sonyps4.ru

Солнечные батареи. Виды и устройство

Когда-то, с помощью зеркал, нагревали воду, а сейчас создают целые электростанции на солнечных батареях. Разберем принцип работы солнечной батареи, и почему они так эффективны для получения энергии.

Фотоэлектрические преобразователи солнечной энергии (ФЭП)– это полное название солнечных батарей. Принципы их работы известны более 30 лет, но активно внедряться в быту они начали всего несколько лет назад. Для того чтобы правильно подобрать панели для системы альтернативного обеспечения энергией, необходимо понять принцип их работы.

Принцип работы солнечной батареи

Панель преобразователя состоит из двух тонких пластин из чистого кремния, сложенных вместе. На одну пластину наносят бор, а на вторую фосфор. В слоях, покрытых фосфором, возникают свободные электроны, а в покрытых бором – отсутствующие электроны. Под влиянием солнечного света электроны начинают движение частиц, и между ними возникает электрический ток. Чтобы снять ток с пластин их пропаивают тонкими полосками специально обработанной меди. Одной кремниевой пластины хватит для зарядки маленького фонарика. Соответственно, чем больше площадь панели, тем больше энергии она вырабатывает.

Спаянные между собой пластины,пропускающие УФ лучи, ламинируют пленкой и крепят на стекло. Скрепленные слои заключают в алюминиевую раму.

КПД солнечных батарей

Коэффициент полезного действия панелей преобразователя зависит от нескольких факторов и для традиционных солнечных батарей не превышает 25%, хотя сейчас, используя следящую систему, можно достигнуть показателя и в 40-50 %. Эта система устроена так, чтобы батарея поворачивалась в сторону солнца. Площадь батареи напрямую влияет на ее мощность – первые солнечные батареи, с которыми мы познакомились, были в калькуляторах. Для обеспечения нагрева воды потребуется минимум шесть панелей установленных на крыше.

Также КПД зависит от материала модулей. Пластины изготавливают из монокристаллического, поликристаллического и аморфного кремния и пленок. Самые распространенные и популярные на сегодня (благодаря доступной стоимости) тонкопленочные панели. Они сделаны из тех же материалов, но немного легче, правда, проигрывают по производительности. Максимальный КПД равен 25 %.

Фотоэлектрические системы

Для обеспечения жилья энергией солнца одних панелей не достаточно, для этого понадобится фотоэлектрическая система (ФЭС). Такие системы бывают трех типов:

  • автономные ФЭС – для отдельно стоящих частных домов, в нежилой местности
  • ФЭС соединенные с электросетью – часть приборов запитана от ФЭС, а часть – от централизованной электросети
  • резервные ФЭС – используется только в случае отключения централизованного энергоснабжения.

ФЭС любого типа обязательно состоит из кабелей, контроллера, инвертора и аккумулятора.

Будущее солнечных батарей

По данным исследований экологов и геологов, запасов нефти и газа осталось еще лет на 100. Источники природной энергии (воды, ветра и солнца) неисчерпаемы.

В передовых европейских странах обеспечение новостроек альтернативной энергией – прямая обязанность застройщиков уже с 2007 года. В нашей стране эти проекты продвигаются благодаря энтузиастам от экологии, собирающим вручную ФЭС из подручных материалов. Но таких единицы, веди самому сделать их довольно сложно.

Ряд украинских производителей («Аванте», «Атмосфера», «Ітнелкон України», «СІНТЕК», «Техно-АС») уже выпускают такие панели и обустраивают ФЭС по всей стране. Стоимость продукции, к сожалению, в том же диапазоне, что и зарубежные бренды (Buderus, Wolf, Rehau, Vaillant, Viessmann, Chromagen, Ferroli, Rucelf, Solver).

Когда-то фотоэлементы использовались почти исключительно в космосе, например, в качестве основного источника энергии спутников. С тех пор солнечные батареи все больше входят в нашу жизнь: ими покрывают крыши домов и машин, используют в наручных часах и даже в темных очках.

Но как же функционируют солнечные батареи? Каким образом удается преобразовывать энергию солнечных лучей в электричество?

Основные принципы

Солнечные панели состоят из фотоэлектрических ячеек, запакованных в общую рамку. Каждая из них сделана из полупроводникового материала, например, кремния, который чаще всего используется в солнечных батареях.

Когда лучи падают на полупроводник, тот нагревается, частично поглощая их энергию. Приток энергии высвобождает электроны внутри полупроводника. К фотоэлементу прилагается электрическое поле, которое направляет свободные электроны, заставляя их двигаться в определенном направлении. Этот поток электронов и образует электрический ток.

Если приложить металлические контакты к верху и к низу фотоэлемента, можно направить полученный ток по проводам и использовать его для работы различных устройств. Сила тока вместе с напряжением ячейки определяют мощность электроэнергии, производимой фотоэлементом.

Панель солнечной батареи

©depositphotos.com

Кремниевые полупроводники

Рассмотрим процесс высвобождения электронов на примере кремния. Атом кремния имеет 14 электронов в трех оболочках. Первые две оболочки полностью заполнены двумя и восемью электронами соответственно. Третья же оболочка наполовину пуста – в ней всего 4 электрона.

Благодаря этому кремний имеет кристаллическую форму; пытаясь заполнить пустоты в третьей оболочке, атомы кремния пытаются «делиться» электронами с соседями. Однако кристалл кремния в чистом виде – плохой проводник, поскольку практически все его электроны крепко сидят в кристаллической решетке.

Поэтому в солнечных батареях используют не чистый кремний, а кристаллы с небольшими примесями, т. е. в кремний вводятся атомы других веществ. На миллион атомов кремния приходится всего один атом, например, атом фосфора.

У фосфора пять электронов во внешней оболочке. Четыре из них образуют кристаллические связи с близлежащими атомами кремния, однако пятый электрон фактически остается «висеть» в пространстве, без всяких связей с соседними атомами.

Когда на кремний попадают солнечные лучи, его электроны получают дополнительную энергию, которой оказывается достаточно, чтобы оторвать их от соответствующих атомов. В результате на их месте остаются «дырки». Освободившиеся же электроны блуждают по кристаллической решетке как носители электрического тока. Встретив очередную «дырку», они заполняют ее.

Однако в чистом кремнии таких свободных электронов слишком мало из-за крепких связей атомов в кристаллической решетке. Совсем другое дело – кремний с примесью фосфора. Для высвобождения несвязанных электронов в атомах фосфора требуется приложить значительно меньшее количество энергии.

Большая часть таких электронов становится свободными носителями, которые можно эффективно направлять и использовать для получения электричества. Процесс добавления примесей для улучшения химических и физических свойств вещества называется легированием.

Кремний, легированный атомами фосфора, становится электронным полупроводником n-типа (от слова «negative», из-за отрицательного заряда электронов).

Кремний также легируют бором, у которого всего три электрона во внешней оболочке. В результате получается полупроводник p-типа (от «positive»), в котором возникают свободные положительно заряженные «дырки».

Устройство солнечной батареи

Что же произойдет, если соединить полупроводник n-типа с полупроводником p-типа? В первом из них образовалось множество свободных электронов, а во втором – много дырок. Электроны стремятся как можно быстрее заполнить дырки, но если это произойдет, оба полупроводника станут электрически нейтральными.

Вместо этого при проникновении свободных электронов в полупроводник p-типа, область на стыке обоих веществ заряжается, образуя барьер, перейти который не так просто. На границе p-n перехода возникает электрическое поле.

Энергии каждого фотона солнечного света хватает обычно на высвобождение одного электрона, а значит и на образование одной лишней дырки. Если это происходит вблизи p-n перехода, электрическое поле посылает свободный электрон на n-сторону, а дырку – на p-сторону.

Таким образом, равновесие нарушается еще больше, и если приложить к системе внешнее электрическое поле, свободные электроны потекут на p-сторону, чтобы заполнить дырки, создавая электрический ток.

К сожалению, кремний довольно хорошо отражает свет, а значит, значительная часть фотонов пропадает втуне. Чтобы уменьшить потери, фотоэлементы покрывают антибликовым покрытием. Наконец, чтобы защитить солнечную батарею от дождя и ветра, ее также принято покрывать стеклом.

Самое большое в мире судно на солнечных батареях PlanetSolar

©PlanetSolar/ Philip Plisson

Коэффициент полезного действия современных солнечных батарей не слишком высок. Большинство из них эффективно перерабатывают от 12 до 18 процентов попадающего на них солнечного света. Лучшие образцы перешли 40-процентный барьер КПД.

Получили настолько широкое распространение, что каждый пользователь может заказать комплектующие и самостоятельно своими руками собрать и установить фотоэлектрические панели. Конечно, вопрос цены остаётся актуален, ведь солнечные панели совсем не дешёвый вариант, зато это экологично. А стоимость, с каждым годом становится всё дешевле. Так что каждый, наверняка сталкивался с идеей использования такого источника электричества, но вот принцип работы солнечной батареи знает далеко не каждый.

Видео о том, как работает солнечная батарея

Принцип работы солнечной батареи

Чтобы понять как работает солнечная батарея необходимо разобраться из чего она состоит. Как правило солнечный источник энергии состоит из таких частей:

  • Генератор постоянного тока (она же солнечная панель)
  • Аккумулятор с контролем заряда и инвертором, преобразующим ток в переменный
  • В свою очередь панель состоит из фотоэлектрических преобразователей , которые, говоря простым языком, трансформируют солнечную энергию в электрическую. Чаще всего это поликристаллические или монокристаллические кремниевые батареи. Разница в КПД и технологии производства.

Принцип работы солнечной электростанции заключается в последовательном взаимодействии ряда элементов единой сети. Соединяются элементы в солнечной панели последовательно и параллельно. Делается это для того, чтобы увеличить мощность, напряжение и ток. Плюс, такое соединение обезопасит при выходе из строя одного элемента — остальные детали цепи.

  • Также батареи пронизаны так называемыми диодами. Принцип действия солнечных батарей основывается именно на этих элементах. Такие диоды предохраняют панель во время частичного затемнения. Во время таких затемнений, батарея не прерывает свою работу, но вырабатывает на четверть меньшую мощность. Суть в том, что диоды не дают перегревать солнечные элементы, которые во время затемнения начинают потреблять электричество вместо того, чтобы вырабатывать.
  • Дальше электроэнергия накапливается в аккумуляторах. А после уже отдаётся в систему. Важный момент в том, чтобы количество параллельно и последовательно соединённых элементов в солнечной панели, было расчитано таким образом, чтобы напряжение, которое подведено к аккумуляторам, превышало напряжение самого аккумулятора. Даже с учётом просадки. При этом нагрузочный ток солнечной батареи должен обеспечивать достаточное количество зарядного тока. Этот параметр обязательно учитывается при .
  • Ещё один важный фактор в работе солнечных панелей — полезная мощность. Именно этот показатель отражает экономичность использования для пользователя. Высчитывается такая мощность исходя из напряжения и выходного тока установки. А эти показатели в свою очередь зависят от силы солнечного освещения, которое попадает непосредственно на панель. Кстати, слишком большие температуры для работы солнечных батарей не полезны. Ведь при интенсивном нагревании солнцем, у электровырабатывающих элементов падает так называемая электродвижущая сила. Тем не менее, чем ярче освещения от солнца, тем больший ток вырабатывается.

Теперь немного формул о принципе работы солнечных батарей.

Как работает солнечная панель? К примеру, солнечная батарея замкнута на нагрузку с измерянным сопротивлением (Rн) . В цепи, следовательно, появляется ток (I) . При этом показатель I формируется в прямой зависимости от качества преобразователя в цепи, силой солнечного освещения и сопротивления. Далее разберём . — это напряжение, которое создаётся на зажимах солнечных батарей. В итоге зная эти показатели, мы можем высчитать мощность, которая появляется в нагрузке на установку: Pн = IнUн

Однако оптимальное сопротивление у каждой панели своё и зависит оно от уровня КПД.

  • При пасмурной погоде заряд аккумуляторов из-за меньшей выработки панелями электричества, естественно снижается. Во время такого процесса, электроэнергию принимает приёмник. Другими словами, аккумуляторы работают всегда либо на заряд либо на разряд. Этот механизм взаимодействия управляется контроллером.
  • Чаще всего работа аккумуляторов в цепи устроена таким образом, что они очень быстро заряжаются до 80-90%, а потом долго набирают остаток заряда. На сегодняшний день самые эффективные для использования в системах альтернативного снабжения электроэнергией батареи — гелевые. Такие батареи не требуют обслуживания и неприхотливы в условиях работы. При этом срок службы обычно достигает 10 лет.

Контроллер, резистор и инвертор

  • Контроллер необходим для подключения аккумуляторов в сеть. Он контролирует заряд.
  • Резистор поглощает избыточную мощность выработки электроэнергии.
  • Инвертор необходим для нормального снабжения электросети, кроме тех случаев, когда необходимо запитать приёмники, которые работают от постоянного напряжения, а не от переменного.

Конечно, разобраться во всех тонкостях работы сложно. Но надеемся, Вы найдёте ответы на страничках нашего сайта. Более наглядно работу солнечных элементов можно понять из графических схем.

Солнечные батареи уже сейчас используются для питания самой разнообразной техники: от мобильных гаджетов до электромобилей. Как устроены, какими бывают и на что способны современные солнечные батареи, вы узнаете из этой статьи.

История создания

Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.

Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).

Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.

Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.


Принцип работы

Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.


Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.

Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.


Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).

На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.


Существующие разновидности

Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.


Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.


В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях — и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.


Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).


Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).


На работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.


А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.


Крупнейшие производители

Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.


Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. , которая находится в штате Аризона, США – дело рук инженеров First Solar.

Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.

Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.


Выводы

Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.

Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».

Вы наверняка обращали внимание, что обычный калькулятор работает при минимальной освещённости любой лампой. Сравнивая размер солнечного элемента калькулятора и стандартного солнечного модуля, мощность излучения, можно представить производительность.

И это не учитывая, спектр солнечного света, который значительно шире видимого излучения лампы. Здесь и инфракрасный и ультрафиолетовый. Этот пример наглядно показывает как солнечная батарея, от рассвета до заката, молча делает своё дело. Хотя КПД, в пасмурную погоду, естественно ниже, чем в солнечную.

Еще, чем ниже температура окружающей среды, тем выше КПД солнечной батареи.

Работа солнечной батареи

В наше время солнечные батареи все больше используются не в космической промышленности, а в повседневной жизни для питания и зарядки портативных электронных устройств. А в некоторых странах энергия Солнца уже активно используется не только в больших промышленных солнечных электростанциях. но и в домашних мини электроустановках. Рассмотрим принцип работы солнечной батареи. Каким образом световая энергия Солнца преобразуется в электрическую? Многим может показаться, что принцип преобразования световой энергии в электрическую в солнечной батарее очень сложен для понимания человеку, не имеющему высшего образования в этой области. Однако это не так. Рассмотрим детально этот процесс на примере работы фотоэлектрического преобразователя, которые используются в солнечных батареях прямого преобразования.

Первые фотоэлектрические преобразователи были созданы инженерами компании Bell Labs в 1950 году специально для использования в космосе. Их основу составляют полупроводниковые элементы. Во время попадания на них солнечного света происходит процесс, основанный на фольтовольтаическом эффекте в неоднородных полупроводниках. преобразования энергии света в электричество. Это прямое преобразование одной энергии в другую, поскольку сам процесс одноступенчатый - не имеет промежуточных преобразований. Эффективность такого преобразования напрямую зависит от электрических и физических свойств полупроводников, а также их фотопроводимости - изменения электропроводимости вещества при его освещении.

Рассмотрим подробнее процессы, происходящие в p-n-переходе полупроводника при воздействии на него солнечного света. Напомню, что p-n-переход - это область полупроводника, где изменяется его тип проводимости с электроннойв дырочную. При попадании на переход солнечного света в n-области в результате перетекания зарядов образуется объемный положительный заряд, а в p-области - объемный отрицательный заряд. Таким образом, в области p-n-перехода возникает разность потенциалов. При объединении в определенном порядке нескольких фотоэлектрических преобразователей в модуль, а модулей в батарею, получаем солнечную батарею, способную генерировать электроэнергию.

Как работает солнечная батарея

Все живое на земле возникло, благодаря энергии солнца. Ежесекундно на поверхность планеты поступает огромное количество энергии в виде солнечного излучения. В то время, как мы сжигаем тысячи тонн угля и нефтепродуктов для обогрева жилища, страны, расположеные ближе к экватору изнывают от жары. Пустить энергию солнца на нужды человека - вот достойная для пытливых умов задача. В этой статье мы рассмотрим конструкцию прямого преобразователя солнечного света в электрическую энергию - солнечного элемента.

Тонкая пластина состоит из двух слоев кремния с различными физическими свойствами. Внутренний слой представляет собой чистый монокристаллический кремний, обладающий дырочной проводимостью. Снаружи он покрыт очень тонким слоем «загрязненного» кремния, например с примесью фосфора. На тыльную сторону пластины нанесен сплошной металлический контакт. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход.

Возникший на переходе потенциальный барьер препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электронно-дырочные пары. Электроны, генерируемые в p-слое вблизи p-n-перехода, подходят к p-n-переходу и существующим в нем электрическим полем выносятся в n-область.

Аналогично и избыточные дырки, созданные в n-слое, частично переносятся в p-слой. В результате n-слой приобретает дополнительный отрицательный заряд, а p-слой - положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение. Отрицательному полюсу источника тока соответствует n-слой, а p-слой - положительному.

Большинство современных солнечных элементов обладают одним p-n-переходом. В таком элементе свободные носители заряда создаются только теми фотонами, энергия которых больше или равна ширине запрещенной зоны. Другими словами, фотоэлектрический отклик однопереходного элемента ограничен частью солнечного спектра, энергия которого выше ширины запрещенной зоны, а фотоны меньшей энергии не используются. Преодолеть это ограничение позвляют многослойные структуры из двух и более СЭ с различной шириной запрещенной зоны. Такие элементы называются многопереходными, каскадными или тандемными. Поскольку они работают со значительно большей частью солнечного спектра, эффективность фотоэлектрического преобразования у них выше. В типичном многопереходном солнечном элементе одиночные фотоэлементы расположены друг за другом таким образом, что солнечный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наибольшей энергией.

Батареи работают не от солнечных лучей, а от солнечного света в принципе. Электромагнитное излучение достигает земли в любое время года. Просто в пасмурную погоду энергии вырабатывается меньше. Например, мы устанавливали автономные фонари на солнечных батареях. Конечно, бывают небольшие промежутки, когда батареи не успевают полностью заряжаться. Но в целом за зиму это не так уж и часто происходит.

Интересно, что даже если на солнечную панель попадает снег, она все равно продолжает преобразовывать солнечную энергию. А за счет того, что фотоэлементы нагреваются, снег сам оттаивает. Принцип такой же, как подогрев стекла у машины.

Идеальная зимняя погода для солнечной батареи морозный безоблачный день. Иногда в такие дни даже рекорды по генерации можно устраивать.

Зимой эффективность солнечной батареи падает. В Москве и Подмосковье в среднем в месяц она вырабатывает в 8 раз меньше электроэнергии. Скажем, если летом для работы холодильника, компьютера и верхнего освещения дома нужен 1 кВт энергии, то зимой для надежности лучше запастись 2 кВт.

При этом на Дальнем Востоке продолжительность солнечного сияния больше, эффективность снижается всего в полтора-два раза. Ну и, конечно, чем южнее, тем меньше разница между зимним и летним периодом.

Так же важен угол наклона модулей. Можно выставить универсальный угол, на целый год. А можно каждый раз менять, в зависимости от сезона. Делают это не владельцы дома, а специалисты, которые выезжают на место.

Принцип работы солнечной батареи и их виды

Энергия Солнца используется в промышленности и в повседневной жизни во многих уголках мира. Принцип работы солнечной батареи несложен, и это является одним из качеств данной технологии, которая привлекает большое количество людей. Кремниевый фотогальванический элемент помогает преобразовывать солнечный свет в электричество. Свободные электроны становятся источником электрического тока.

Разобравшись, как работает солнечная батарея, ее легко можно сконструировать самостоятельно и использовать для личных нужд. Такие батареи надежны, легки в использовании и долговечны. Преимуществом такого устройства является то, что оно может быть разного размера в зависимости от необходимого количества энергии.

Стоит выделить отдельные виды солнечных батарей . тонкопленочные, монокристаллические и поликристаллические панели. Самым популярным видом батарей являются монокристаллические. Благодаря фотоэлектрическому эффекту в силиконовых ячейках солнечная энергия преобразуется в электроэнергию. Такие батареи обычно достаточно компактны, поскольку оптимальным количеством ячеек в них считается тридцать шесть. Такие батареи идеально подойдут для установки на неровной поверхности.

Принцип работы солнечной батареи для дома типа не сильно отличается. Благодаря прочному стеклопластиковому корпусу такие батареи могут быть использованы для получения энергии на кораблях. С их помощью можно обеспечить работу оборудования и подзаряжать аккумулятор. Такая установка не будет эффективно работать в облачную погоду. Также существуют определенные ограничения температур, при которых можно получать наибольшее количество энергии.

Большим спросом пользуются тонкопленочные батареи . Принцип работы солнечной батареи этого типа позволяет устанавливать ее в любом месте. Для таких батарей не нужны прямые солнечные лучи. Также эти батареи будут работать при большом количестве пыли. Недостатком таких солнечных батарей являются крупные габариты, из-за чего возникает необходимость в выделении большой площади под такие установки.

Источники: super-alternatiwa.narod.ru, scsiexplorer.com.ua, howitworks.iknowit.ru, recyclemag.ru, energorus.com

Кольский полуостров

Мальтийские рыцари

Дамаск - город мира

Чудеса и телепортация человека

Влюбленный в приведение

Записки современного экзорциста

Английский священник и экзорцист доктор Дональд Оманд услышал от медицинской сестры страшный рассказ о предсмертной истории умирающего человека. Этот человек...

Планирование длительной поездки в авто

При планировании длительной поездки, необходимо не только тщательно подготовиться самому, но и сделать то же самое со своим автомобилем. Важным вопросом...

Армейские грузовые автомобили

К моменту образования 5 августа 1940 года Латвийской ССР эта страна уже располагала своей компактной автомобильной промышленностью. Головным заводом являлся...

Адрианов вал

В истории часто случаются случаи, когда у известных исторических мест или архитектурных памятников есть аналоги, которые менее известны, или неизвестны совсем. ...

Как поверить в свои силы

Наука психология советует: прежде всего, следует понять, что от наших мыслей зависит очень многое. Если мы будем постоянно убеждать...

Превращение НЛО

Наиболее интригующим свойством неопознанных летающих объектов является изменение их размеров и формы. Особенно интересным является способность объектов разделяться на...

Ку-клукс клан - прошлое и настоящее

Первая организация куклуксклановцев закончила свое существование в начале 1870-х гг. когда президент Улисс С. Грант запретил подобные движения, издав закон...

Ракетный комплекс Авангард - технические характеристики и возможности

Новейший российский ракетный комплекс "Авангард" запущен в массовое производство, начата...

Истребитель Су 57 – характеристики и возможности

Истребитель пятого поколения Су 57 разработан в ОКБ им. Сухого...

Мотоциклы с карданным приводом

Мало купить мотоцикл и ездить на нём, заправляя его время...

История еды древних славян

Древние славяне, как и многие народы того времени, верили, что множество...

Как сделать мореный дуб в домашних условиях

Мореный дуб – прекрасный строительный материал. Его необычный цвет очень...

Народные приметы о жемчуге

В первую очередь, жемчуг является невероятно красивым камнем, который был...

Хвост у людей

Забавно, но хвост у человека есть. До определенного периода. Известно, ...

Толщина льда в Антарктиде

Несмотря на сокращение площади материкового льда Антарктиды, его толщина увеличивается.Последняя...



Загрузка...