от электронно-лучевой пушки до центра и до краев экрана, требуется увеличивать напряжение с ростом отклонения луча от центра с помощью высоковольтного трансформатора, как показано на рис. 4.

Чистота изображения

Чистота и четкость изображения достигается, когда каждый из электронных лучей RGB падает на поверхность экрана в строго определенной точке. Отсюда следует, что требуется выверенная взаимосвязь между электронной пушкой, отверстиями теневой маски и точками фосфоресцирующей поверхности (люминофора) экрана. Нарушение чистоты и четкости изображения могут быть обусловлены следующими причинами:

  • наклоном электронной пушки или смещением луча;
  • смещением центра пушки вперед или назад;
  • отклонением луча, вызванным влиянием внешних магнитных полей, включая магнитное поле Земли.

Мерцание

Монитору свойственно мерцание. Оно связано с тем, что по истечении определенного времени происходит ослабление излучения света фосфором. Чтобы поддерживать свечение, экран должен быть подвержен периодическому воздействию луча от электронно-лучевой трубки. Мерцание становится заметным, если интервал времени между воздействиями слишком велик или недостаточно время послесвечения фосфоресцирующего вещества экрана.

Эффект мерцания может также усугубляться ярким экраном и большим углом зрения к нему. Устранению мерцания как проблеме эргономики в последнее время уделяется все больше внимания - мерцание экрана, таким образом, становится ключевым коммерческим показателем товара. Уменьшение мерцания достигается увеличением частоты регенерации (обновления) экрана на каждом уровне разрешения. Стандарт VESA рекомендует использовать частоту не менее 85 Гц.

Дрожание (Jitter)

Дрожание изображения возникает вследствие высокочастотных вибраций отверстий маски монитора, вызванных как взаимовлиянием сети, сигналов видео, смещения, блока управления микропроцессорными цепями, так и неправильной организацией заземления. Термин «дрожание» относится к колебаниям с частотами выше 30 Гц. При частотах от 1 до 30 Гц чаще употребляют термин «плавание», а ниже 1 Гц - «дрейф». Дрожание в той или иной степени свойственно всем мониторам. Хотя незначительное дрожание может остаться для пользователя незаметным, оно все же вызывает утомление глаз и должно быть отрегулировано. В части 3 ISO 9241 (Предписания по эргономике) допускается диагональное отклонение точки не более 0,1 мм.

Классификация мониторов по типу маски

Современные мониторы с любой маской имеют практически плоскую форму экрана, благодаря которой существенно снижаются искажения геометрии, особенно по углам. Поэтому тип маски по форме экрана определить не так просто.

На сегодняшний день в ЭЛТ-дисплеях используются три основные технологии формирования матриц и масок для RGB-триад:

  • трехточечная теневая маска (DOT-TRIO SHADOW-MASK CRT);
  • щелевая апертурная решетка (APERTURE-GRILLE CRT);
  • гнездовая маска (SLOT-MASK CRT).
Тип маски можно определить, посмотрев на экран в 10-20-кратную лупу. Однако при создании мониторов помимо масок используются различные отклоняющие системы и другая электроника. Хотя сам экран и является наиболее важным фактором, определяющим эксплуатационные параметры дисплея, отклоняющая система и видеоусилитель также играют важную роль. Поэтому не следует думать, что при использовании одного и того же типа матрицы изготовители получают мониторы с одинаковыми параметрами.

Изготовители различных моделей говорят о больших преимуществах именно своей технологии, но тот факт, что на рынке предлагается несколько моделей и, кроме того, многие производители мониторов выпускают модели с различными типами матриц, показывает, что однозначного выбора не бывает. Предпочтения определяются только вкусами пользователя и его задачами.

ЭЛТ-мониторы с трехточечной теневой маской

Наиболее старая и широко используемая технология с так называемой теневой маской использует перфорированную металлическую пластину, помещаемую перед люминофором. Она маскирует три отдельных луча, каждый из которых управляется собственной электронной пушкой. Маскирование обеспечивает необходимую концентрацию каждого луча и обеспечивает его попадание только на нужный цветовой участок люминофора. Однако практика показывает, что ни один из мониторов не обеспечивает идеального выполнения этой задачи по всей поверхности экрана.

Ранние ЭЛТ-дисплеи с теневой маской имели выраженную криволинейную (сферическую) поверхность. Это позволяло добиваться лучшей фокусировки и уменьшало нежелательные эффекты и отклонения, вызываемые нагревом. В настоящее время большинство профессиональных и специализированных мониторов имеет практически плоский прямоугольный экран (типа FST).

Мониторы с теневой маской имеют свои преимущества:

  • текст выглядит лучше (особенно при малом размере точек);
  • цвета «натуральнее» и точнее (что особенно важно для компьютерной графики и в полиграфии);
  • отлаженная технология обеспечивает лучшее соотношение стоимости и эксплуатационных качеств.

Из недостатков можно отметить меньшую яркость таких мониторов, недостаточную контрастность изображения и более короткий срок службы, по сравнению с другими типами дисплеев.

ЭЛТ-мониторы с щелевой апертурной решеткой

Новую технологию изготовления CRT-дисплеев - с апертурной решеткой вместо традиционной точечной маски - впервые предложила фирма Sony, выпустив мониторы с трубкой Trinitron. В электронных пушках этих трубок используются динамические квадрупольные магнитные линзы, позволяющие формировать очень тонкий и точно направленный пучок электронов.

Благодаря такому решению значительно снижается астигматизм - рассеивание электронного пучка, приводящее к недостаточной резкости и контрастности изображения (особенно по горизонтали). Но главное отличие от технологии с теневой маской здесь состоит в том, что вместо металлической пластины с круглыми отверстиями, выполняющей функции маски, здесь используется вертикальная проволочная сетка (апертурная решетка) и люминофор наносится не в виде точек, а в виде вертикальных полос.

Мониторы с апертурной решеткой имеют следующие преимущества:

  • в тонкой сетке меньше металла, что позволяет использовать больше энергии электронов на реакцию с люминофором, а значит, меньше рассеивается на решетке и уходит в тепло;
  • увеличенная площадь покрытия люминофором позволяет повысить яркость излучения при той же интенсивности пучка электронов;
  • в связи со значительным общим повышением яркости можно использовать более темное стекло и получать на экране более контрастное изображение;
  • экран монитора с апертурной решеткой более плоский, чем у дисплеев с теневой маской, а в последних моделях даже не цилиндрический, как раньше, а почти абсолютно ровный, что гораздо удобнее в работе и уменьшает количество бликов и отражений.

Из недостатков можно отметить только «неприятные» горизонтальные нити - ограничители, используемые в таких мониторах для придания проволочной сетке дополнительной жесткости. Хотя проволочки в апертурной решетке туго натянуты, в процессе работы они могут вибрировать под воздействием пучков электронов. Демпферная нить (а в экранах больших размеров - две нити) служит для ослабления колебаний и гашения вибрации. По этим нитям мониторы с трубкой Trinitron можно отличить от других моделей. Кроме того, если в процессе работы такого монитора его слегка качнуть, колебания изображения будут видны даже невооруженным глазом. Именно поэтому мониторы с этими трубками не рекомендуется ставить на системные блоки типа desktop.

Остается добавить, что в электронно-лучевых трубках Sony Trinitron используется система трех пучков электронов, излучаемых одной пушкой, а в трубках с подобной апертурной решеткой компании Mitsubishi - Diamondtron - система из трех лучей с тремя пушками.

ЭЛТ-мониторы с гнездовой маской

И, наконец, последний, комбинированный тип электронно-лучевой трубки, так называемый CromaСlear/OptiClear (впервые предложенный фирмой NEC) - это вариант теневой маски, в которой используются не круглые отверстия, а щели, как в апертурной решетке, только короткие - «пунктиром», и люминофор наносится в виде таких же эллиптических полосок, а полученные таким образом гнезда для большей равномерности расположены в «шахматном» порядке.

Такая гибридная технология позволяет сочетать все преимущества вышеописанных типов при отсутствии их недостатков. Четкий и ясный текст, натуральные, но достаточно яркие цвета и высокая контрастность изображения неизменно привлекают к этим мониторам все группы пользователей.

В статье использованы некоторые материалы с русскоязычного Web-сайта компании Samsung Electronics (http://www.samsung.ru).

КомпьютерПресс 5"2000

Уж скоро полвека, как мы видим мир на поверхности экранов. Телевизор из дорогой игрушки стал обыденным бытовым устройством. За это время в технологии электронно-лучевых трубок были перепробованы разнообразнейшие решения. И персональный компьютер сначала взял в качестве основного устройства отображения телевизор как он есть. Вскоре выяснилось, что традиционно выпуклый экран на расстоянии 25—40 сантиметров выглядит по меньшей мере некрасиво, буквы плохо читаются, и работать за таким экраном в течение многих часов практически невозможно. Так началась первая эпоха компьютерных мониторов.



Это была эпоха мониторов, устроенных точно как телевизор, только с несколькими видеорежимами, с разными формами кинескопа и схемами управления. Понеслись цифры и термины...

    320x200, 640x480, 800x600...

    87/43 герца чересстрочной развертки или 60 герц прогрессивной?..

    Соревнование за рост частоты кадровой развертки...

    Размер точки, 0.21 стоит вдвое больше, чем 0.28...

Помните это?

Развертка на экране формировалась исключительно аналоговыми методами. Схемы ее становились все изощреннее, и их проектирование на какое-то время превратилось в сложное искусство на фоне конвейерного производства из типовых деталей.



Потом подешевели однокристальные ЭВМ. Настолько, что заменить четыре десятка транзисторов и сотни сопротивлений одной микросхемой стало не только полезно, но и выгодно. Появилось понятия «сохранение настроек монитора» и «экранное меню». Настройка геометрии и муара, сведение и фокусировка. Именно цифровая технология, при которой все формы управляющих напряжений и токов программируются в схему управления, позволила создать монитор с плоским экраном электронно-лучевой трубки и высоким качеством изображения. Но принцип действия остался прежним. На монитор все так же подается аналоговый видеосигнал, усиливается, превращается в ток электронного луча, электроны луча отклоняются магнитным полем в горловине кинескопа, преодолевают большое расстояние в вакууме и достигают люминофора на поверхности экрана. Удар. Люминофор светится. Вторая эпоха.



Господство аналогового способа отображения компьютерной (то есть, по самой сути своей, — цифровой) информации не могло продолжаться бесконечно. Размытость, неидеальная геометрия картинки, затраты энергии, высокие напряжения, больший вред для здоровья — технологически неизбежны для ЭЛТ.

Третья эпоха — развитие технологий, которые мы условно называем «плоские мониторы», имея в виду отсутствие большого вакуумного объема электронно-лучевой трубки. Внутреннее устройство «матриц» таких мониторов довольно разнообразно. Но с точки зрения пользователя все это — расположенные на плоскости одиночные пикселы фиксированного размера с четкими границами и идеальной геометрией. И гораздо меньшие затраты энергии на ту же яркость свечения. И прямая, без потерь на преобразование и без искажения четкости, передача цифровой информации по кабелю DVI. От пиксела в памяти видеокарты — к пикселу на мониторе. Один к одному. Торжество справедливости.

Выбор модели

Все-таки — ЭЛТ или ЖК?

Если для вас важен реализм картинки, вы ориентируетесь на максимальные впечатления от красоты 3D-сцен, ЭЛТ-монитор может оказаться лучше . И вот почему:

    Любой градиент яркости и цвета выглядит плавнее.

    Гамму можно выставить в более широких пределах. Это позволяет увеличить контраст и различимость деталей в тенях.

    ЭЛТ-монитор одинаково хорошо воспроизводит разные разрешения. Иногда бывает полезно его уменьшить, например, когда видеокарта не справляется с особо требовательной игрой при включенном сглаживании, анизотропной фильтрации и прочих функциях улучшения картинки.

    Глаз, как оптическая система, отнюдь не идеален и не требует математической точности отображения. Незначительные искажения геометрии не портят впечатления.

Помимо прочего, если вы рисуете или обрабатываете фотографии, средний «трубочный» монитор обеспечит заведомо лучшую цветопередачу, чем средний жидкокристаллический.

А какие аргументы в пользу ЖК ?

    Отсутствие аналоговых искажений при передаче данных от видеокарты к монитору.

    Неизменно правильная геометрия.

    Экономичность (ЖК потребляет в 3 раза меньше, чем ЭЛТ).

    Отсутствие не слишком полезного для здоровья электростатического поля.

    Принципиальное отсутствие не более полезного тормозного излучения .

На заметку: тормозное излучение — это рентгеновские лучи, неизменно возникающие в любой электронно-лучевой трубке. Механизм их появления очень прост. Электроны, бомбардирующие слой люминофора, вообще говоря, имеют разные скорости. Есть среди них и такие, которым хватает скорости, чтобы при соударении испустить квант света в коротковолновой, рентгеновской области спектра. Надежных способов полностью его заблокировать, сохранив при этом прозрачность экрана в видимой области, в природе не существует.

Наконец, ЖК-монитор прекрасно помещается на столе. Скажете, это не принципиально? Может, пятнадцатидюймовый трубочный монитор и не заставит своего обладателя потесниться. А как быть с 21-дюймовым? Вот то-то.

Параметры ЭЛТ-монитора

Главных параметров немного. В первую очередь, это поддерживаемые разрешения экрана в пикселях и частоты обновления (они же частоты кадровой развертки). Тут важно понимать, что субъективная заметность мерцания экрана для разных людей различна. Кому-то хватает 70 Гц для комфортной работы, а кому мало и 100. Чтобы быть уверенным в том, что вам хватает конкретной частоты — советую посмотреть не прямо на монитор, а в сторону, чтобы экран оказался на границе поля зрения глаза. Если его мерцание хорошо заметно, попробуйте поднять частоту. И ориентируйтесь на полученные таким образом цифры при выборе модели.

Есть еще параметры геометрические, то есть — форма кинескопа. Этих самых форм существует три вида:

    Плоский . При этом стекло кинескопа плоское и со стороны зрителя, и изнутри, со стороны люминофора. Обозначается «Flat» и обеспечивает максимально возможное качество картинки.

    Псевдо-плоский . Снаружи экран тоже ровный, хоть линейку прикладывай, но изнутри стекло имеет полукруглую форму. В прайс-листах обозначается «DynaFlat» и создает у пользователя впечатление, что он купил монитор с плоским экраном. Обманчивое, естественно.

    Круглый. Самая естественная форма для экрана ЭЛТ-монитора.

Параметры ЖК-монитора

Самый популярный критерий — скорость матрицы , иногда упоминается также как «время отклика ». Указывается в миллисекундах. По сути, этот параметр определяет максимальные FPS, доступные для отображения. Если вам хочется, чтобы число 80 FPS скорости отображения видеокарты в 3D-игре соответствовало реальной картинке на мониторе, придется искать монитор с быстродействием матрицы не ниже 12.5 миллисекунд (1 секунду поделить на 80 FPS). Впрочем, это не так сложно. Ведь мониторы с 8 и 4 миллисекундами уже никого не удивляют, а компания Samsung объявила в феврале о выходе серии ЖК-мониторов SyncMaster 740BF и 940BF, имеющих время отклика 2 мс.

Несмотря на столь радужные цифры, движущиеся картинки на таких мониторах вполне могут оказаться не реалистично цветными, а разноцветными. Реальное время каждого конкретного цветового перехода обычно превышает указанную производителем величину и для разных цветов отличается. Но с другой стороны, такие фантастические частоты кадров нужны далеко не всегда.

Продолжаем инвентаризацию. Следующий параметр — максимальное отношение яркостей белого и черного участков (иногда упоминается как «максимальный контраст » или «контрастная яркость ») — обычно указывается через двоеточие, вроде вот такого: 400:1. От этого параметра зависит реалистичность цветопередачи, в особенности темных тонов. Высокое отношение яркостей позволяет хорошо различать детали изображения даже в условиях недостаточной освещенности сцены. Кроме того, высокое отношение позволяет регулировать в более широких пределах гамму. У средних ЭЛТ мониторов это соотношение достигает 2000:1 и на современном уровне легко реализуется. Однако у ЖК мониторов оно определяется тем, насколько близки к идеалу поляризационные свойства жидкого кристалла, и тем самым — насколько полно гасится свет при перпендикулярных плоскостях поляризации. Иначе говоря, ЭЛТ-монитор как бы «всегда погашен», а электронный луч выборочно освещает какие-то его участки. ЖК — наоборот, как бы «всегда светится», а жидкокристаллические элементы работают шторками, выборочно затемняя некоторые элементы. Полнотой этого затемнения и определяется отношение яркостей.

200:1 считается обычным, а 700:1 — высоким значением отношения яркостей для ЖК-мониторов. На практике играть в реалистичные 3D-игры с параметрами 200:1 очень трудно. Слишком уж плохо отображаются детали в тенях, а при изменении гаммы вместо плавных градиентов по всей картинке будут отчетливо видны «ступеньки» яркости и слишком однородные пятна.

Напоследок — несколько более очевидных характеристик:

Физическое разрешение экрана . В отличие от ЭЛТ, оно единственное. Сколько есть пикселов по горизонтали и вертикали — столько есть. Конечно, монитор позволит растянуть под свой размер картинку более низкого разрешения, но потери качества не избежать. По этой причине стандартный текстовый режим смотрится на ЖК весьма противно.

Угол обзора в градусах . Для одинокого игрока за монитором — не самый важный параметр, но всегда ли вы будете одни?

Это интересно: далеко не всегда угол обзора стараются сделать больше. Например, экраны уличных банкоматов намеренно дают минимально возможный угол, чтобы желающие заглянуть через плечо ничего там не увидели. Если не обращали внимания — можете убедиться в любой момент.

И еще один совет. Даже если у вас сейчас в компьютере стоит видеокарта без DVI-разъема, берите монитор с DVI-интерфейсом. Будет «на вырост». Ведь на аналоговом VGA-кабеле принципиально не достигается хорошее качество картинки при разрешениях более 1024x768. Тут сказывается и цифро-аналоговое преобразование, и слабая защищенность аналогового сигнала от помех и искажений.

Проверка покупаемого монитора

Покупая монитор, обязательно проверьте его на месте. Нет, никто и не думал вас обманывать! Просто все экземпляры разные, а времени на внимательное тестирование у фирмы или магазина обычно попросту нет. Монитор — штука слишком тяжелая, чтобы возить его туда-обратно.

Здесь я описываю прежде всего тесты, выявляющие неустранимые дефекты. Те, с которыми монитор «родился и умрет». Те, что не исправят никакие настройки и никакой ремонт, кроме замены главной части аппарата (кинескопа или матрицы, соотвественно).

ЭЛТ-мониторы

После включения дать прогреться не менее 10-15 минут.

За это время режимы работы всей аналоговой части монитора приходят в заведомо стабильное состояние. А затем — приступайте.

Едва ли не самый важный инструмент в этом — программа Nokia Test. Достаточно перевести монитор в наиболее желательный режим и посмотреть весь набор тестов этой программы. Наиболее интересны для нас сейчас тесты на сведение (красные, синие и зеленые крестики), на четкость чтения (мелкие буквы, readability) и на муар (мелкая шахматная сетка, moire).

На тесте сведения обязательно нажмите на мониторе кнопку (или выберите пункт меню) Degauss и после этого посмотрите, нет ли наклона и искривления одних цветных линий относительно других. Смещения по горизонтали и вертикали исправимы регулировками, за совсем уж редчайшими исключениями времен мамонтов. А вот любые локальные искривления и наклоны — неисправимы.

Не стоит брать монитор ЭЛТ со встроенными колонками. В большинстве случаев эти колонки дешевые, и магнитная система их динамиков плохо экранирована. Даже если они не используются, магниты ощутимо портят сведение в уголках экрана. Пожалуй, более ярким образцом блеска инженерной мысли стал бы только винчестер со встроенным магнитом. На ЖК-мониторах такого влияния, естественно, нет.

На тесте четкости чтения следует внимательно посмотреть на равномерность фокусировки по площади экрана. Любое размытое место, любое нарушение четкости картинки по площади — показатель неустранимой неточности изготовления.

Тестируя муар , вы прежде всего проверяете стабильность блока питания и схемы развертки. Как таковой муар на цветном ЭЛТ-мониторе есть всегда, так как люминофор имеет дискретную структуру, не совпадающую с пиксельной структурой картинки. Однако картинка цветного муара должна стоять. Ни в коем случае не плыть и не дрожать. Плавающая или дрожащая картинка — признак недостаточно хорошо отфильтрованного напряжения питания или плохо работающей синхронизации. Иначе говоря — признак плохого, негодного устройства.

Это важно: многие современные мониторы обладают искусственной маскировкой муара, которая осуществляется сдвигом картинки вправо-влево от кадра к кадру на расстояние, меньшее размера пиксела. В настройках такого монитора это пункт Moire. При тестировании монитора обязательно выключите эту маскировку, сведя ее регулировку в ноль. В дальнейшем ее можно будет включить и подобрать наиболее субъективно удачное ее положение.

ЖК-мониторы

Главная проверка — на битые пиксели . Помните, что до трех битых пикселей на экране может быть по техническим условиям выпуска матрицы.

А вот 4 — это повод для замены устройства. Для проверки следует как минимум залить экран целиком цветами: черным, белым, красным, голубым, синим, желтым, зеленым и фиолетовым. И в каждой из этих заливок пытаться найти точки отличающегося цвета. Так же очень рекомендуется сделать тест шахматной сеткой: битый пиксель может проявиться именно в этом режиме.

Далее на повестке — проверка равномерности подсветки , отсутствия слабых повреждений . При белой и черной заливке немного отклонитесь влево и вправо, вверх и вниз. В пределах описанного в характеристиках модели монитора угла рассматривания картинка вообще не должна меняться или очень незначительно темнеть. А при приближении к границам угла рассматривания она должна равномерно менять цвет, без пятен и кривых радужных разводов. Ключевое слово — равномерно . Каждое явно видимое пятно — признак того, что монитор был механически продавлен в этой точке, и с таким лучше не связываться.

И, наконец, главное

Итак, вы проанализировали заочно, по интернету ли, по каталогам, параметры мониторов, составили список моделей, которые вас устраивают. А теперь идете в крупный магазин, в котором есть в наличии хотя бы три-четыре модели из вашего списка, и смотрите «живьем».

Помните, каковы бы ни были формальные параметры, что бы вам ни говорил продавец, что бы сейчас тут ни писал я, за купленным экраном вы проведете многие часы, месяцы, годы. И если что-то не понравилось в конкретной модели — отодвигайте в сторону. Ваше мнение окончательное.

Здравствуйте, читатели моего блога, которых заинтересовал ЭЛТ монитор. Я постараюсь, чтобы эта статья была интересна всем, и тем, кто уже не застал их, и тем, у кого данное устройство приятно ассоциируется с первым опытом освоения персонального компьютера.

Сегодня дисплеи ПК представляют собой плоские и тонкие экраны. Но в некоторых малобюджетных организациях можно встретить и массивные кинескопные мониторы. С ними связана целая эпоха в развитии мультимедийных технологий.

Свое официальное название ЭЛТ мониторы получили от русской аббревиатуры термина «электронно-лучевая трубка». Английским аналогом которой является фраза Cathode Ray Tube с соответствующим сокращением CRT.

До того как в домах появились ПК, данный электротехнический прибор был представлен в нашем быту кинескопными телевизорами. Они одно время даже использовались в качестве дисплеев (прикиньте). Но об этом позже, а сейчас давайте немного разберемся в принципе действия ЭЛТ, что позволит нам говорить о таких мониторах на боле серьезном уровне.

Прогресс кинескопных мониторов

История развития электронно-лучевой трубки и ее превращение в ЭЛТ мониторы с достойным разрешением экрана насыщена интересными открытиями и изобретениями. Сначала это были приборы типа осциллограф, экраны радаров РЛС. Потом развитие телевидения подарило нам более удобные для просмотра устройства.

Если говорить конкретно о дисплеях персональных компьютеров, доступных широкому кругу пользователей, то титул первого моника наверное, стоит отдать векторной дисплейной станции IBM 2250. Создали его в 1964 году для коммерческого использования вместе с ЭВМ серии System/360.

Компании IBM принадлежит много разработок по оснащению ПК мониторами, в том числе и проектирование первых видеоадаптеров, ставших прообразом современных мощных и стандартов передаваемого на дисплей изображения.

Так, в 1987 увидел свет адаптер VGA (Video Graphics Array) работающий с разрешением 640×480 и соотношением сторон 4:3. Эти параметры оставались базовыми для большинства выпускаемых мониторов и телевизоров до появления широкоформатных стандартов. В процессе эволюции ЭЛТ мониторов происходило множество изменений в технологии их производства. Но я хочу отдельно остановиться на таких моментах:

Что определяет форма пикселя?

Зная, как работает кинескоп, мы сможем разобраться в особенностях ЭЛТ мониторов. Луч, выпускаемый электронной пушкой, отклоняется индукционным магнитом, чтобы попасть точно в специальные отверстия в маске, расположенной перед экраном.

Они формируют пиксель, а их форма определяет конфигурацию цветных точек и качественные параметры получаемой картинки:

  • Классические круглые отверстия, центры которых расположены по вершинам условного равностороннего треугольника образуют теневую маску. Матрица с равномерно распределенными пикселями обеспечивает максимальное качество при воспроизведении линий. И идеально подходит для офисных конструкторских приложений.
  • Для повышения яркости и контрастности экрана компания Sony использовали апертурную маску. Там вместо точек светились расположенные рядом прямоугольные блоки. Это позволяло максимально использовать площадь экрана (мониторы Sony Trinitron, Mitsubishi Diamondtron).
  • Совместить достоинства этих двух технологий удалось в щелевой решетке, где отверстия имели вид округленных сверху и снизу вытянутых прямоугольников. А блоки пикселей смещались относительно друг друга по вертикали. Такая маска применялась в дисплеях NEC ChromaClear, LG Flatron, Panasonic PureFlat;

Но не только форма пикселя определяла достоинства монитора. Со временем и его размер стал иметь определяющее значение. Он изменялся в пределах от 0,28 до 0,20 мм, и маска с меньшими, более плотными отверстиями позволяла создавать изображения высокого разрешения.

Важной и, увы, заметной для потребителя характеристикой оставалась частота обновления экрана, выражавшаяся в мерцании изображения. Разработчики старались изо всех сил, и постепенно вместо чувствительных 60 Гц динамика смены выводимой картинки достигла 75, 85 и даже 100 Гц. Последний показатель уже позволял работать с максимальным комфортом и глаза почти не уставали.

Работая над улучшением качества продолжалась. Разработчики не забывали и о таком неприятном явлении, как низкочастотное электромагнитное излучение. В таких экранах это излучение направленно электронной пушкой прямо на пользователя. Для устранения этого недостатка использовались всевозможные технологии и применялись разные защитные экраны и защитные покрытия для экранов.

Ужесточались и требования к безопасности мониторов, которые нашли отражение в постоянно обновляемых стандартах: MPR I, MPR II, TCO"92, TCO"95 и TCO"99.

Монитор, которому доверяют профессионалы

Работы над постоянным совершенствованием мультимедийной видео техники и технологий со временем привели к появлению цифрового видео высокой четкости. Чуть позже появились тонкие экраны с подсветкой от экономных светодиодных ламп. Эти дисплеи стали воплощением мечты, ведь они:

  • легче и компактней;
  • отличались низким уровнем энергопотребления;
  • намного безопаснее;
  • не имели мерцания даже на более низких частотах (там мерцание другого рода);
  • имели несколько поддерживаемых разъёмов;

И не специалистам было понятно, что эпоха CRT мониторов завершилась. И казалось, что возврата к этим устройствам уже не будет. Но некоторые профессионалы, знающие все особенности новых и старых экранов, не спешили избавляться от высококачественных ЭЛТ дисплеев. Ведь по некоторым техническим характеристикам они явно выигрывали у своих ЖК конкурентов:

  • отличный угол обзора, позволял читать информацию, располагаясь сбоку от экрана;
  • ЭЛТ технология позволяла без искажений отображать картинку с любым разрешением, даже при использовании масштабирования;
  • понятие неработающих пикселей здесь отсутствует;
  • время инерции остаточного изображения пренебрежительно мало:
  • практически неограниченный диапазон отображаемых оттенков и потрясающая фотореалистичность цветопередачи;

Именно последние два качества оставили кинескопным дисплеям шанс еще раз проявить себя. И они оказались до сих пор востребованы у игроманов и, особенно, у специалистов, работающих в сфере графического дизайна и обработки фотографий.

Вот такая длинная и интересная история у старого, доброго друга, называемого ЭЛТ монитор. И если у вас дома или на предприятии еще остался такой, вы можете снова опробовать его в деле и по-новому оценить его качества.

На этом я прощаюсь с вами, мои дорогие читатели.

Большинство используемых и выпускаемых ныне мониторов построены на электронно-лучевых трубках (ЭЛТ). В английском языке - Cathode Ray Tube (CRT), дословно - катодно-лучевая трубка. Иногда CRT расшифровывают как Cathode Ray Terminal, что соответствует уже не самой трубке, а устройству, на ней основанному. Электронно-лучевая технология была разработана немецким ученым Фердинандом Брауном в 1897 году и первоначально создавалась в качестве специального инструмента для измерения переменного тока, то есть для осциллографа.

Электронно-лучевая трубка, или кинескоп, - самый важный элемент монитора. Кинескоп состоит из герметичной стеклянной колбы, внутри которой находится вакуум (основные конструкционные узлы кинескопа показаны на рис. 1). Один из концов колбы узкий и длинный - это горловина. Другой - широкий и достаточно плоский - экран. Внутренняя стеклянная поверхность экрана покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т. п. Люминофор - это вещество, которое при бомбардировке заряженными частицами испускает свет. Заметим, что иногда люминофор называют фосфором, но это не верно, так как люминофор, используемый в покрытии ЭЛТ, не имеет ничего общего с фосфором. Более того, фосфор светится только в результате взаимодействия с кислородом воздуха при окислении до P 2 O 5 , и ссвечение длится очень недолго (кстати, белый фосфор - сильный яд).

Конструкция ЭЛТ

Рисунок 1. Конструкция электронно-лучевой трубки.

Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками.
Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы (см. рис. 2). Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку итмеют пониженный уровень излучения.

Конструкция отклоняющей системы

Рисунок 2. Устройство отклоняющей системы ЭЛТ.

Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а две другие - в вертикальной.
Изменение магнитного поля возникает под действием переменного тока, протекающего через катушки и изменяющегося по определенному закону (это, как правило, пилообразное изменение напряжения во времени), при этом катушки придают лучу нужное направление. Путь электронного луча на экране схематично показан на рис. 3. Сплошные линии - это активный ход луча, пунктир - обратный.

Путь электронного луча

Рисунок 3. Схема развертки электронного луча.

Частота перехода на новую линию называется частотой строчной (или горизонтальной) развертки. Частота перехода из нижнего правого угла в левый верхний называется частотой вертикальной (или кадровой) развертки. Амплитуда импульсов перенапряжения на катушках строчной развертки возрастает с частотой строк, поэтому этот узел оказывается одним из самых напряженных мест конструкции и одним из главных источников помех в широком диапазоне частот. Мощность, потребляемая узлами строчной развертки, также является одним из серьезных факторов, учитываемых при проектировании мониторов.
После отклоняющей системы поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию (E=mV 2 /2, где E-энергия, m-масса, v-скорость), часть из которой расходуется на свечение люминофора.

Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, то есть поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT мониторе используется три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся.

Известно, что глаза человека реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз не всегда может различить их). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов - триады).

Комбинации цветов

Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.

Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно различие в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой.

Итак, каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.

Теневая маска

Теневая маска (shadow mask) - самый распространенный тип масок. Она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.

Конструкция теневой маски

Рисунок 5. Конструкция теневой маски (увеличенно).

Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади (см. рис. 5, 6). Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара. Инвар (InVar) - магнитный сплав железа (64%) с никелем (36%). Этот материал имеет предельно низкий коэффициэнт теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов - зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.

Конструкция теневой маски 2

Рисунок 6. Конструкция теневой маски (общий вид).

Одним из слабых мест мониторов с теневой маской является ее термическая деформация. На рис. 7 показано, как часть лучей от электронно-лучевой пушки попадает на теневую маску, вследствие чего происходит нагрев и последующая деформация теневой маски. Происходящее смещение отверстий теневой маски приводит к возникновению эффекта пестроты экрана (смещения цветов RGB). Существенное влияние на качество монитора оказывает материал теневой маски. Предпочтительным материалом маски является инвар.

Конструкция отклоняющей системы 2

Рисунок 7. Конструкция отклоняющей системы.

Недостатки теневой маски хорошо известны: во-первых, это малое соотношение пропускаемых и задерживаемых маской электронов (только около 20-30% проходит через маску), что требует применения люминофоров с большой светоотдачей, а это в свою очередь ухудшает монохромность свечения, уменьшая диапазон цветопередачи, а во-вторых, обеспечить точное совпадение трех не лежащих в одной плоскости лучей при отклонении их на большие углы довольно трудно. Теневая маска применяется в большинстве современных мониторов - Hitachi, Panasonic, Samsung, Daewoo, LG, Nokia, ViewSonic.

Шаг теневой маски

Рисунок 8. Шаг теневой маски.

Минимальное расстояние между люминофорными элементами одинакового цвета в соседних строках называется шагом точек (dot pitch) и является индексом качества изображения (см. рис. 8). Шаг точек обычно измеряется в миллиметрах (мм). Чем меньше значение шага точек, тем выше качество воспроизводимого на мониторе изображения. Расстояние между двумя соседними точками по горизонтали равно шагу точек, умноженному на 0,866.

Апертурная решетка

Есть еще один вид трубок, в которых используется Aperture Grille (апертурная решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология, где имеется три лучевые пушки, три катода и три модулятора, но при этом имеется одна общая фокусировка (см. рис. 9).

Конструкция апертурной решетки

Рисунок 9. Конструкция апертурной решетки.

Апертурная решетка - это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но одинаковые по сути, например, технология Trinitron от Sony, DiamondTron от Mitsubishi и SonicTron от ViewSonic. Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий (см. рис. 10). Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска, применяемая в трубках фирмы Sony (Mitsubishi, ViewSonic), представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной (одной в 15", двух в 17", трех и более в 21") проволочке, тень от которой видна на экране. Эта проволочка применяется для гашения колебаний и называется damper wire. Ее хорошо видно, особенно при светлом фоне изображения на мониторе. Некоторым пользователям эти линии принципиально не нравятся, другие же наоборот довольны и используют их в качестве горизонтальной линейки.

Шаг апертурной решетки



Загрузка...