sonyps4.ru

Широкополосные сигналы.

Для пояснения дальнейшего изложения мы сделаем здесь техническое отступление об особенностях различных диапазонов частот и о связанных с ними принципах построения радиосетей.

Современные средства радиосвязи работают на частотах в сотни мегагерц, в тысячи мегагерц (т.е. гигагерцы) и даже в десятки гигагерц. Радиоспектр разделен на участки, отведенные самым различным применениям; радиосвязь только одно из них. Распределение спектра в международном масштабе регламентируется соответствующим международным комитетом, в который входит и Россия. В России оно регулируется межведомственным Государственным Комитетом по Радиочастотам (ГКРЧ). Мы вернемся к этому позднее.

Каждый участок радиоспектра нарезан на каналы одинаковой "ширины" (например, по 25 килогерц для сотовой телефонии). Максимальная скорость передачи данных в данном канале зависит только от ширины канала, а не от участка спектра, в котором он находится. Понятно, что в диапазоне частот, скажем, от 8 гигагерц до 9 гигагерц уложится в 10 раз больше каналов определенной ширины, чем в диапазоне от 800 мегагерц до 900 мегагерц. Таким образом, чем выше частоты, тем больше общая "емкость" диапазона в смысле возможности одновременных передач: если представить себе 800-мегагерцевый диапазон как тысячежильный кабель, то 8-гигагерцевый диапазон будет уже десятитысячежильным кабелем.

Прямая видимость и принцип сотовой сети

Можно было бы предположить, что колоссальная емкость сверхвысокочастотной (СВЧ) части радиоспектра может решить все проблемы радиосвязи. Это почти так, но есть одна чисто физическая особенность радиоволн: чем выше частота волны (т.е. чем короче ее длина), тем меньших размеров препятствия она способна огибать. Поэтому, скажем, мобильная сотовая связь может работать на частотах не выше 2 гигагерц: на более высоких частотах связь уже строго ограничена прямой видимостью (почти как для светового луча), так что связь с мобильным телефоном будет прерываться как свет от фонаря, когда идешь перед частоколом.

На частотах же ниже 2 ГГц требование прямой видимости не так строго: радиоволна может огибать даже здания - но не толщу земли, т.е. не может "уйти за горизонт". Ограниченность радиуса действия передатчика видимым с высоты его антенны горизонтом дает возможность организовать сотовую сеть , т.е. такую сеть, в которой одни и те же частотные каналы могут использоваться многократно в несмежных территориальных участках ("ячейках сот").

Замечание 1: Когда говорят о "сотовом телефоне" или "сотовой сети", то обычно подразумевают мобильную сотовую телефонную сеть . Такие сети обычно развертываются в соответствии с признанными международными стандартами; они занимают часть диапазонов в районе частот 450 МГц, 800 МГц и 900 МГц, а последний по времени стандарт предлагает частоту в районе 1800 МГц (т.е. 1,8 ГГц). Сотовая мобильная телефония представляет собой отдельный специфическим образом регулируемый вид телекоммуникационной деятельности, и мы его здесь больше касаться не будем. Сам же сотовый принцип построения сети не имеет прямого отношения к мобильности - это просто способ многократного использования одних и тех же частот даже в пределах ограниченной территории.

Замечание 2: Картина будет неполной без упоминания спутниковой связи . Все рассуждения о емкости различных диапазонов частот остаются в силе и тут, только почти отпадает понятие "горизонта", поскольку даже спутник, висящий над экватором на подходящей долготе (не в противоположном полушарии), виден из полярных областей. Понятно, что даже узконаправленная антенна на спутнике дает на земной поверхности "пятно" размерами в сотни или тысячи километров. Поэтому по сравнению с наземными радиосетями спутники используют эфир очень неэкономно, не имея возможности многократного использования одних и тех же частот, как это делается в сотовых сетях. Спутниковая связь - тоже отдельный предмет для рассмотрения, и мы ею здесь заниматься не будем. Надо только иметь в виду, что весьма значительная часть частотного спектра занята существующей спутниковой связью или зарезервирована под будущую .

Направленность антенн

В сетях радиопередач используются как узконаправленные антенны, так и антенны с более широким сектором охвата, вплоть до всенаправленных (круговых). Для соединения типа точка-точка используются две нацеленные друг на друга (узко)направленные антенны; так строятся, например, радиорелейные линии передач , в которых расстояние между соседними релейными вышками может исчисляться десятками километров. Узконаправленная антенна фокусирует радиолуч, увеличивая плотность его энергии; таким образом передатчик данной мощности "простреливает" на большее расстояние.

Другой тип связи получится при использовании только всенаправленных антенн. В этом случае будет достигнута возможность соединения каждого с каждым . Такую топологию имеют обычно небольшие учрежденческие сети, развернутые на ограниченной территории.

Наконец, если в центре "ячейки" поместить базовую станцию со всенаправленной антенной и снабдить всех обслуживаемых ею абонентов сфокусированными на нее направленными антеннами, то получим топологию точка-много точек . Если еще соединить между собой базовые станции в некоторой иерархии (либо радиорелейными линиями или просто радио-соединениями по типу "точка-точка", либо кабельными каналами), то получим уже целую сотовую сеть. В данном случае это будет фиксированная сотовая сеть, так как мобильный абонент не может иметь направленную антенну.

Замечание: Мобильная сотовая сеть строится по тому же принципу, но с использованием ненаправленных антенн также и у мобильных абонентов, которые не мешают при этом друг другу как потому, что говорят всегда на разных каналах (или чередуясь на одном и том же канале), так и потому, что сигнал от мобильного аппарата гораздо слабее сигнала от базовой станции и может быть правильно принят только базовой станцией, но не другим мобильным аппаратом.

Технология широкополосного сигнала (ШПС)

Для того, чтобы послать радиосигнал большой мощности в СВЧ-диапазоне, нужен дорогостоящий передатчик с усилителем и дорогостоящая антенна большого диаметра. Для того, чтобы принять без помех сигнал малой мощности, также нужна дорогая большая антенна и дорогой приемник с усилителем.

Так обстоит дело при использовании обычного "узкополосного" радиосигнала, когда передача происходит на одной определенной частоте, а точнее, в узкой полосе радио-спектра, окружающей эту частоту (частотном канале). Картину усложняют еще и различные взаимные помехи между узкополосными сигналами большой мощности, передаваемыми близко друг от друга или на близких частотах. В частности, узкополосный сигнал может быть просто заглушен (случайно или намеренно) передатчиком достаточной мощности, настроившимся на ту же частоту.

Именно эта незащищенность от помех обычного радиосигнала вызвала к жизни разработку, сначала для военных применений, совершенно иного принципа радиопередачи, называемого технологией широкополосного сигнала , или шумоподобного сигнала (обоим вариантам термина соответствует аббревиатура ШПС ). После многих лет успешного оборонного использования эта технология нашла и гражданское применение, и именно в этом качестве она будет здесь обсуждаться.

Обнаружилось, что кроме своих характеристических свойств (собственная помехозащищенность и низкий уровень создаваемых помех), данная технология оказалась относительно дешевой при массовом производстве . Экономичность происходит за счет того, что вся сложность широкополосной технологии запрограммирована в нескольких микроэлектронных компонентах ("чипах"), а стоимость микроэлектроники при массовом производстве очень мала. Что же касается остальных компонентов широкополосных устройств - СВЧ-электроники, антенн - то они дешевле и проще, чем в обычном "узкополосном" случае, за счет чрезвычайно малой мощности используемых радиосигналов.

Идея ШПС состоит в том, что для передачи информации используется значительно более широкая полоса частот , чем это требуется при обычной (в узком частотном канале) передаче. Разработано два принципиально различающихся между собой метода использования такой широкой полосы частот - метод прямой последовательности (Direct Sequence Spread Spectrum - DSSS) и метод частотных скачков (Frequency Hopping Spread Spectrum - FHSS). Оба эти метода предусматриваются и стандартом 802.11 (Radio-Ethernet).

Метод прямой последовательности (DSSS)

Не забираясь в технические детали, метод прямой последовательности (DSSS) можно представить себе следующим образом. Вся используемая "широкая" полоса частот делится на некоторое число подканалов - по стандарту 802.11 этих каналов 11, и мы так и будем считать в дальнейшем описании. Каждый передаваемый бит информации превращается, по заранее зафиксированному алгоритму, в последовательность из 11 бит, и эти 11 бит передаются одновременно и параллельно, используя все 11 подканалов. При приеме, полученная последовательность бит декодируется с использованием того же алгоритма, что и при ее кодировке. Другая пара приемник-передатчик может использовать другой алгоритм кодировки-декодировки, и таких различных алгоритмов может быть очень много.

Первый очевидный результат применения этого метода - защита передаваемой информации от подслушивания ("чужой" DSSS-приемник использует другой алгоритм и не сможет декодировать информацию не от своего передатчика). Но более важным оказалось другое свойство описываемого метода. Оно заключается в том, что благодаря 11-кратной избыточности передачи можно обойтись сигналом очень маленькой мощности (по сравнению с уровнем мощности сигнала при использовании обычной узкополосной технологии), не увеличивая при этом размеров антенн .

При этом сильно уменьшается отношение уровня передаваемого сигнала к уровню шума , (т.е. случайных или преднамеренных помех), так что передаваемый сигнал уже как бы неразличим в общем шуме. Но благодаря его 11-кратной избыточности принимающее устройство все же сумеет его распознать. Это как если бы нам написали 11 раз одно и то же слово, и некоторые экземпляры оказались бы написаны неразборчивым почерком, другие полустерты или на обгоревшем клочке бумаги - но все равно в большинстве случаев мы сумеем определить, что это за слово, сравнив все 11 экземпляров.

Еще одно чрезвычайно полезное свойство DSSS-устройств заключается в том, что благодаря очень низкому уровню мощности своего сигнала они практически не создают помех обычным радиоустройствам (узкополосным большой мощности), так как эти последние принимают широкополосный сигнал за шум в пределах допустимого. В другую же сторону - обычные устройства не мешают широкополосным, так как их сигналы большой мощности "шумят" каждый только в своем узком канале и не могут заглушить широкополосный сигнал весь целиком. Это как если бы тонким карандашом, но крупно написанная буква была бы заштрихована жирным фломастером - если штрихи легли не подряд, мы сможем прочесть букву.

В результате можно сказать, что использование широкополосных технологий дает возможность использовать один и тот же участок радиоспектра дважды - обычными узкополосными устройствами и "поверх них" - широкополосными.

Суммируя, мы можем выделить следующие свойства ШПС-технологии, по крайней мере для метода прямой последовательности:

- Помехозащищенность.

- Не создаются помехи другим устройствам.

- Конфиденциальность передач.

- Экономичность при массовом производстве.

- Возможность повторного использования одного и того же участка спектра.

Метод частотных скачков (FHSS)

При кодировке по методу частотных скачков (FHSS) вся отведенная для передач полоса частот подразделяется на некоторое количество подканалов (по стандарту 802.11 этих каналов 79). Каждый передатчик в каждый данный момент использует только один из этих подканалов, регулярно перескакивая с одного подканала на другой. Стандарт 802.11 не фиксирует частоту таких скачков - она может задаваться по-разному в каждой стране. Эти скачки происходят синхронно на передатчике и приемнике в заранее зафиксированной псевдослучайной последовательности, известной обоим; ясно, что не зная последовательности переключений, принять передачу также нельзя.

Другая пара передатчик-приемник будет использовать и другую последовательность переключений частот, заданную независимо от первой. В одной полосе частот и на одной территории прямой видимости (в одной "ячейке") таких последовательностей может быть много. Ясно, что при возрастании числа одновременных передач возрастает и вероятность коллизий, когда, например, два передатчика одновременно перескочили на частоту №45, каждый в соответствии со своей последовательностью, и заглушили друг друга.

Метод частотных скачков, так же как и описанный выше метод прямой последовательности, обеспечивает конфиденциальность и некоторую помехозащищенность передач. Помехозащищенность обеспечивается тем, что если на каком-нибудь из 79 подканалов передаваемый пакет не смог быть принят, то приемник сообщает об этом, и передача этого пакета повторяется на одном из следующих (в последовательности скачков) подканалов.

А.Резников, В.Копейкин, Б.Любимов, В.Куликов

Новое перспективное направление в гражданской электросвязи - применение шумоподобных сигналов (ШПС) по сравнению с обычными узкополосными телекоммуникационными системами - обладает рядом преимуществ.

Уже сегодня область применения техники ШПС распространяется на беспроводные локальные компьютерные сети, сотовую связь (вплоть до глобальных информационных систем), персональные системы телекоммуникаций. Эта техника приобретает все более заметный вес на пути к информационному обществу. Именно техника ШПС во многом поможет сделать доступным каждому в любом месте в любое время обмениваться речевыми сообщениями, видеоинформацией, передавать данные и т.д.

В чем же суть, значение, в чем новые качества шумоподобных сигналов? Является ли использование ШПС эволюцией или революцией в современной связи?

Основная задача любой системы связи - передача сообщений от источника информации к потребителю наиболее экономичным образом. Обычно в системах радиосвязи для эффективной передачи информации используется относительно узкая полоса частот. Как известно, перенос информации в радиочастотный диапазон осуществляется изменением (модуляцией) одного или нескольких параметров несущего ВЧ колебания. На приемной стороне осуществляется обратная операция - демодуляция.

Метод модуляции выбирают так, чтобы свести к минимуму действие помех и искажений. Традиционные методы модуляции позволяют максимально увеличить мощность на основной частоте и предельно сузить занимаемую полосу частот. Общепринятым критерием эффективности метода модуляции обычно является оценка концентрации мощности сигнала по спектру для заданной скорости передачи информации. Такой подход представляется интуитивно правильным и соответствующим здравому смыслу. Это стремление нашло, например, свою реализацию при переходе от амплитудной модуляции (AM) к однополосной (SSB). Подавление несущей и одной из боковых полос позволяет вдвое сократить занимаемую полосу частот в эфире и сконцентрировать всю мощность передатчика в одной боковой полосе. Похожим образом формируется и телевизионный сигнал. Если внимательно проанализировать любую традиционную систему передачи, можно увидеть, что все они содержат один модуляционный процесс - несущее колебание модулируется передаваемой информацией.

В системах связи с шумоподобными сигналами в свете традиционного подхода может показаться неожиданным движение в строго противоположном направлении - от узкополосных систем связи к широкополосным. В аппаратуре ШПС всегда осуществляются два модуляционных процесса, один из которых предназначен специально для значительного расширения спектра. Однако при этом системы связи не только ничего не теряют, а приобретают новые качества.

В чем же заключается смысл дополнительной модуляции?

Расширение спектра частот передаваемого сообщения осуществляется либо прямым расширением спектра, либо скачкообразным изменением частоты несущей. При реализации первого метода на один вход балансного смесителя модулятора передатчика подается информационный сигнал, на другой - периодически повторяющаяся двоичная псевдослучайная последовательность (ПСП) сигналов с определенным числом бит. Почему псевдослучайная? Это связано с тем, что внешне она выглядит как случайная последовательность знаков "+1" и "-1". Но это только на первый взгляд. В действительности эта последовательность генерируется вполне регулярными методами с помощью цифровых автоматов и обладает определенными свойствами.

Его мощность распределяется в очень широкой полосе частот, и сигнал становится незаметным на фоне помех. Прием такого сигнала возможен в том случае, если известны параметры используемой в передатчике псевдослучайной последовательности.

На приемной стороне возрастает помехоустойчивость по отношению к узкополосным помехам большой мощности. Это связано с тем, что узкополосные помехи поражают небольшую часть спектра сигнала и не нарушают его целостности. Для обычных узкополосных систем такая помеха в полосе рабочих частот может полностью вывести ее из строя. Шумоподобный же сигнал, лишенный помехой части спектра, можно реконструировать на приемной стороне без существенных потерь информации. Это объясняется тем, что мешающие сигналы в приемнике ШПС проявляют себя не более чем слабым повышением уровня шумового фона, а не срывом сеанса связи.

Именно эта эффективность подавления помехи объясняет то, что ШПС широко применялись и применяются в военных системах связи, и работы в этой области длительное время были закрытыми. Однако первые публикации по их использованию в многоадресных системах с кодовым разделением появились в открытой печати еще в середине 60-х годов, и среди этих публикаций необходимо отметить статьи Л.Е.Варакина.

А уже в 80-е годы методы использования ШПС заняли свое место в гражданской связи. Федеральная комиссия связи США к этому времени официально разрешила коммерческое применение ШПС в целой группе диапазонов, что определило начало выпуска большого количества оборудования. В 1993 г. Ассоциацией промышленности связи США использование кодового разделения в мобильной телефонной сотовой связи было узаконено как стандарт IS-95, что открыло путь к развертыванию соответствующих систем.

Именно поэтому технику связи с использованием таких сигналов нельзя отнести к открытиям последних лет. Она уже давно используется в радиолокации, где, кстати, впервые проявились основные преимущества подобных сигналов. В радиолокации дальность обнаружения цели определяется энергией импульса, т.е. произведением мощности на его длительность. Увеличение дальности обнаружения путем наращивания мощности имеет свои технические пределы, увеличение длительности импульса ухудшает другой параметр - разрешающую способность, которая определяет возможность обнаруживать цели. Возникающее противоречие оказалось возможным разрешить, применяя сложные сигналы, представляющие длинный высокочастотный импульс, манипулированный по фазе по закону ПСП.

В приемнике с помощью коррелятора длинный импульс сжимается до длительности элемента ПСП, энергия же существенно возрастает за счет увеличения числа элементов ПСП, благодаря чему улучшается разрешающая способность и увеличивается дальность обнаружения.

В результате дополнительной модуляции, о которой уже говорилось, получаем скрытый, помехоустойчивый канал связи, прием информации в котором возможен только в том случае, если известен метод и алгоритм расширения спектра, применяемый на передающей стороне.

Применение различных ПСП дает возможность большому числу пользователей одновременно работать в одной широкой полосе частот. Такой метод уплотнения канала и называется кодовым разделением. Подчеркнем еще раз: особенность кодового разделения состоит в том, что все сигналы передаются в одной общей широкой полосе частот одновременно. Спектр каждого сигнала сформирован с помощью индивидуального кода, что и обеспечивает одновременный доступ к каналу большого числа пользователей. В приемнике базовой станции по индивидуальному коду из ШПС выделяется нужная данному пользователю информация.

По этому принципу работает система CDMA (Code Division Multiplex Access), которая стала основой увеличения емкости сотовых сетей, степени покрытия обслуживаемой территории, качества передачи речи. Она фактически уже стала техникой следующего поколения средств связи.

Высокая степень интеграции элементной базы, удешевление технологии при массовом применении систем связи с кодовым разделением привели к тому, что CDMA - новая коммерческая реальность на рынке средств связи благодаря тому, что технология CDMA заявила о себе с самого начала возможностью резкого увеличения емкости сотовых систем по сравнению не только с аналоговыми, но и цифровыми системами. Простые расчеты показывают, что с помощью аппаратуры CDMA емкость сети можно увеличить примерно в 10 раз по сравнению, например, с узкополосными стандартами на основе частотного разделения.

Основная трудность построения систем временного (TDMA) и частотного (FDMA) методов разделения, как известно, лежит в необходимости частотного планирования, которое должно каждый раз пересматриваться при изменении конфигурации сети и добавлении новых сот. Новая технология вообще не требует какого-либо частотного планирования, все пользователи канала в полосе 1,25 МГц могут одновременно вести обмен в общей полосе частот, поскольку каждый применяет уникальный цифровой код. И та же полоса частот может повторно использоваться во всех других сотах сети. Это один из основных факторов значительного увеличения емкости сети.

Здесь следует упомянуть и об эффективном кодировании с использованием корректирующих кодов, что еще более увеличивает емкость системы и улучшает качество связи.

Кодовое разделение оказалось первой технологией, в которой стало возможным организовать "мягкую передачу" абонента из соты в соту. Это связано с тем, что кадр содержит данные лишь одного абонента, и центральная станция может выбирать лучший сигнал и "склеивать" его из кадров разных базовых станций по мере перехода абонента из соты в соту.

Системы с ШПС обладают превосходной электромагнитной совместимостью с обычными узкополосными системами. Последним не мешают ШПС с малой спектральной плотностью в полосе пропускания. Узкополосные сигналы в приемнике ШПС превращаются в широкополосные и эффективно подавляются, поскольку они не согласованы с кодом приемника.

Кроме помехоустойчивости, сложная кодовая структура ШПС обладает высокой степенью защищенности от несанкционированного доступа в сеть и обеспечивает любой требуемый уровень конфиденциальности в потоке данных.

Как же формируется спектр ШПС и какие методы объясняют масштабы его расширения?

В цифровых системах связи дополнительная модуляция сводится к тому, что передаваемая двоичная информация накладывается на поток из N расширяющих битов ПСП, следующих с гораздо большей скоростью, чем передаваемая информация. При этом при передаче информационного нуля знак ПСП не меняется, при передаче информационной единицы ("-1") используется инверсная ПСП (рис.1). Число битов ПСП, приходящихся на один бит информации и являющихся мерой расширения спектра, может достигать очень больших значений (от десятка до нескольких тысяч). Этот модулированный ПСП псевдослучайный поток данных манипулирует фазу несущего ВЧ колебания во втором модуляторе, которое после усиления излучается в эфир.

Схема модуляции данных псевдослучайной последовательностью длиной в 15 элементов.

Спектр шумоподобного сигнала определяется разными факторами - такими, как длина ПСП, скорость передачи информации и метод модуляции ВЧ сигнала.

Как выглядит на спектроанализаторе спектр ШПС? Спектр мощности (рис.2) симметричен относительно центральной частоты (несущей) и содержит большое число резких пиков. Центральная часть ограничивается двумя нулями, за которыми располагаются боковые максимумы, и содержит около 90% всей энергии сигнала. Остальные 10% приходятся на побочные излучения и обычно отфильтровываются при передаче. Ширина центрального максимума равна удвоенной частоте следования битов ПСП. Спектр содержит ярко выраженную мелкомасштабную структуру, детали этой структуры имеют ширину порядка скорости передачи информации и обычно гораздо меньше общей ширины спектра. Эффективная ширина спектра по уровню -3 дБ близка к скорости следования ПСП и составляет половину общей ширины спектра.


Распределение мощности ШПС по частоте для длины кода 128. Спектр широкий и неравномерный, частота отсчитывается от несущей и отнесена к полосе частот 1,25 МГц

Наверное уже понятно, что подобный дважды промодулированный сигнал должен и приниматься как-то по-другому. Приемник ШПС (рис.3) осуществляет дополнительную демодуляцию от расширяющего кода (ПСП) для того, чтобы выделить передаваемую информацию. Здесь и проявляются основные отличия приемника, предназначенного для приема ШПС. В обычной схеме, например, для приема дискретной информации типа телеграфного сигнала производится усиление в УВЧ и преобразование частоты в См1 (преобразований может быть несколько, это не меняет существа дела). После демодулятора передаваемая информация становится доступной для дальнейшей обработки - прием на слух или передача на печатающее устройство.


Теоретической основой метода приема сигналов с распределенным спектром является корреляция. Процесс корреляции осуществляется в главном узле приемника ШПС, называемом коррелятором. Принципиальная схема коррелятора состоит из балансного смесителя См2 и следующего за ним интегратора или узкополосного фильтра ФНЧ для усреднения. В смесителе принимаемый сигнал умножается на копию ПСП, используемую в передатчике. Настройка заключается в согласовании параметров расширяющей спектр ПСП в передатчике с копией ПСП в приемнике. Главное условие нормальной работы аппаратуры ШПС - строгое согласование частотных и временных параметров, типов модуляции принимаемых и опорных сигналов. Только при этом условии в корреляторе широкополосная модуляция устраняется в полезном сигнале и сохраняется в других. Такое согласование обеспечивает система синхронизации и обнаружения. В нее могут входить несколько следящих систем фазовой и частотной автоподстройки и система слежения за задержкой.

Корреляцию очень удобно представить как процесс перемножения двух двоичных последовательностей. Если значительное число нулей и единиц и порядок их следования в сравниваемых последовательностях совпадают, то на выходе перемножителя образуется длинная последовательность нулей или единиц, отражающая переданную информацию. Эта последовательность пропускается через узкополосный фильтр. При этом происходит улучшение отношения сигнал/шум на выходе коррелятора по отношению ко входу в N раз. В идеальном случае, в условиях полной синхронизации, расширение спектра полностью снимается как есть и после коррелятора можно наблюдать обычную последовательность длинных информационных посылок, как в любой узкополосной системе связи после синхронного детектора.

Такой метод приема определяет основные достоинства применения ШПС. При умножении на опорную копию кода остальные сигналы, модулированные другим кодом, не совпадающим хотя бы по одному параметру (частоте следования битов ПСП, их взаимному расположению, сдвигу начала кодовой последовательности), превращаются в хаотическую последовательность коротких импульсов с широким спектром. В результате через узкополосный фильтр проходит лишь малая часть энергии несогласованных сигналов. Так реализуется механизм кодового разделения. Аналогично узкополосная помеха при таком методе приема также дробится на беспорядочную последовательность коротких импульсов и ослабляется фильтром.

Таким образом, в одном узле обеспечивается как кодовое разделение, так и запас помехоустойчивости по отношению к большому числу помех разного типа. Однако при этом возникает несколько серьезных проблем. Одна из них - точность синхронизации принимаемого сигнала и сигнала генератора кода в приемнике, а кроме того, необходимо решение ряда других задач, связанных с обнаружением ШПС и вхождением в связь. Тем не менее все эти проблемы решаются, что обеспечивает реализацию преимуществ применения ШПС.

Пригодны ли все диапазоны частот для техники ШПС? В течение нескольких десятилетий ШПС применялись на всех частотах - от самых низких до очень высоких. В KB диапазоне, где в распространении сигналов решающую роль играет ионосфера, преимущество отдавалось узкополосным сигналам в обычном смысле (ширина спектра с учетом расширения не должна была превышать нескольких десятков килогерц). Это означает, что скорость передачи информации по такому каналу не могла быть более чем килобит/сек. В противном случае начинались искажения сигнала, связанные с неодинаковыми условиями распространения спектральных составляющих сигнала. Это объясняется тем, что прием ШПС представляет собой собирание сигнала в широкой полосе частот, а разбалансирование спектральных составляющих сигнала, особенно по фазе, приводит к селективным искажениям.

В полной мере преимущества ШПС реализуются в УКВ диапазонах и на более высоких частотах. При этом скорость передачи информации и степень расширения спектра ничем не ограничиваются, кроме трудностей технической реализации. В настоящее время шумоподобные сигналы используются на частотах 900, 2400 и 5600 МГц.

В ближайшее время планируется принятие международного стандарта (802.11), который определит технические требования к беспроводным сетям передачи данных с использованием ШПС. Это результат многолетних исследований по регламентации диапазонов частот, скоростей передачи, методов расширения спектра и других характеристик сетей. Суть стандарта сводится к следующему: он должен определить организацию беспроводной связи на ограниченной территории (в форме локальной сети). При этом несколько абонентов будут пользоваться равноправным доступом к общему каналу передачи данных.

Стандарт предполагает два диапазона: 902...928 МГц и 2400...2483,5 МГц. Основной акцент делается именно на последний, поскольку в России и Европе диапазон 900 МГц сильно перегружен и его можно рекомендовать к применению лишь внутри зданий. Гигагерцевый диапазон можно использовать как внутри зданий, так и снаружи.

Простейшим вариантом применения систем с ШПС может служить соединение "точка - точка" - это связь между двумя локальными сетями с внешней направленной антенной на расстояние от одного до нескольких десятков километров.

Очень велики перспективы применения ШПС в России. В Российской федерации применение техники ШПС определено в приказе №18 Министерства связи РФ от 24.02.1996 г. Для нее выделены частоты 828...821 и 873...876 МГц. Особое место методы ШПС могут занять при развитии местной сети. Приемлемым уровнем телефонизации принято считать не менее 50 телефонов на 100 жителей, что в масштабах нашей страны означает не менее 75 млн номеров. При дальнейшем развитии телефонизации основные трудности обусловлены созданием местных сетей, что и определяет стоимость номера. Назревает крайняя необходимость внедрения технологий ШПС - на местных сетях, сотовой, в системах мобильной связи. В фиксированной связи требуется меньшая мощность сигнала при том же качестве связи, а это позволяет увеличивать число пользователей в канале. Все сказанное, с учетом эффективного использования частоты, позволит снизить себестоимость и время развертывания таких сетей.

Кодовая структура ШПС делает их незаменимыми и для использования в навигационных системах при измерении расстояний. В этом отношении ШПС можно представить как линейку с делениями в единицах расстояния для измерения дистанции. Отраженный сигнал сравнивается с переданным и по сдвигу кодовой структуры находится задержка, что дает возможность определить расстояния до объекта. Примером спутниковой навигационной системы с ШПС является GPS. Ее применение иногда выходит за рамки навигации, и она используется для нивелировки сельскохозяйственных угодий, мониторинга линий разлома земной коры и других целей.

Приемники GPS могут входить составной частью в сложные устройства обеспечения временных отсчетов высокой точности, например, включаться в базовые станции сотовых телефонных систем с ШПС.

Каковы же дальнейшие перспективы внедрения техники ШПС?

Кодовое разделение начало свой путь в Северной Америке, крупнейшем рынке мобильной связи, где насчитывается более 34 млн пользователей. В специальных изданиях сообщается, что до 70% сотовых сетей США готовы к внедрению систем CDMA. В Южной Корее подобные сети будут способны в ближайшем будущем охватить до 75% потенциальных пользователей. Ряд японских компаний объявил о намерении модернизировать свои сотовые сети в 1998 г.

Несмотря на появление новых методов уплотнения, старые аналоговые системы с временным разделением, по-видимому, будут существовать еще достаточно долго, поэтому стратегия применения ШПС предусматривает совместную работу с сотовыми системами разных типов.

Необходимость такой совместимости учитывается при развертывании спутниковой системы Globalstar.

Как отмечалось выше, ШПС обладает многими необычными свойствами, особенно в отношении скрытности передачи в силу сложности процесса демодуляции. При использовании ШПС вне военных рамок требуется строгая регламентация применения ШПС.

Однако это, в принципе, не исключает участие и радиолюбителей в освоении методов ШПС. Например, специальным разделом инструкции федеральной комиссии связи США официально легализована работа радиолюбителей с применением ШПС в ряде диапазонов, вплоть до миллиметровых волн. Разрешается работа мощностью до 100 Вт - и это при том, что типичные мощности коммерческих применений не должны превышать 1 Вт, а в ряде случаев - и 10 мВт.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Введение

Системы связи с ШПС занимают особое место среди различных систем связи, что объясняется их свойствами. Во-первых, они обладают высокой помехозащищенностью при действии мощных помех. Во-вторых, обеспечивают кодовую адресацию большого числа абонентов и их кодовое разделение при работе в общей полосе частот. В-третьих, они обеспечивают совместимость приема-информации с высокой достоверностью измерения параметров движения объекта с высокими точностями и разрешающими способностями. Все эти свойства систем связи с ШПС были известны давно, но, поскольку мощности помех были относительно невысоки, а элементная база не позволяла реализовать устройства формирования.и обработки в приемлемых габаритах, то долгое время системы связи с ШПС широкого развития не получали. К настоящему моменту положение резко изменилось. Мощность помехи на входе приемника может на несколько порядков превышать мощность полезного сигнала. Для обеспечения высокой помехозащищенности при подобных помехах необходимо.использовать ШПС со сверхбольшими "базами (десятки-сотни тысяч), ансамбли (системы) сигналов должны состоять из десятков -- сотен миллионов ШПС со сверхбольшими базами. Следует отметить, что основы теории ШПС со сверхбольшими базами сформировались только в последнее время. В свою очередь реализация устройств формирования и обработки таких сигналов становится возможной в ближайшем будущем благодаря бурному развитию сверхбольших интегральных схем (СБИС), специализированных микропроцессоров (СМП), приборов с поверхностными акустическими волнами (ПАВ), приборов с зарядовой связью (ПЗС). Все эти причины и вызвали новый период расцвета систем связи с ШПС, в результате которого через некоторое время появятся такие системы второго поколения.

Комплексной целью данного учебно-методического пособия является укрепление и повышение знаний связанных с теоретическим курсом лекций - «Цифровые методы обработки сигналов». Данное пособие призвано поддержать теоретический курс с тем, чтобы студенты на практике при помощи персонального компьютера изучили широкополосные сигналы и системы связи.

Задачами учебно-методического пособия являются:

Знакомство с основными видами ШПС;

Изучение методов обработки ШПС;

Изучение фазоманипулированных сигналов на примерах кода Баркера и М-последовательностей;

Исследование свойств ШПС с помощью специальной компьютерной программы

Модуль: «Широкополосные системы связи»

Основные сведения о широкополосных сигналах

Определение ШПС. Применение ШПС в системах связи.

Широкополосными (сложными, шумоподобными) сигналами (ШПС) называют такие сигналы, у которых произведения активной ширины спектра F на длительность T много больше единицы. Это произведение называется базой сигнала B. Для ШПС

B = FT>>1 (1)

Широкополосными сигналы иногда называют сложными в отличие от простых сигналов (например, прямоугольные, треугольные и т.д.) с В=1. Поскольку у сигналов с ограниченной длительностью спектр имеет неограниченную протяженность, то для определения ширины спектра используют различные методы и приемы.

Повышение базы в ШПС достигается путем дополнительной модуляции (или манипуляции) по частоте или фазе на времени длительности сигнала. В результате, спектр сигнала F (при сохранении его длительности T) существенно расширяется. Дополнительная внутрисигнальная модуляция по амплитуде используется редко.

В системах связи с ШПС ширина спектра излучаемого сигнала F всегда много больше ширины спектра информационного сообщения.

ШПС получили применение в широкополосных системах связи (ШПСС), так как:

позволяют в полной мере реализовать преимущества оптимальных методов обработки сигналов;

обеспечивают высокую помехоустойчивость связи;

позволяют успешно бороться с многолучевым распространением радиоволн путем разделения лучей;

допускают одновременную работу многих абонентов в общей полосе частот;

позволяют создавать системы связи с повышенной скрытностью;

обеспечивают электромагнитную совместимость (ЭМС) ШПСС с узкополосными системами радиосвязи и радиовещания, системами телевизионного вещания;

обеспечивают лучшее использование спектра частот на ограниченной территории по сравнению с узкополосными системами связи.

Помехоустойчивость ШПСС.

Она определяется широко известным соотношением, связывающим отношение сигнал-помеха на выходе приемника q2 с отношением сигнал-помеха на входе приемника с2:

где с2 = Рс/Рп (Рс, Рп - мощности ШПС и помехи);

q2=2E/ Nп, Е - энергия ШПС, Nп - спектральная плотность мощности помехи в полосе ШПС. Соответственно Е = РсТ, a Nп = Рп /F;

В - база ШПС.

Отношение сигнал-помеха на выходе q2 определяет рабочие характеристики приема ШПС, а отношение сигнал-помеха на входе с2 -- энергетику сигнала и помехи. Величина q2 может быть получена согласно требованиям к системе (10...30 дБ) даже если с2<<1. Для этого достаточно выбрать ШПС с необходимой базой В, удовлетворяющей (2). Как видно из соотношения (2), прием ШПС согласованным фильтром или коррелятором сопровождается усилением сигнала (или подавлением помехи) в 2В раз. Именно поэтому величину

КШПС = q2/с2 (3)

называют коэффициентом усиления ШПС при обработке или просто усилением обработки. Из (2), (3) следует, что усиление обработки КШПС = 2В. В ШПСС прием информации характеризуется отношением сигнал помеха h2= q2/2, т.е.

Соотношения (2), (4) являются фундаментальными в теории систем связи с ШПС. Они получены для помехи в виде белого шума с равномерной спектральной плотностью мощности в пределах полосы частот, ширина которой равна ширине спектра ШПС. Вместе с тем эти соотношения справедливы для широкого круга помех (узкополосных, импульсных, структурных), что и определяет их фундаментальное значение.

Таким образом, одним из основных назначений систем, связи с ШПС является обеспечение надежного приема информации при воздействии мощных помех, когда отношение сигнал-помеха на входе приемника с2 может быть много меньше единицы. Необходимо еще раз отметить, что приведенные соотношения строго справедливы для помехи в виде гауссовского случайного процесса с равномерной спектральной плотностью мощности («белый» шум).

Основные виды ШПС

Известно большое число различных ШПС, свойства которых нашли отражение во многих книгах и журнальных статьях. ШПС подразделяются на следующие виды:

частотно-модулированные (ЧМ) сигналы;

многочастотные (МЧ) сигналы;

фазоманипулированные (ФМ) сигналы (сигналы с кодовой фазовой модуляцией - КФМ сигналы);

дискретные частотные (ДЧ) сигналы (сигналы с кодовой частотной модуляцией - КЧМ сигналы, частотно-манипулированные (ЧМ) сигналы);

дискретные составные частотные (ДСЧ) (составные сигналы с кодовой частотной модуляцией - СKЧM сигналы).

Частотно-модулированные (ЧМ) сигналы являются непрерывными сигналами, частота которых меняется по заданному закону. На рисунке 1а, изображен ЧМ сигнал, частота которого меняется по V -образному закону от f0-F/2 до f0+F/2, где f0 - центральная несущая частота сигнала, F - ширина спектра, в свою очередь, равная девиации частоты F= ?fд. Длительность сигнала равна Т.

На рисунке 1б представлена частотно-временная (f, t) - плоскость, на которой штриховкой приближенно изображено распределение энергии ЧМ сигнала по частоте и по времени. База ЧМ сигнала по определению (1) равна:

B = FT=?fдT (5)

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 1 - Частотно-модулированный сигнал и частотно-временная плоскость

Частотно-модулированные сигналы нашли широкое применение в радиолокационных системах, поскольку для конкретного ЧМ сигнала можно создать согласованный фильтр на приборах с поверхностными акустическими волнами (ПАВ). В системах связи необходимо иметь множество сигналов. При этом необходимость быстрой смены сигналов и переключения аппаратуры формирования и обработки приводят к тому, что закон изменения частоты становится дискретным. При этом от ЧМ сигналов переходят к ДЧ сигналам.

Многочастотные (МЧ) сигналы (рисунок 2а) являются суммой N гармоник u(t) ... uN(t), амплитуды и фазы которых определяются в соответствии с законами формирования сигналов. На частотно-временной плоскости (рисунок 2б) штриховкой выделено распределение энергии одного элемента (гармоники) МЧ сигнала на частоте fk. Все элементы (все гармоники) полностью перекрывают выделенный квадрат со сторонами F и T. База сигнала B равна площади квадрата. Ширина спектра элемента F0?1/Т. Поэтому база МЧ сигнала

т. е. совпадает с числом гармоник. МЧ сигналы являются непрерывными и для их формирования и обработки трудно приспособить методы цифровой техники. Кроме этого недостатка, они обладают также и следующими:

а) у них плохой пик-фактор (см. рисунок 2а);

б) для получения большой базы В необходимо иметь большое число частотных каналов N. Поэтому МЧ сигналы в дальнейшем не рассматриваются.

Фазоманипулированные (ФМ) сигналы представляют последовательность радиоимпульсов, фазы которых изменяются по заданному закону. Обычно фаза принимает два значения (0 или р). При этом радиочастотному ФМ сигналу соответствует видео- ФМ сигнал (рисунок 3а), состоящий из положительных и отрицательных импульсов. Если число импульсов N, то длительность одного импульса равна ф0 = T/N, а ширина его спектра равна приближенно ширине спектра сигнала F0 =1/ф0=N/Т. На частотно-временной плоскости (рисунок 3б)

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 2 - Многочастотный сигнал и частотно-временная плоскость

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 3 - Фазоманипулированный сигнал и частотно-временная плоскость

Штриховкой выделено распределение энергии одного элемента (импульса) ФМ сигнала. Все элементы перекрывают выделенный квадрат со сторонами F и Т. База ФМ сигнала

B = FT =F/ф0=N, (7)

т.е. B равна числу импульсов в сигнале.

Возможность применения ФМ сигналов в качестве ШПС с базами В = 104 ...106 ограничена в основном аппаратурой обработки. При использовании согласованных фильтров в виде приборов на ПАВ возможен оптимальный прием ФМ сигналов с максимальными базами Вмах=1000 ... 2000. ФМ сигналы, обрабатываемые такими фильтрами, имеют широкие спектры (порядка 10 ... 20 МГц) и относительно короткие длительности (60 ... 100 мкс). Обработка ФМ сигналов с помощью видеочастотных линий задержки при переносе спектра сигналов в область видеочастот позволяет получать базы В = 100 при F?1 МГц, Т? 100 мкс.

Весьма перспективными являются согласованные фильтры на приборах с зарядовой связью (ПЗС). Согласно опубликованным данным с помощью согласованных фильтров ПЗС можно обрабатывать ФМ сигналы с базами 102 ... 103 при длительностях сигналов 10-4 ... 10-1 с. Цифровой коррелятор на ПЗС способен обрабатывать сигналы до базы 4 104.

Следует отметить, что ФМ сигналы с большими базами целесообразно обрабатывать с помощью корреляторов (на БИС или на ПЗС). При этом, В = 4 104 представляется предельной. Но при использовании корреляторов необходимо в первую очередь решить вопрос об ускоренном вхождении в синхронизм. Так как ФМ сигналы позволяют широко использовать цифровые методы и технику формирования и обработки, и можно реализовать такие сигналы с относительно большими базами, то поэтомy ФМ сигналы являются одним из перспективных видов ШПС.

Дискретные частотные (ДЧ) сигналы представляют последовательность радиоимпульсов (рисунок 4а), несущие частоты которых изменяются по заданному закону. Пусть число импульсов в ДЧ сигнале равно М, длительность импульса равна Т0=Т/М, его ширина спектра F0=1/Т0=М/Т. Над каждым импульсом (рисунок 4а) указана его несущая частота. На частотно-временной плоскости (рисунок 4б) штриховкой выделены квадраты, в которых распределена энергия импульсов ДЧ сигнала.

Как видно из рисунка 4б, энергия ДЧ сигнала распределена неравномерно на частотно-временной плоскости. База ДЧ сигналов

B = FT =МF0МТ0=М2F0Т0 = М2 (8)

поскольку база импульса F0T0 = l. Из (8) следует основное достоинство ДЧ сигналов: для получения необходимой базы В число каналов M =, т. е. значительно меньше, чем для МЧ сигналов. Именно это обстоятельство и обусловило внимание к таким сигналам и их применение в системах связи. Вместе с тем для больших баз В = 104 ... 106 использовать только ДЧ сигналы нецелесообразно, так как число частотных каналов М = 102 ... 103, что представляется чрезмерно большим.

Дискретные составные частотные (ДСЧ) сигналы являются ДЧ сигналами, у которых каждый импульс заменен шумоподобным сигналом. На рисунке 5а изображен видеочастотный ФМ сигнал, отдельные части которого передаются на различных несущих частотах. Номера частот указаны над ФМ сигналом. На рисунке 5б изображена частотно-временная плоскость, на которой штриховкой выделено распределение энергии ДСЧ сигнала. Рисунок 5б по структуре не отличается от рисунка 4б, но для рисунка 5б площадь F0T0 = N0 -равна числу импульсов ФМ сигнала в одном частотном элементе ДСЧ сигнала. База ДСЧ сигнала

B = FT =М2F0Т0 = N0М2 (9)

Число импульсов полного ФМ сигнала N=N0М

Изображенный на рисунке 5 ДСЧ сигнал содержит в качестве элементов ФМ сигналы. Поэтому такой сигнал сокращенно будем называть ДСЧ-ФМ сигнал. В качестве элементов ДСЧ сигнала можно взять ДЧ сигналы. Если база элемента ДЧ сигнала B = F0T0 = М02 то база всего сигнала B = М02М2

Такой сигнал можно сокращенно обозначать ДСЧ-ЧМ. Число частотных каналов в ДСЧ-ЧМ сигнале равно М0М. Если ДЧ сигнал (см. рисунок 4), и ДСЧ-ЧМ сигнал имеют равные базы, то они имеют и одинаковое число частотных каналов. Поэтому особых преимуществ ДСЧ-ЧМ сигнал перед ДЧ сигналом не имеет. Но принципы построения ДСЧ-ЧМ сигнала могут оказаться полезными при построении больших систем ДЧ сигналов. Таким образом, наиболее перспективными ШПС для систем связи являются ФМ, ДЧ, ДСЧ-ФМ сигналы.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 4 - Дискретный частотный сигнал и частотно-временная плоскость

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 5 - Дискретный составной частотный сигнал с фазовой манипуляцией ДСЧ-ФМ и частотно-временная плоскость.

Принципы оптимальной фильтрации. Оптимальный фильтр ШПС

Прием и обработка сигналов различными радиотехническими устройствами, как правило, производится на фоне более или менее интенсивных помех. Выбор системы устройства зависит от того, какую из нижеперечисленных задач приходится при этом решать:

1 . Обнаружение сигнала, когда требуется только дать ответ, имеется ли в принятом колебании полезный сигнал или оно образовано только шумом.

2. Оценка параметров, когда требуется с наибольшей точностью определить значение одного или нескольких параметров полезного сигнала (амплитуду, частоту, временное положение и т.д.). Для теории радиотехнических цепей и сигналов наибольший интерес представляет изучение возможностей ослабления вредного действия помехи при заданном сигнале и заданной помехе путем правильного выбора передаточной функции приемника. Поэтому в дальнейшем будут определяться характеристики приемников, оптимально согласованных с сигналом и помехой. В зависимости от того, какая из перечисленных выше задач решается, критерии оптимальности фильтра данному сигналу при наличии помех с заданными статистическими характеристиками могут быть разными. Для задачи обнаружения сигнала в шумах наибольшее распространение получил критерий максимума отношения сигнал/шум на выходе фильтра.

Требования к фильтру, максимизирующему отношение сигнал-шум формулируются следующим образом. На вход линейного четырехполюсника с постоянными параметрами и передаточной функцией подается аддитивная смесь сигнала S(t) и шума n(t) (рисунок 6) .

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 6

Сигнал полностью известен, это значит что заданы его форма и положение на оси времени. Шум представляет собой вероятностный процесс с заданными статистическими характеристиками. Требуется синтезировать фильтр, обеспечивающий получение на выходе наибольшего возможного отношения пикового значения сигнала к среднеквадратичному значению шума, иными словами определить передаточную функцию. При этом не ставится условие сохранения формы сигнала на выходе фильтра, так как для обнаружения его в шумах форма значения не имеет.

Приведем результаты решения задачи для "стандартной" помехи типа белый шум. Напомним, что белый шум представляет собой случайный процесс с равномерным распределением энергии по спектру частот, т.е. W(щ) = W0 = const , причем 0<щ

Здесь А - произвольный постоянный коэффициент, - функция комплексно - сопряженная со спектральной функцией сигнала.

Из соотношения (10) вытекают два условия для фазочастотной (ФЧХ) и амплитудно - частотной (АЧХ) характеристик согласованного фильтра:

1) K(щ)=AS(щ) (11)

т.е. модуль передаточной функции с точностью до постоянного коэффициента А совпадает с амплитудным спектром сигнала и

2) цk=-[цs(щ)+щt0] (12)

цs(щ) - фазовый спектр сигнала.

Физический смысл полученных выражений для АЧХ (11) И ФЧХ (12) оптимального фильтра ясен из следующих соображений. При выполнении соотношения (11) энергия шума, занимающего бесконечную полосу частот на входе фильтра, ослабляется на выходе значительно сильнее энергии сигнала, имеющего такую же ширину спектра, как и полоса пропускания приемника.

Первое слагаемое в выражении для ФЧХ -цs(щ) компенсирует фазовую характеристику входного сигнала цs(щ), в результате прохождения через фильтр в момент t0 все гармоники сигнала складываются в фазе, образуя пик выходного сигнала. В то же время это приводит к изменению формы сигнала на выходе фильтра. Второе слагаемое щt0 означает задержку всех компонент сигнала на одно и то же время t0>Tc, где Тс - длительность сигнала. Физически это означает, что для полного использования энергии входного сигнала задержка отклика фильтра должна быть не менее длительности сигнала.

Использование выражения (10) сводит задачу синтеза согласованного фильтра к задаче построения электрической цепи по известному коэффициенту передачи.

Другой путь - определение импульсной характеристики цепи, а затем конструирование четырехполюсника с такой характеристикой.

По определению, импульсная характеристика цепи g(t) - это сигнал на ее выходе в ответ на воздействие в виде д - функции, т.е. имеющее равномерную спектральную плотность для всех частот. В этом случае спектральная плотность сигнала на выходе и вид сигнала на выходе, согласно преобразованию Фурье и учитывая соотношение (10),

Импульсная характеристика оптимального фильтра, т.е. реакция на д импульс, является, таким образом, зеркальным отображением того сигнала, с которым этот фильтр согласован. Ось симметрии проходит через точку t0/2 на оси абсцисс (рисунок 7).

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 7

Форму выходного сигнала оптимального фильтра можно определить, используя общее соотношение

По определению сигнал на выходе оптимального фильтра,

где Bs(t-t0) - автокорреляционная функция сигнала (АКФ).

Итак, сигнал на выходе согласованного фильтра с точностью до постоянного коэффициента А совпадает с автокорреляционной функцией входного сигнала. Отношение сигнал-шум на выходе является главной мерой эффективности оптимального фильтра (ОФ). Приведем лишь результат вычислений, согласно которым

где - среднеквадратичное значение шума на выходе фильтра, пиковое значение сигнала на выходе;

Е - энергия сигнала на входе фильтра;

W0 -спектральная плотность мощности белого шума.

Выражение (16), позволяющее определить эффективность согласованного фильтра, показывает, что при белом шуме отношение сигнал/шум на его выходе зависит только от энергии сигнала и энергетического спектра шума W0. В случае ШПС:

E = NE0 энергия сигнала, Е0 - энергия элементарной посылки, N - число посылок в сигнале, с - отношение сигнал / шум на входе ОФ.

Из выражений (15,17) следует: во-первых, ОФ увеличивает отношение сигнал - шум по мощности на выходе в N раз, во-вторых, одна из возможных реализаций оптимального фильтра - коррелятор или программа, вычисляющая АКФ сигнала.

Фазоманипулированные сигналы

В качестве внутрисигнальной модуляции часто используют фазовую манипуляцию. Фазоманипулированные (ФМ) сигналы представляют собой последовательность радиоимпульсов равной амплитуды, начальные фазы которых изменяются по заданному закону. В большинстве случаев ФМ сигнал состоит из радиоимпульсов с двумя значениями начальных фаз: 0 и.

На рисунке 8а приведен пример ФМ сигнала, состоящего из 7 радиоимпульсов. На рисунке 8б представлена огибающая (в общем случае комплексная) этого же сигнала. В рассматриваемом примере огибающая представляет собой последовательность положительных и отрицательных единичных видеоимпульсов прямоугольной формы. Такое предположение о прямоугольности импульсов, образующих ФМ сигнал, справедливо для теоретических исследований. Однако при формировании ФМ сигналов и их передаче по каналам связи с ограниченной полосой пропускания импульсы искажаются, и ФМ сигнал перестает быть таким идеальным как на рисунке 8а. Огибающая полностью характеризует ФМ сигнал. Поэтому в работе исследуется свойства именно огибающей ФМ сигнала.

Прямоугольный импульс u(t) c единичной амплитудой и длительностью 0, составляющей основу ФМ, записывается как u (t) = 1 при 0 t 0.

Огибающую, состоящую из N единичных видеоимпульсов можно представить в виде:

U(t) = an u

где амплитуда an принимает значения +1 или -1. Общая длительность ФМ сигнала T = N0.

Последовательность символов (амплитуд импульсов) A = (a1, a2 … an …aN) называется кодовой последовательностью. Возможны следующие равнозначные обозначения кодовых последовательностей:

A =(111-1-11-1) = (1110010) =(+ + + - - + -), здесь N = 7.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 8 - ФМ сигнал, его комплексная огибающая

Спектр ФМ сигналов

Спектральные свойства ФМ сигналов определяются спектрами импульса u(t) и кодовой последовательности A. Спектр прямоугольного видеоимпульса S():

S() = 0 exp (- i0/2)

Спектр прямоугольного сигнала состоит из трех сомножителей. Первый - равный ф0 есть площадь импульса 1ф0 . Второй множитель sin(0/2)/(0/2) в виде функции отсчета sin(x)/x характеризует распределение спектра по частоте. Третий множитель является следствием смещения центра импульса относительно начала координат на половину длительности импульса 0/2.

Спектр ФМ сигнала G(), точнее спектр огибающей, с учетом теоремы о сдвиге, имеет следующий вид:

G() = S() an exp [-i(n-1)0]

Сумма в правой части является спектром кодовой последовательности A и обозначается в дальнейшем H(). Итак,

u(t) S(), A H(), U(t) G(),

Представление спектра ФМ сигнала в виде произведения удобно тем, что можно сначала отдельно найти спектры S() и H(), а затем, перемножив их, получить спектр ФМ сигнала. Свойства спектра прямоугольного импульса хорошо известны: он имеет лепестковую структуру с нулями в точках /, 2/ и т.д. Амплитудный спектр кодовой последовательности, в среднем, приближается к спектру белого шума и отличается значительными флуктуациями вокруг среднего, равного

Для фазового спектра кодовой последовательности также характерна значительная изрезанность.

Автокорреляционная функция (АКФ).

АКФ ФМ сигналов имеет вид типичный для всех типов ШПС. Нормированная АКФ состоит из центрального (основного) типа с амплитудой 1, размещенного на интервале (-,) и боковых (фоновых) максимумов, распределенных на интервале (-,) и (,).

Амплитуды боковых типов принимают различные значения, но у сигналов с “хорошей” корреляцией они малы, т.е. существенно меньше амплитуды центрального пика. Отношение амплитуды центрального пика (в данном случае 1) к максимальной амплитуде боковых максимумов называют коэффициентом подавления К. Для произвольных ШПС с базой В

Для ФМ ШПС К1. Пример АКФ ШПС дан на рисунке 9. Величина К существенно зависит от вида кодовой последовательности А. При правильном выборе закона формирования А можно добиться максимального подавления, а в ряде случаев - равенства амплитуд всех боковых максимумов.

Сигналы Баркера

Кодовая последовательность сигнала Баркера состоит из символов 1 и характеризуется нормированной АКФ вида:

где l = 0, 1, ... (N-1)/2.

Знак в последней строчке зависит от величины N. На рисунках 8-9 показаны ФМ сигнал, его комплексная огибающая и АКФ семизначного кода Баркера.

Из (18) следует, что одна из особенностей сигнала Баркера - равенство амплитуд всех (N-1) боковых максимумов АКФ, и все они имеют минимально возможный уровень, не превышающий 1/N. В таблице 1 приведены известные кодовые последовательности Баркера и их уровни боковых типов АКФ. Кодовые последовательности, обладающие свойствами (18), для N 13 не найдены.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 9 - АКФ семизначного кода Баркера

Таблица 1 Кодовые последовательности Баркера

Кодовая последовательность

Уровень боковых лепестков

1 1 1 -1 -1 1 -1

1 1 1 -1 -1 -1 1 -1 -1 1

1 1 1 1 1 -1 -1 1 1 -1 1 -1 1

Формирование и обработка сигналов Баркера. Формирование сигналов Баркера может осуществляться несколькими способами, так же, как и произвольного ФМ сигнала. Поскольку сигналы Баркера были первыми ПШС, причем с наилучшими АКФ, рассмотрим кратко один из возможных способов формирования и обработки сигналов Баркера.

На рисунке 10 изображен генератор сигнала Баркера с N=7. Генератор синхроимпульсов (ГСИ) формирует узкие прямоугольные синхроимпульсы, период следования которых равен длительности сигнала Баркера Т=7ф0, а ф0 - длительность одиночного (единичного) прямоугольного импульса. Генератор синхроимпульсов запускает генератор одиночных импульсов (ГОИ), который в свою очередь формирует одиночные прямоугольные импульсы длительностью ф0 и периодом Т. Одиночные прямоугольные импульсы поступают на вход многоотводной линии задержки (МЛЗ), которая имеет N-1=6 секций с отводами через интервалы времени, равные ф0. Число отводов, включая начало линии, равно 7. Так как кодовая последовательность Баркера с N =7 имеет вид 111-1 -11 -1, то импульсы с первого, второго, третьего и шестого отводов (счет ведется от начала линии) поступают на вход сумматора (+) непосредственно, а импульсы с четвертого, пятого и седьмого отводов поступают на вход сумматора через инверторы (ИН), которые превращают положительные одиночные импульсы в отрицательные, т. е. осуществляют изменение фазы на р. Поэтому инверторы называются также фазовращателями. На выходе сумматора имеет место видеосигнал Баркера (рисунок 8б), который затем поступает на один вход балансного модулятора (БМ), на другой вход которого подается радиочастотное колебание на несущей частоте, формируемое генератором несущей частоты (ГНЧ). Балансный модулятор осуществляет фазовую манипуляцию радиочастотного колебания ГНЧ в соответствии с кодовой последовательностью Баркера: видеоимпульсу с амплитудой 1 соответствует радиоимпульс с фазой 0, а видеоимпульсу с амплитудой -1 - радиоимпульс с фазой р. Таким образом, на выходе балансного модулятора имеет место радиочастотный сигнал Баркера (рисунок 8а).

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 10 - Генератор сигнала Баркера с N = 7

Оптимальная обработка сигналов Баркера так же, как и других ШПС, производится либо с помощью согласованных фильтров, либо с помощью корреляторов. Возможно несколько способов построения согласованных фильтров и корреляторов, отличающихся друг от друга в техническом выполнении, но обеспечивающих одно и то же максимальное отношение сигнал-помеха на выходе. На рисунке 11 приведена схема согласованного фильтра для сигнала Баркера с N = 7. С выхода усилителя промежуточной частоты приемника сигнал поступает на согласованный фильтр одиночного импульса (СФОИ), который производит оптимальную обработку (фильтрацию) одиночного прямоугольного радиоимпульса с центральной частотой, равной промежуточной частоте приемника. На выходе СФОИ радиоимпульс имеет треугольную огибающую. Треугольные радиоимпульсы с длительностью по основанию 2 ф0 поступают на МЛЗ, которая имеет 6 секций и 7 отводов (включая начало линии). Отводы следуют через ф0. Так как импульсная характеристика согласованного фильтра совпадает с зеркально отраженным сигналом, то кодовую импульсную характеристику фильтра для сигнала Баркера с N=7 следует устанавливать в соответствии с последовательностью -11-1-1111. Поэтому радиоимпульсы со второго, пятого, шестого и седьмого отводов МЛЗ поступают в сумматор (+) непосредственно, а радиоимпульсы с первого, третьего и четвертого отводов -- через инверторы (ИН), которые меняют фазу на р. На выходе сумматора имеет место АКФ сигнала Баркера, огибающая которой приведена рисунке 9.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Рисунок 11 - Согласованный фильтр сигнала Баркера с N = 7

М - последовательности

Среди фазоманипулированных сигналов особое значение занимают сигналы, кодовые последовательности которых являются последовательностями максимальной длины или М -последовательностями.

М - последовательности принадлежат к разряду двоичных линейных рекуррентных последовательностей и представляют собой набор N периодически повторяющихся двоичных символов. Причем каждый текущий символ dj образуется в результате сложения по модулю 2 некоторого числа m предыдущих символов, одни из которых умножаются на 1, а другие - на 0.

Для j-го символа имеем:

d j = a i d j - i = a 1 d j -1 . . . a m d j -m(4)

Где а1…аm - числа 0 или 1.

Технически генератор М-последовательности строится в виде регистра (последовательно включенных триггеров) с отводами, с цепью обратной связи и с сумматором по модулю 2. Пример такого генератора приведен на рисунке 12. Умножение на а1…аm в (4) означает просто наличие или отсутствие отвода, т.е. связи соответствующего триггера (разряда регистра) с сумматором. В m-разрядном регистре максимальный период равен: Nm - 1. Величина m называется памятью последовательности. Если отводы выбраны произвольно, то не всегда на выходе генератора будет наблюдаться последовательность максимальной длины. Правило выбора отводов, позволяющее получить последовательность с периодом Nm-1, предполагает найти неприводимые примитивные полиномы степени m с коэффициентами, равными 0 и 1. Не равные нулю коэффициенты в полиномах определяют номера отводов в регистре.

Так, при m=6 существует 3 примитивных многочлена:

а6 а5 а4 а3 а2 а1 а0

p1 (x) = x 6 + x + 1 1 0 0 0 0 1 1

p2 (x) = x 6 + x 5 + x 2 + x + 1 1 1 0 0 1 1 1

p3 (x) = x 6 + x 5 + x 3 + x 2 + 1 1 1 0 1 1 0 1

На рисунке 12 реализован первый вариант.

Рисунок 12 - Генератор М-последовательности с периодом N = 26 - 1 = 63

Особенности автокорреляционной функции М-последовательности. Наибольший интерес представляет нормированная автокорреляционная функция (АКФ). Различают два случая получения такой функции: в периодическом (ПАКФ) и апериодическом режимах. Периодическая АКФ имеет основной, равный единице, пик и ряд боковых выбросов, амплитуды которых 1/N. С ростом N ПАКФ приближается к идеальной, когда боковые пики становятся по сравнения с основным пренебрежимо малы.

Боковые пики АКФ в апериодическом режиме существенно больше боковых пиков ПАКФ. Среднеквадратичное значение боковых пиков (вычисленное через дисперсию) равно

Усеченные М-последовательности

Разбивая М-последовательность (полный период N) на сегменты длительности Nс, можно получить большое число ШПС, рассматривая каждый из сегментов как самостоятельный сигнал. Если сегменты не перекрываются, то их число равно n = N/(Nc-1). Таким образом, можно получить большое число псевдослучайных последовательностей. Автокорреляционные свойства таких последовательностей значительно хуже, чем у М-последовательности той же длительности и зависят от Nc. Установленно, что у 90% сегментов uб 3 /, а у 50% - 2 /.

сигнал частотный фильтр последовательность

Литература

1. Шумоподобные сигналы в системах передачи информации. Под ред. В.Б. Пестрякова. - М., “Сов. радио”, 1973, -424c.

2. Ю.С. Лёзин. Введение в теорию радиотехнических систем. - М.: Радио и связь, 1985, -384c.

3. Л.Е. Варакин. Системы связи с шумоподобными сигналами. - М.: Радио и связь, 1985, -384c.

Размещено на Allbest.ru

...

Подобные документы

    Импульсная характеристика оптимального фильтра. Отклик оптимального фильтра на принятый сигнал. Сжатие сигнала во времени. Частотная характеристика оптимального фильтра. Эквивалентность характеристик обнаружения при корреляционной и фильтровой обработке.

    реферат , добавлен 21.01.2009

    Алгоритм расчета фильтра во временной и частотной областях при помощи быстрого дискретного преобразования Фурье (БПФ) и обратного быстрого преобразования Фурье (ОБПФ). Расчет выходного сигнала и мощности собственных шумов синтезируемого фильтра.

    курсовая работа , добавлен 26.12.2011

    Принципы кодирования источника при передаче дискретных сообщений. Процесс принятия приёмником решения при приёме сигнала. Расчёт согласованного фильтра. Построение помехоустойчивого кода. Декодирование последовательности, содержащей двукратную ошибку.

    курсовая работа , добавлен 18.10.2014

    Разработка модели системы передачи дискретных сообщений. Принципы кодирования источника при передаче информации. Расчёт вероятностей двоичных символов; энтропии и избыточности кода. Импульсная и комплексно-частотная характеристика согласованного фильтра.

    курсовая работа , добавлен 27.03.2016

    Назначение и характеристики широкополосных систем связи. Основы применения шумоподобных сигналов. Системы псевдослучайных последовательностей. Структурные схемы генераторов линейных кодовых последовательностей. Генерирование кодов с высокой скоростью.

    курсовая работа , добавлен 04.05.2015

    Дискретные системы связи. Дифференциальная импульсно-кодовая модуляция. Квантование по уровню и кодирование сигнала. Помехоустойчивость систем связи с импульсно-кодовой модуляцией. Скорость цифрового потока. Импульсный сигнал на входе интегратора.

    реферат , добавлен 12.03.2011

    Нахождение корреляционной функции входного сигнала. Спектральный и частотный анализ входного сигнала, амплитудно-частотная и фазочастотная характеристика. Переходная и импульсная характеристика цепи. Определение спектральной плотности выходного сигнала.

    курсовая работа , добавлен 27.04.2012

    Временные функции, частотные характеристики и спектральное представление сигнала. Граничные частоты спектров сигналов. Определение разрядности кода. Интервал дискретизации сигнала. Определение кодовой последовательности. Построение функции автокорреляции.

    курсовая работа , добавлен 09.02.2013

    Проблема помехоустойчивости связи, использование фильтров для ее решения. Значение емкости и индуктивности линейного фильтра, его параметры и характеристики. Моделирование фильтра и сигналов в среде Electronics Workbench. Прохождение сигнала через фильтр.

    курсовая работа , добавлен 20.12.2012

    Вычисление Z-преобразования дискретной последовательности отсчетов сигнала. Определение дискретной свертки. Порядок построения схемы нерекурсивного фильтра, которому соответствует системная функция. Отсчеты дискретного сигнала по заданным параметрам.

Которых сравнима с центральной частотой. Иногда используется коэффициент 1/10, т.е. если ширина спектра составляет около 1/10 от частоты, на которой передается сигнал, то сигнал считается широкополосным. При более узком спектре сигнал будет узкополосным, при более широком - сверхширокополосным.

  • Дискретные частотные сигналы, ДС
  • Фазоманипулированные сигналы, ФМ
  • Частотно-модулированные сигналы, ЧМС
  • Метод расширения спектра методом прямой последовательности (DSSS - Direct Sequence Spread Spectrum)

Wikimedia Foundation . 2010 .

Смотреть что такое "Широкополосные сигналы" в других словарях:

    ГОСТ Р ИСО 12124-2009: Акустика. Методы измерения акустических характеристик слуховых аппаратов на ухе человека - Терминология ГОСТ Р ИСО 12124 2009: Акустика. Методы измерения акустических характеристик слуховых аппаратов на ухе человека оригинал документа: 3.18 азимут на источник звука (azimuth angle of sound incidence): Угол между плоскостью симметрии… …

    Многолучевой эффект это эффект, наблюдаемый при распространении сигналов. Возникает при условии существования в точке приема радиосигнала не только прямого, но и ещё одного или целого ряда отраженных лучей. Если говорить проще, на антенну… … Википедия

    - (от Радио... и лат. locatio размещение, расположение) область науки и техники, предметом которой является наблюдение радиотехническими методами (радиолокационное наблюдение) различных объектов (целей) их обнаружение, распознавание,… … Большая советская энциклопедия

    Сигнал изменение физической величины, несущее информацию, кодированную определённым способом, либо синхронизированное (заранее оговоренное с получателем) отсутствие изменения физической величины. Одно из фундаментальных понятий кибернетики. В… … Википедия

    Частотный спектр 1 2 ГГц Спектр длин волн от 30 до 15 см Классификация ITU (рус.) КНЧ СНЧ ИНЧ ОНЧ НЧ СЧ ВЧ ОВЧ … Википедия

    ГИДРОАКУСТИЧЕСКАЯ СВЯЗЬ - обмен информацией через водную среду, по которой распространяются гидроакустические сигналы между надводными судами, подводными лодками, водолазами и т. д. Передаваемая информация речевые сигналы и кодированные сообщения. Гидроакустическая Связь… … Морской энциклопедический справочник

    Не следует путать с стенографией. Запрос «Тайнопись» перенаправляется сюда; о тайнописи в Древней Руси см. Древнерусские тайнописи. Стеганография (от греч. στεγανός скрытый + γράφω пишу; буквально «тайнопись») это наука о… … Википедия

    дифференциальное сравнение - 3.27 дифференциальное сравнение (differential comparison): Измерение, в котором уровень испытательного сигнала вычитается из УЗД в точке измерения. Примечание Если используются широкополосные сигналы, то должны быть измерены уровни звукового… … Словарь-справочник терминов нормативно-технической документации

    коэффициент передачи звука открытого уха - 3.29 коэффициент передачи звука открытого уха (real ear unaided gain REUG): Разность между уровнем звукового давления в точке измерения и уровнем испытательного сигнала в зависимости от частоты испытательного сигнала при открытом ушном канале.… … Словарь-справочник терминов нормативно-технической документации

    коэффициент передачи звука уха, закрытого включенным слуховым аппаратом - 3.33 коэффициент передачи звука уха, закрытого включенным слуховым аппаратом (real ear aided gain REAG): Разность между уровнем звукового давления в точке измерения и уровнем испытательного сигнала в зависимости от частоты испытательного сигнала… … Словарь-справочник терминов нормативно-технической документации


Введение

Широкополосные системы связи. Их назначение и характеристики

Основы применения шумоподобных сигналов системах связи

Системы с псевдослучайными сигналами

Последовательности максимальной длинны

Структурные схемы генераторов линейных кодовых последовательностей

Частота следования символов и длина кода

7. Генерирование кодов с высокой скоростью


Введение


Широкополосные методы передачи впервые были применены в конце 2-й мировой войны в военных радиотехнических системах для обеспечения высокого расширения по дальности и борьбы с преднамеренными помехами противника. На данный момент эти методы были усовершенствованы, а многие недостатки устранены. Системы с ШПС(шумоподобными сигналами) получают все большее распространение за счет своих качеств, таких как: помехозащищенность при действии мощных помех и кодовую адресацию большого числа абонентов и их кодовое разделение при работе в общей полосе частот одновременно.


1.Широкополосные системы связи. Их назначение и характеристики


Широкополосная система - система, передаваемый сигнал которой занимает очень широкую полосу частот, значительно превосходящую ту минимальную ширину полосы частот, которая фактически требуется для передачи информации. По факту один символ представляется длинной кодовой последовательностью, что позволяет работать с большим уровнем шумов, ведь если даже часть этой последовательности будет искажена шумами, ее можно будет восстановить на приемной стороне.

Наиболее известным примером широкополосной модуляции является обычная частотная модуляция с индексом модуляции, большем единицы. Полоса, занимаемая ЧМ сигналом, является функцией не только полосы информационного сигнала, но и "глубины" модуляции. Во всех широкополосных системах выигрыш в величине отношения мощности сигнала к мощности шума достигается в процессе модуляции демодуляции. При ЧМ сигналах ОСШ на выходе демодулятора равно:



Где - максимальное значение индекса частотной модуляции;

ОСШ в полосе модулирующих частот или в полосе информационного сигнала, где S -мощность сигнала; N - мощность шума.

Широкополосную ЧМ можно рассматривать как широкополосный метод передачи, поскольку получаемый высокочастотный спектр (спектр радиочастот) имеет ширину, значительно превосходящую ширину спектра частот, занимаемого информационным сигналом.

Из всех возможных широкополосных видов модуляции можно выделить следующие три основных вида:

.Модуляция несущей цифровой кодовой последовательностью с частотой следования символов, во много раз превосходящей ширину полосы информационного сигнала. Такие системы называются системами с одночастотным псевдослучайным сигналом.

.Модуляция путем изменения (сдвига) частоты несущей в дискретные моменты времени на некоторую величину, значение которой задается кодовой последовательностью. Такие изменения частоты называются "частотными скачками". В этом случае в передатчике происходят мгновенные переходы с одной частоты на другую, каждая из которых выбирается из некоторого заранее определенного множества, причем порядок использования частот определяется кодовой последовательностью.

.Линейная ЧМ импульсов, в результате которой частота несущей изменяется в широкой полосе частот за время, равное длительности импульса.

Метод широкополосной передачи был открыт К.Е Шенноном, который впервые ввел в рассмотрение понятие пропускной способности канала:



где С - пропускная способность, бит/с; W - ширина полосы, Гц; S - мощность сигнала; N - мощность шума.

Это уравнение устанавливает связь между возможностью осуществления безошибочной передачи информации по каналу с заданным ОСШ и полосой частот, отведенной для передачи информации.

Для любого заданного ОСШ малая частота ошибок при передаче получается при увеличении полосы частот, отводимой для передачи информации.

Следует отметить, что сама информация может быть введена в широкополосный сигнал несколькими способами. Наиболее известный способ заключается в наложении информации на широкополосную модулирующую(рис.1).


Рис.1.Структурная схема системы с псевдослучайными одночастотными сигналами и формы сигналов в различных ее точках.


Кодовую последовательность перед модуляцией несущей для получения широкополосного сигнала. Этот способ пригоден для любой широкополосной системы, в которой применяется кодовая последовательность для расширения спектра высокочастотного сигнала (системы с одночастотным и многочастотным псевдослучайными сигналами). Очевидно, что предаваемая информация в этом случае должна быть представлена в некотором цифровом виде, поскольку наложение информации на двоичную кодовую последовательность обычно выполняется в виде операции сложения по модулю 2. В другом варианте информация не может быть использована для непосредственной модуляции "несущей" до расширения спектра. При этом обычно используется один из видов угловой модуляции, поскольку в широкополосных системах в большинстве случаев желательно, чтобы огибающая выходного высокочастотного сигнала была постоянной.

Следует отметить некоторые свойства широкополосных система:

Способность селективной адресации; возможность уплотнения на основе кодового разделения для систем с многократным доступом; обеспечение скрытной передачи за счет использования сигналов с малой спектральной плотностью мощности; трудность расшифровки сообщений при прослушивании; высокую разрешающую способность при измерениях дальности; помехозащищенность.

Однако невозможно, чтобы система одновременно обладала всеми вышеперечисленными свойствами. Например, трудно ожидать, что сигнал, обладающий хорошей скрытностью, одновременно может быть принят на фоне интенсивных помех. Однако система могла бы удовлетворить и тем и другим требованиям, если использовать режим передачи с пониженной мощностью, когда требуется скрытность, и режим передачи с повышенной мощностью для подавления интерференционных помех.


.Основы применения шумоподобных сигналов системах связи


Шумоподобными сигналами (ШПС) называют такие сигналы, у которых произведение ширины спектра Fна длительность T много больше единицы. Это произведение называется базой сигнала и обозначается B, т.е:



У ШПС B>>1. ШУмоподобные сигналы иногда называют сложными в отличие от простых сигналов с B=1.

В системах связи с ШПС ширина спектра ШПС Fвсегда много больше ширины спектра передаваемого сообщения. В цифровых системах связи, передающих информацию в виде двоичных символов, длительность ШПС и скорость передачи информации R связанны соотношением T=1/RПоэтому база ШПС:



Характеризуется расширением спектра ШПС относительно спектра сообщения. В аналоговых системах связи, у которых верхняя частота сообщения равно W и частота отсчета равно 2W,



И если B>>1, то F>>R и F>>2W

Из рассмотрения основных свойств ШПС следует, что применение ШПС в системах связи позволяет обеспечивать высокую помехоустойчивость относительно мощных помех, скрытность, адресность, работоспособность в общей полосе частот, борьбу с многолучевостью, высокие точности измерений и разрешающие способности, хорошую ЭМС со многими радиотехническими системами.


3.Системы с псевдослучайными сигналами


Системы с псевдослучайными сигналами являются наиболее известными и широко распространенными среди широкополосных систем. Так, метод определения дальности, разработанный в лаборатории реактивного движения успешно используется в системе RANGERи других космических программах, основан на применении псевдослучайны последовательностей.

В цифровых или персональных системах радиосвязи, использующих МДКРК(многостанционный доступ на основе разделения каналов с расширением спектра) и расширение спектра, с помощью псевдослучайных последовательностей решаются следующие основные задачи:

.Расширение спектра модулированного сигнала с целью увеличения ширины полосы частот при передаче.

.Разделение сигналов различных пользователей, использующих при передаче одну и ту же полосу частот в режиме многостанционного доступа.

В известных системах радиосвязи в качестве сигналов расширения спектра используется двоичные цифровые ПСП. Авто- и взаимокорреляционные функции этих последовательностей при дискретных сдвигах, кратных длительности символа, в интересующей области вычисляются подсчетом количества совпадений и несовпадений при посимвольном (побитовом) сравнении.

Для расширения спектра и равномерной загрузки полосы передачи спектральная плотность одиночной последовательности должна быть равномерной, как у АБГШ.

Второй и наиболее трудной задачей, решаемой с помощью ПСП в системе МДКРК со многими пользователями, является разделение сигналов различных пользователей, использующих одну и ту же полосу передачи. Сигнал ПСП выполняет функцию "ключа" для каждого пользователя и позволяет в приемнике выделить предназначенный ему сигнал. Поэтому полный ансамбль ПСП должен быть выбран таким, чтобы взаимная корреляция между любой парой последовательностей была достаточно мала. Это позволяет минимизировать уровень помехи по соседним каналам. Теоретически нулевое значение взаимной корреляции имеют ансамбли ортогональных сигналов расширения спектра(например, базисные функции рядов Фурье и функции Уолша).

Однако в реальных системах радиосвязи требуется, чтобы обеспечивалась простота когерентного формирования ПСП на передающей и приемной сторонах. К числу наиболее известных и хорошо изученных ПСП относятся последовательности максимальной длинны (М-последовательности). Они очень привлекательны для систем с расширенным спектром, ориентированных на одного пользователя, и широко использовались в приложениях военного характера. С точки зрения требований к взаимокорреляционным свойствам, предъявляемым в МДКРК системах сотовой или пресональной связи, более интересными являются последовательности Голда, Касами и Уолша. В некоторых случаях они комбинируются с М-последовательностями.

Свойства псевдослучайных последовательностей

Существует три основных свойства любой периодической последовательности, которые могут быть использованы в качестве проверки на случайность.

.Сбалансированность, Для каждого интервала последовательности количество двоичных единиц должно отличаться от числа двоичных нулей не больше чем на один элемент.

.Цикличность. Циклом называют непрерывную последовательность одинаковых двоичных чисел. Появление иной двоичной цифры автоматически начинает новый цикл. Длинна цикла равна количеству цифр в нем. Желательно, чтобы в каждом фрагменте последовательности приблизительно половину составляли циклы обоих типов длинной 1, приблизительно одну четверть длинной 2, приблизительно одну восьмую длинной 3 и т.д.

.Корреляция. Если часть последовательности и ее циклично сдвинутая копия поэлементно сравниваются, желательно, чтобы число совпадений отличалось от числа несовпадений не более чем на единицу.

Характеристики псевдослучайных сигналов

Сигналы, применяемые в широкополосных системах, могут быть получены различными способами. В системе с одночастотным псевдослучайным псевдослучайным сигналом модуляция "несущей" осуществляется кодовой последовательностью, при этом обычно используется фазовая манипуляция "несущей", а частота манипуляции определяется частотой следования символов кодовой последовательности т.е для передачи "единичного" символа кодовой последовательности используется одно значение фазы "несущей", а для передачи "нулевого" символа другое. Применяются и более сложные виды фазовой манипуляции (например, четырехфазная манипуляция), однако при каждом из них существует взаимно однозначное соответствие между передаваемой фазой несущей и опорной кодовой последовательностью или же кодовыми последовательностями. Следует отметить, то чаще всего используется балансная модуляция. Последнее объясняется несколькими причинами.

Во-первых, отсутствие "несущей" затрудняет процесс обнаружения сигнала и требует привлечения весьма ухищренных способов обработки. Очевидно, не имеет смысла в этом случае использовать обычный приемник для выделения "несущей", поскольку уровень последней находится значительно ниже уровня "шума", создаваемого кодовой модуляцией.

Во-вторых, преимуществом способа передачи с подавленной "несущей" является то, что большая мощность отводиться для передачи полезной информации, поскольку вся мощность передатчика используется только для передачи псевдослучайного сигнала.

В-третьих, огибающая сигнала имеет постоянный уровень, так что эффективность использования передаваемой мощности в отводимой полосы частот получается максимальной. Для передачи может применяться и АИМ, при которой "несущая" модулируется кодовой последовательностью. Она позволяет получить спектр мощности, близкий к , однако эффективная мощность на приемной стороне оказывается уже меньше. Таким образом, для обеспечения такой же дальности действия системы потребуется большая пиковая мощность.

В-четвертых, двухфазовый модулятор представляется собой довольно простое устройство. Для его создания требуются только два трансформатора и несколько диодов. Более сложные частотные манипуляторы требуют, по крайней мере, наличия такого генератора частота которого изменяется по команде. Обеспечение такого гибкого перехода с одной частоты на другую сопряжено с определенными трудностями по поддержани. Стабильности генерируемой частоты.


4. Последовательности максимальной длины


По определению кодами максимальной длины являются коды, которые могут быть получены с помощью регистра сдвига или элемента задержки заданной длинны. Длина двоичной последовательности максимальной длины, которая может быть получена с помощью генератора, построенного на основе регистра сдвига, равна , где n-число разрядов регистра сдвига. Генератор последовательности состоит из регистра сдвига и соответствующей логической схемы, с выхода которой по цепи обратной связи поступает на вход регистра сдвига информация о логической комбинации состояния двух или более его разрядов. Сигнал на выходе генератора последовательности и состояние его nразрядов в любой фиксированный тактовый интервал времени представляет собой функцию состояний его разрядов, включенных в цепь обратной связи, в предшествующие тактовые интервалы времени.

Все последовательности кода максимальной длины обладают следующими свойствами:

.Единиц в последовательности на одну больше, чем нулей.

.Для распределения последовательностей можно легко посчитать распределение длин серии из "нулей" и "единиц", которые одинаковы для одного и того же кода. Относительное местоположение этих серий меняется от последовательности к последовательности, но число серий одинаковой длины остается без изменения.

.Функция автокорреляции кода максимальной длины такова, что для всех значений задержки она равно - 1, за исключением области 0±1, где значения функции автокорреляции меняются от -1 до (длины последовательности)

.Сложение о модулю 2 любой последовательности максимальной длины с последовательностью, полученной путем любого циклического сдвига этой же последовательности на некоторое число позиций, приводит к новой последовательности, которая представляет циклический сдвиг той же самой последовательности на другое число позиций.

.Каждое возможное состояние, или n разрядная комбинация данного n-разрядного генератора, хза время формирования полного периода кода возникает в некоторый момент времени только 1 раз. Каждое состояние существует только в течении одного тактового интервала времени. Исключением является комбинация из одних нулей, в нормальном режиме работы оно не возникает, да и не должно возникать.


5. Последовательности Гоулда


По сравнению с обычными М-последовательностями, последовательности Гоулда более привлекательны для МДКРК систем со многими пользователями. Для этих систем необходимо значительно большее число последовательностей с хорошоми взаимокорреляционными свойствами между ними. Метод построения таких последовательностей был описан Гоулдом.

Этот метод состоит в сложении по mod 2 двух различных М-последовательностей, тактируемых единым тактовым генератором.(рис.2.)


Рис.2.Пример формирования кодовой последовательности Гоулда с использованием генераторов и .


Наиболее существенный момент при формировании последовательности Голда с "хорошими" корреляционными свойствами заключается в том, что может быть использованы только особые пары М-последователньостей, называемые предпочтительными.

Так как обе М-Последовательности имеют одну и ту же длину L и тактируются единым генератором, то формируемая последовательность Голда имеет длину L, но не является последовательностью максимальной длины. Пусть n- количество разряднов регистра сдвига в генераторе М-последовательностей, тогда длина последовательностей Гоулда . При выборе соответствующей пары М-последовательностей можно получить ансамбль последовательностей Гоулда с "хорошими" корреляционными свойствами.

Генераторы кодовых последовательностей Гоулда

Ценность генераторов кодовых последовательностей Гоулда заключается в том, что они позволяют получить большое число кодовых последовательностей. И при этом требуется лишь две комбинации отводов для цепи обратной связи. Основным достоинством этих кодовых последовательностей является то, что для их формирования требуется незначительное число отводов в цепи обратной связи. Таким образом, можно использовать простые генераторы последовательностей на основе регистра сдвига(ГРС) с одним отводом в цепи обратной связи, при этом сохраняется способность формирования большого числа кодовых последовательностей. Простой ГРС с одним отводом в цепи обратной связи является самым быстродействующим из всех возможных генераторов кодовых последовательностей, т.е существует потенциальная возможность формирования кодовых последовательностей Гоулда с частотой следования двоичных символов, соответствующей максимальной частоте простейших ГРС.

Формирование кодовых последовательностей Гоулда основано на операции сложения по модулю 2 пары линейных последовательнсотей максимальной длины (рис.3)


Рис.3. Структура генератора кодовой последовательности Гоулда


Сложение кодовых последовательностей формируемых с помощью одного тактового генератора, осуществляется посимвольно. Между двумя генераторами последовательностей поддерживается одни и те же фазовые соотношения, а формируемые, кодовые последовательности имеют ту же длину, что и две исходные кодовые последовательности, к которым применяется операция сложения, однако получаемые при этом кодовые последовательности уже не являются максимальными.

Помимо того что схема Гоулда позволяет формировать большое число кодовых последовательностей, она обладает еще одним достоинством. Коды Гоулда могут быть выбраны так, что функция взаимной корреляции для всех получаемых от данного генератора кодовых последовательностей будет одинаковой, а величина ее боковых пиков ограничена. Таким образом, кодовые последовательности Гоулда целесообразно использовать там, где требуется большое число сигналов для создания системы с кодовым разделением каналов. Для максимальных последовательностей той же длины нельзя заранее гарантировать, что боковые пики ВКФ не будут превосходить наперед заданную величину.


6.Частоты следования символов и длина кода


Выбор частоты следования символов кодовой последовательности оказывает влияние на ряд параметров широкополосных систем. Наиболее очевидно это проявляется в системе с одночастотными псевдослучайными сигналами, в которой полоса передаваемый частот определяется непосредственно частотой следования символов кодовой последовательности, т.е. ширина основного лепестка частотного спектра радиосигнала равна удвоенной частоте следования символов кодовой последовательности. Частота повторения кодовой последовательности также зависит от частоты следования символов кодовой последовательности(тактовой частоты), т.е. частота повторения кодовой последовательности равна =.

Частота повторения кодовой последовательности определяет расстояние между ближайшими соседними спектральными диниями в частотном спектре выходного радиосигнала и представляет собой одну из величин, которой уделяется должное внимание в процессе проектирования системы.

При выборе частоты повторения кодовой последовательности необходимо, чтобы период кодовой последовательности превышал максимальное время работы систем.

В табл.1 приведены различные данные относительно кодовых последовательностей максимальной длины с частотой следования символов равной дв. симв./c.


Табл.1 Периоды кодовых последовательностей для М


последовательностей различной длины с частотой следования дв. симв./c.

Другим фактором, который должен учитываться при выборе частоты следования символов кодовой последовательности и ее длины, является соотношение между частотой повторения кодовой последовательности и информационной полосой частот, а также назначение системы измерения дальности.

Целесообразно частоту повторения кодовой последовательности в системе с одночастотным псевдослучайным сигналом устанавливать путем выбора длины кодовой последовательности таким образом, чтобы эта частота не попадала в информационную полосу частот. В противном случае дополнительные помехи будут проходить на входы низкочастотных демодуляторов, особенно при воздействии искусственных помех.

В случае, когда наиболее важным является измерение дальности, то соответствующий выбор частоты следования символов кодовой последовательности может повысить точность измерения, а иногда даже и увеличить разрешающую способность. Если частота следования двоичных символов выбрана так, что на каждую милю задержки(времени распространения) приходится целое число двоичных символов, то для измерения дальности достаточно подсчитать величину сдвига кода, не применяя дополнительной коррекции.


7.Генерирование кодов с высокой скоростью


На практике желательно формировать двоичные кодовые последовательности с высокой частотой следования символов. Высокие частоты следования символов кодовой последовательности позволяют сформировать сигнал с широким спектром частот. Это особенно важно, когда необходимо расширить спектр сигнала высокоскоростной информации (с широкой полосой модулирующих частот) или же когда требуется обеспечить хорошую помехоустойчивость системы. Скорость передачи информации может достигать нескольких мегобит, и, очевидно, нужный результат может быть получен при использовании кодовых последовательностей с частотой следования символов до сотен миллионов в секунду.

Выбор номеров разрядов для подключения обратной связи представляет собой непростую задачу, но существуеют справочные таблицы, в которых они приведены. В любом случае одна из точек подключения - выход старшего разряда. В табл.2 приведены точки подключения обратной связи для регистров сдвига с разным количеством разрядов N(номера разрядов считаются от нуля).


Таблица 2 Точки подключения обратной связи

N7815162431Выходы6,57,6,4,214,1315,13,12,1023,22,21,1630,17

Из таблицы видно, что выгоднее брать число разрядов не кратное 8, например 7,15 или 31. В этом случае для обратной связи используется всего лишь два выхода, то есть достаточно одного двухвходного элемента "исключающее ИЛИ". Период выходной последовательности генератора составляет (2N-1) тактов, N- количество разрядов выходного кода(кроме одного) встречается один раз. Количество единиц в выходном сигнале больше количества нулей на единицу. Максимальная частота формирования символов кодовой последовательности определяется не только быстродействием элементов регистра сдвига, применяемых в генераторе, но и любой задержкой сигналов в цепи обратной связи. Поскольку сигнал на выходе цепи обратной связи содержит информацию о состоянии некоторых разрядов регистра сдвига для последующего момента его работы, то все процессы в триггерах, используемыъ как точки отводов обратной связи, и всех сумматорах по модулю 2 должны полностью заканчиваться до следующего тактового момента, максимальная частота формирования символов кодовой последовательности генератором в виде регистра сдвига



Где - время, требуемое для перехода разряда регистра сдвига из одного состояние в другое; время распространения сигнала по цепи обратной связи; длительность тактовых импульсов.

Быстродействие простого ГРС может быть увеличено соответствующим упорядочением схемы обратной связи, т.е использованием параллельно-последовательного суммирования, как это показано на рис.4, где структура (а) схемы обратной связи эквивалентна структуре (б), но для второй последовательности соединяются всего лишь два логических элемента одного уровня


Рис.4 Сравнение быстродействия двух структур ГРС.


В настоящее время отсутствуют структуры ГРС с параллельно-последовательной схемой обратной связи, поэтому на каждый отвод обратной связи всегда требуется один сумматор по модулю 2. Однако модульный ГРС обладает высоким быстродействием при большом числе отводов.

В силу низкой стабильности работы генераторов прямого действия для формирования кодовых последовательностей с высокой частотой следования символов было разработано несколько способов формирования составных кодовых последовательностей с помощью ГРС менее сложной структуры. К таким генераторам, формирующим составные кодовые последовательности, обладающим рядом преимуществ при высокой частоте следования символов, относятся генератора Гоулда и каскадные генераторы.


Заключение

широкополосный связь сигнал код

Широкополосные системы имеют большое количество преимуществ по сравнению с другими системами передачи данных. Благодаря большому выигрышу в отношении (порядка 30 дБ) стала возможной реализация спутниковых систем связи.

В данной сфере есть большой потенциал для реализации новых систем, с большей скорость, а следовательно и с большим количеством абонентов, лучшей скрытностью и помехозащищенностью.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.



Загрузка...