sonyps4.ru

Шифр простой одинарной перестановки. Шифрование методом перестановки

Шифрование перестановкой заключается в том, что символы открытого текста переставляются по определенному правилу в пределах некоторого блока этого текста. Рассмотрим перестановку, предназначенную для шифрования сообщения длиной n символов. Его можно представить с помощью таблицы

где i 1 номер места шифртекста, на которое попадает первая буква открытого текста при выбранном преобразовании, i 2 - номер места для второй буквы и т. д. В верхней строке таблицы выписаны по порядку числа от 1 до n , а в нижней те же числа, но в произвольном порядке. Такая таблица называется перестановкой степени n .

Зная перестановку, задающую преобразование, можно осуществить как шифрование, так и расшифрование текста. В этом случае, сама таблица перестановки служит ключом шифрования.

Число различных преобразований шифра перестановки, предназначенного для шифрования сообщений длины n , меньше либо равно n ! (n факториал). Заметим, что в это число входит и вариант преобразования, оставляющий все символы на своих местах.

С увеличением числа n значение n ! растет очень быстро. Для использования на практике такой шифр не удобен, так как при больших значениях n приходится работать с длинными таблицами. Поэтому широкое распространение получили шифры, использующие не саму таблицу перестановки, а некоторое правило, порождающее эту таблицу. Рассмотрим несколько примеров таких шифров.

Шифр перестановки "скитала". Известно, что в Vвеке до нашей эры правители Спарты, наиболее воинственного из греческих государств, имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью скитала, первого простейшего криптографического устройства, реализующего метод простой перестановки.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску пергамента и писали на ней вдоль стержня несколько строк текста сообщения (рис. 1.2). Затем снимали со стержня полоску пергамента с написанным текстом. Буквы на этой полоске оказывались расположенными хаотично.

Рис. 1.2. Шифр "Скитала"

Такой же результат можно получить, если буквы сообщения писать по кольцу не подряд, а через определенное число позиций до тех пор, пока не будет исчерпан весь текст. Сообщение "НАСТУПАЙТЕ " при размещении его по окружности стержня по три буквы дает шифртекст: "НУТАПЕСА_ТЙ ".

Для расшифрования такого шифртекста нужно не только знать правило шифрования, но и обладать ключом в виде стержня определенного диаметра. Зная только вид шифра, но не имея ключа, расшифровать сообщение было непросто.

Шифрующие таблицы. С начала эпохи Возрождения (конец XIV столетия) начала возрождаться и криптография. В разработанных шифрах перестановки того времени применяются шифрующие таблицы, которые, в сущности, задают правила перестановки букв в сообщении.

В качестве ключа в шифрующих таблицах используются:

    размер таблицы;

    слово или фраза, задающие перестановку;

    особенности структуры таблицы.

Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Этот метод шифрования сходен с шифром скитала. Например, сообщение "ТЕРМИНАТОР ПРИБЫВАЕТ СЕДЬМОГО В ПОЛНОЧЬ "записывается в таблицу поочередно по столбцам. Результат заполнения таблицы из 5 строк и 7 столбцов показан на рис. 1.3.

После заполнения таблицы текстом сообщения по столбцам для формирования шифртекста считывают содержимое таблицы по строкам. Если шифртекст записывать группами по пять букв, получается такое шифрованное сообщение: "ТНПВЕ ГЛЕАР АДОНР ТИЕЬВ ОМОБТ МПЧИР ЫСООЬ ".

Рис. 1.3. Заполнение шифрующей таблицы из 5 строк и 7 столбцов

Естественно, отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. Следует заметить, что объединение букв шифртекста в 5-буквенные группы не входит в ключ шифра и осуществляется для удобства записи несмыслового текста. При расшифровании действия выполняют в обратном порядке.

Несколько большей стойкостью к раскрытию обладает метод шифрования, называемый одиночной перестановкой по ключу . Этот метод отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Применим в качестве ключа, например, слово "ПЕЛИКАН ", а текст сообщения возьмем из предыдущего примера. На рис. 1.4 показаны две таблицы, заполненные текстом сообщения и ключевым словом, при этом левая таблица соответствует заполнению до перестановки, а правая таблица – заполнению после перестановки.

Рис. 1.4. Шифрующие таблицы, заполненные ключевым словом и текстом сообщения

В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если бы в ключе встретились одинаковые буквы, они бы были понумерованы слева направо. В правой таблице столбцы переставлены в соответствии с упорядоченными номерами букв ключа.

При считывании содержимого правой таблицы по строкам и записи шифртекста группами по пять букв получим шифрованное сообщение: "ГНВЕП ЛТООА ДРНЕВ ТЕЬИО РПОТМ БЧМОР СОЫЬИ ".

Для обеспечения дополнительной скрытности можно повторно зашифровать сообщение, которое уже прошло шифрование. Такой метод шифрования называется двойной перестановкой . В случае двойной перестановки столбцов и строк таблицы перестановки определяются отдельно для столбцов и отдельно для строк. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровании порядок перестановок должен быть обратным.

Пример выполнения шифрования методом двойной перестановки показан на рис. 1.5. Если считывать шифртекст из правой таблицы построчно блоками по четыре буквы, то получится следующее: "ТЮАЕ ООГМ РЛИП ОЬСВ ".

Рис. 1.5. Пример выполнения шифрования методом двойной перестановки

Ключом к шифру двойной перестановки служит последовательность номеров столбцов и номеров строк исходной таблицы (в нашем примере последовательности 4132 и 3142 соответственно).

Число вариантов двойной перестановки быстро возрастает при увеличении размера таблицы:

    для таблицы 3x3 36 вариантов;

    для таблицы 4x4 576 вариантов;

    для таблицы 5x5 14400 вариантов.

Шифрование с помощью магических квадратов. В средние века для шифрования перестановкой применялись и магические квадраты. Магическими квадратами называют квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная от 1, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число.

Шифруемый текст вписывали в магические квадраты в соответствии с нумерацией их клеток. Если затем выписать содержимое такой таблицы по строкам, то получится шифртекст, сформированный благодаря перестановке букв исходного сообщения.

Пример магического квадрата и его заполнения сообщением "ПРИЛЕТАЮ ВОСЬМОГО " показан на рис. 1.6.

Рис. 1.6. Пример магического квадрата 4х4 и его заполнение сообщением

Шифртекст, получаемый при считывании содержимого правой таблицы по строкам, имеет вполне загадочный вид: "ОИРМ ЕОСЮ ВТАЪ ЛГОП ".

Число магических квадратов быстро возрастает с увеличением размера квадрата. Существует только один магический квадрат размером 3x3 (если не учитывать его повороты). Количество магических квадратов 4x4 составляет уже 880, а количество магических квадратов 5x5 – около 250000.

Магические квадраты средних и больших размеров могли служить хорошей базой для обеспечения нужд шифрования того времени, поскольку практически нереально выполнить вручную перебор всех вариантов для такого шифра.

Шифр перестановки «скитала». В V в. до н.э. правители греческого государства Спарты имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью скитала, первого простейшего криптографического устройства, реализующего метод простой перестановки (рис. 1.6).

Рис. 1.6.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску кожи и писали на ней вдоль стержня несколько строк текста сообщения. Затем снимали со стержня полоску - буквы на ней оказывались расположенными вразнобой.

Вестник обычно прятал сообщение, используя кожаную полосу как пояс, т.е. кроме шифрования применяли также и стеганографию. Чтобы получить исходное сообщение, полоску кожи надо намотать вокруг скиталы того же диаметра. Ключом этого шифра является диаметр стержн я - с к итал ы. Зная только вид шифра, но не имея ключа, расшифровать сообщение непросто. Шифр «скитала» многократно совершенствовался в последующие времена.

Способ взлома этого шифра предложен Аристотелем. Надо изготовить длинный конус и, начиная с основания, обертывать его лентой с шифрованным сообщением, постепенно сдвигая к вершине. В какой-то момент начнут просматриваться куски сообщения. Диаметр конуса в этом месте соответствует диаметру скиталы.

Шифрующие таблицы. Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Этот метод шифрования в простейшем варианте сходен с шифром «скитала». Например, текст сообщение записывается в таблицу определенного размера в столбик, а считывается но строкам.

Запишем фразу «Терминатор прибывает седьмого в полночь» в таблицу размером 5x7 (рис. 1.7) но столбцам. Выписав текст из таблицы построчно, получим шифр: «тннвеглеарадонртиеьвомобтмнчирысооь».

Рис. 1.7.

Отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. При расшифровке действия выполняют в обратном порядке (построчная запись, чтение по столбцам).

Этот шифр может быть несколько усложнен: например, столбцы могут быть переставлены в некоторой последовательности, определяемой ключом. Возможна двойная перестановка - столбцов и строк.

Решетка Кардано. Решетка Кардано (поворотная решетка) - это прямоугольная или квадратная карточка с четным числом строк и столбцов 2k X 2т. В ней проделаны отверстия таким образом, что при последовательном отражении или поворачивании и заполнении открытых клеток карточки постепенно будут заполнены все клетки листа.

Карточку сначала отражают относительно вертикальной оси симметрии, затем - относительно горизонтальной оси, и снова - относительно вертикальной (рис. 1.8).

Если решетка Кардано - квадратная, то возможен и другой вариант ее преобразований - поворот на 90° (рис. 1.9).


Рис. 1.8.


Рис. 1.9.

При записи обычным способом (слева направо и сверху вниз) словосочетания «шифрование текста» (без пробелов) в свободные клетки поворотной решетки, изображенной на рис. 1.9, получим текст в виде таблицы (рис. 1.10), или, записав текст в одну строку, - «кшииоесвтафатрен».

Рис. 1.10.

Получатель должен знать трафарет и наложить его в той же последовательности, что и при шифровании. Ключом является выбранный тип перемещения решетки (отражение или поворот) и трафарет - расположение отверстий, которые для квадратной решетки размером х могут быть выбраны 4""* способами (с учетом начальной ориентации трафарета). В этом случае среди трафаретов, считающихся различными, будут встречаться такие, которые являются зеркальным отражением или поворотами других трафаретов, т.е. трафареты, различающиеся только начальным расположением (ориентацией). Если пренебречь начальным расположением трафарета, то, очевидно, различных трафаретов будет в 4 раза меньше - 4""*"

Например, для решеток размером 4X4 существует 256 возможных вариантов трафарета (с учетом начальной ориентации) или всего 64 различных трафаретов.

Несмотря на то, что число трафаретов для больших решеток достаточно велико (порядка 4 млн (4- 10 е)), оно все же существенно меньше, чем случайных перестановок элементов таблицы, число которых равно (2т? 2k).

Например, для таблицы размером 4x4 число случайных перестановок составляет порядка 2 ? 10 13 , а для таблиц размером 8x8 - около 10 89 .

Решетки Кардано, так же как и шифрующие таблицы, являются частными случаями шифра маршрутной перестановки.

Шифр, преобразования из которого изменяют только порядок следования символов исходного текста, но не изменяют их самих, называется шифром перестановки

Рассмотрим преобразование из ШП, предназначенное для зашифрования сообщения длиной символов. Его можно представить с помощью таблицы

где номер места шифртекста, на которое попадает первая буква исходного сообщения при выбранном преобразовании, номер места для второй буквы и т. д. В верхней строке таблицы выписаны по порядку числа от 1 до а в нижней - те же числа, но в произвольном порядке. Такая таблица называется подстановкой степени

Зная подстановку, задающую преобразование, можно осуществить как зашифрование, так и расшифрование текста. Например, если для преобразования используется подстановка

и в соответствии с ней зашифровывается слово то получится Попробуйте расшифровать сообщение полученное в результате преобразования с помощью указанной выше подстановки.

В качестве упражнения читателю предлагается самостоятельно выписать подстановки, задающие преобразования в описанных ниже трех

примерах шифров перестановки. Ответы помещены в конце раздела.

Читатель, знакомый с методом математической индукции, может легко убедиться в том, что существует (обозначается читается факториал») вариантов заполнения нижней строки таблицы (6). Таким образом, число различных преобразований шифра перестановки, предназначенного для зашифрования сообщений длины меньше либо равно (заметим, что в это число входит и вариант преобразования, оставляющий все символы на своих местах!).

С увеличением числа значение растет очень быстро. Приведем таблицу значений для первых 10 натуральных чисел:

(см. скан)

При больших для приближенного вычисления можно пользоваться известной формулой Стирлинга

Примером ШП, предназначенного для зашифрования сообщений длины является шифр, в котором в качестве множества ключей взято множество всех подстановок степени а соответствующие им преобразования шифра задаются, как было описано выше. Число ключей такого шифра равно

Для использования на практике такой шифр не удобен, так как при больших значениях приходится работать с длинными таблицами.

Широкое распространение получили шифры перестановки, использующие некоторую геометрическую фигуру. Преобразования из этого шифра состоят в том, что в фигуру исходный текст вписывается по ходу одного «маршрута», а затем по ходу другого выписывается с нее. Такой шифр называют маршрутной перестановкой. Например, можно вписывать исходное сообщение в прямоугольную таблицу, выбрав такой маршрут: по горизонтали, начиная с левого верхнего угла поочередно слева направо и справа налево. Выписывать же сообщение будем по другому маршруту: по вертикали, начиная с верхнего правого угла и двигаясь поочередно сверху вниз и снизу вверх.

Зашифруем, например, указанным способом фразу:

используя прямоугольник размера

(см. скан)

Зашифрованная фраза выглядит так:

Теоретически маршруты могут быть значительно более изощренными, однако запутанность маршрутов усложняет использование таких шифров.

Ниже приводятся описания трех разновидностей шифров перестановки, встречавшихся в задачах олимпиад.

Шифр «Сцитала». Одним из самых первых шифровальных приспособлений был жезл («Сцитала»), применявшийся еще во времена войны Спарты против Афин в V веке до н. э. Это был цилиндр, на который виток к витку наматывалась узкая папирусная лента (без просветов и нахлестов), а затем на этой ленте вдоль его оси записывался необходимый для передачи текст. Лента сматывалась с цилиндра и отправлялась адресату, который, имея цилиндр точно такого же диаметра, наматывал ленту на него и прочитывал сообщение. Ясно, что такой способ шифрования осуществляет перестановку местами букв сообщения.

Шифр «Сцитала», как видно из решения задачи 2.1, реализует не более перестановок по прежнему, - длина сообщения). Действительно, этот шифр, как нетрудно видеть, эквивалентен следующему шифру маршрутной перестановки: в таблицу, состоящую из столбцов, построчно записывают сообщение, после чего выписывают буквы по столбцам. Число задействованных столбцов таблицы не может превосходить длины сообщения.

Имеются еще и чисто физические ограничения, накладываемые реализацией шифра «Сцитала». Естественно предположить, что диаметр жезла не должен превосходить 10 сантиметров. При высоте строки в 1 сантиметр на одном витке такого жезла уместится не более 32 букв Таким образом, число перестановок, реализуемых «Сцита-лой», вряд ли превосходит 32.

Шифр «Поворотная решетка». Для использования шифра, называемого поворотной решеткой, изготавливается трафарет из прямоугольного листа клетчатой бумаги размера клеток. В трафарете вырезано тк клеток так, что при наложении его на чистый лист бумаги того же размера четырьмя возможными способами его вырезы полностью покрывают всю площадь листа.

Буквы сообщения последовательно вписываются в вырезы трафарета (по строкам, в каждой строке слева направо) при каждом из четырех его возможных положений в заранее установленном порядке.

Поясним процесс шифрования на примере. Пусть в качестве ключа используется решетка приведенная на рис. 1.

Зашифруем с ее помощью текст

Наложив решетку на лист бумаги, вписываем первые 15 (по числу

вырезов) букв сообщения: Сняв решетку, мы увидим текст, представленный на рис. 2. Поворачиваем решетку на 180°. В окошечках появятся новые, еще не заполненные клетки. Вписываем в них следующие 15 букв. Получится запись, приведенная на рис. 3. Затем переворачиваем решетку на другую сторону и зашифровываем остаток текста аналогичным образом (рис. 4, 5).

Получатель сообщения, имеющий точно такую же решетку, без труда прочтет исходный текст, наложив решетку на шифртекст по порядку четырьмя способами.

Можно доказать, что число возможных трафаретов, то есть количество ключей шифра «решетка», составляет (см. задачу 1.1). Этот шифр предназначен для сообщений длины Число всех перестановок в тексте такой длины составит что во много раз

больше числа Однако, уже при размере трафарета число возможных решеток превосходит 4 миллиарда.

Широко распространена разновидность шифра маршрутной перестановки, называемая «шифром вертикальной перестановки» (ШВП). В нем снова используется прямоугольник, в который сообщение вписывается обычным способом (по строкам слева направо). Выписываются буквы по вертикали, а столбцы при этом берутся в порядке, определяемом ключом. Пусть, например, этот ключ таков: (5,4,1,7,2,6,3), и с его помощью надо зашифровать сообщение:

Впишем сообщение в прямоугольник, столбцы которого пронумерованы в соответствии с ключом:

(см. скан)

Теперь, выбирая столбцы в порядке, заданном ключом, и выписывая последовательно буквы каждого из них сверху вниз, получаем такую криптограмму:

Число ключей ШВП не более где число столбцов таблицы. Как правило, гораздо меньше, чем длина текста (сообщение укладывается в несколько строк по букв), а, значит, и много меньше

Пользуясь приведенной выше формулой Стирлинга при больших попытайтесь оценить, во сколько раз число возможных перестановок столбцами меньше числа всех перестановок на тексте длины кратном

В случае, когда ключ ШВП не рекомендуется записывать, его можно извлекать из какого-то легко запоминающегося слова или предложения. Для этого существует много способов. Наиболее распространенный состоит в том, чтобы приписывать буквам числа в соответствии с обычным алфавитным порядком букв. Например, пусть ключевым словом будет Присутствующая в нем буква А получает номер 1. Если какая-то буква входит несколько раз, то ее появления нумеруются последовательно слева направо. Поэтому второе вхождение буквы А получает номер 2. Поскольку буквы в этом слове нет, то буква В получает номер 3 и так далее. Процесс продолжается до тех

пор, пока все буквы не получат номера. Таким образом, мы получаем следующий ключ:

Перейдем к вопросу о методах вскрытия шифров перестановки. Проблема, возникающая при восстановлении сообщения, зашифрованного ШП, состоит не только в том, что число возможных ключей велико даже при небольших длинах текста. Если и удастся перебрать все допустимые варианты перестановок, не всегда ясно, какой из этих вариантов истинный. Например, пусть требуется восстановить исходный текст по криптограмме и нам ничего не известно, кроме того, что применялся шифр перестановки. Какой вариант «осмысленного» исходного текста признать истинным: или А может быть Приведем пример еще более запутанной ситуации. Пусть требуется восстановить сообщение по криптограмме

полученной шифром перестановки. Возможны, как минимум, два варианта исходного сообщения:

Эти варианты имеют прямо противоположный смысл и в имеющихся условиях у нас нет возможности определить, какой из вариантов истинный.

Иногда, за счет особенностей реализации шифра, удается получить информацию об использованном преобразовании (перестановке). Рассмотрим шифр «Сцитала» из задачи 2.1. Выше уже рассматривался вопрос о количестве перестановок, реализуемых «Сциталой». Их оказалось не более 32. Это число невелико, поэтому можно осуществить перебор всех вариантов. При достаточной длине сообщения, мы, скорее всего, получим единственный читаемый вариант текста. Однако, используя информацию о расположении линий, оставленных шифровальщиком, удается определить диаметр стержня, а значит, и возникающую перестановку букв (см. задачу 2.1).

В рассмотренном примере шифровальщик по неосторожности оставил на папирусе следы, позволяющие нам легко прочитать сообщение. Возможны и другие ситуации, когда не очень «грамотное» использование шифра облегчает вскрытие переписки.

В задаче 5.2 содержится пример текста, зашифрованного ШВП. По условию пробелы между словами при записи текста в таблицу опускались. Поэтому заключаем, что все столбцы, содержащие пробел в последней строке, должны стоять в конце текста. Таким образом, возникает разбиение столбцов на две группы (содержащие 6 букв, и

Аналогичная ситуация возникает и при «неполном» использовании шифра «решетка» (см. задачу 4.1). Пусть имеется решетка размера и зашифрованное с ее помощью сообщение длины к, не содержащее пробелов. Незаполненные к мест в решетке при условии, что к соответствуют вырезам в четвертом положении решетки. На основе такой информации, происходит резкое уменьшение числа допустимых решеток (их будет Читателю предлагается самостоятельно подсчитать число допустимых решеток при

На примере решения задачи 5.2 продемонстрируем еще один подход к вскрытию шифров вертикальной перестановки - лингвистический. Он основан на том, что в естественных языках некоторые комбинации букв встречаются очень часто, другие - гораздо реже, а многие вообще не встречаются (например -

Будем подбирать порядок следования столбцов друг за другом так, чтобы во всех строках этих столбцов получались «читаемые» отрезки текста. В приведенном решении задачи восстановление текста начинается с подбора цепочки из трех столбцов первой группы, содержащей в последней строке сочетание так как естественно предположить, что сообщение заканчивается точкой. Далее подбираются столбцы, продолжающие участки текста в других строках, и т. д.

Сочетание лингвистического метода с учетом дополнительной информации довольно быстро может привести к вскрытию сообщения.

В заключение рассказа о шифрах перестановки приведем историю с зашифрованным автографом А. С. Пушкина, описанную в романе В. Каверина «Исполнение желаний».

Главный герой романа - студент-историк Трубачевский, - занимавшийся работой в архиве своего учителя - академика Бауэра С. И., - нашел в одном из секретных ящиков пушкинского бюро фрагмент недописанной X главы «Евгения Онегина». Это был перегнутый вдвое полулист плотной голубоватой бумаги с водяным знаком 1829 года. На листе было написано следующее.

(см. скан)

(см. скан)

Без особых усилий Трубачевский прочитал рукопись, и ничего не понял. Он переписал ее, получилась бессвязная чепуха, в которой одна строка, едва начавшая мысль, перебивается другой, а та - третьей, еще более бессмысленной и бессвязной. Он попробовал разбить рукопись на строфы, - опять не получилось. Стал искать рифмы, - как будто и рифм не было, хотя на белый стих все это мало похоже. Просчитал строку - четырехстопный ямб, размер, которым написан «Евгений Онегин».

Трубачевский с азартом взялся за рукопись, пытался читать ее, пропуская по одной строке, потом по две, по три, надеясь случайно угадать тайную последовательность, в которой были записаны строки. У него ничего не получалось. Тогда он стал читать третью строку вслед за первой, пятую за третьей, восьмую за пятой, предположив, что пропуски должны увеличиваться в арифметической прогрессии. Все то же! Отчаявшись, он бросил эту затею. Однако, она не давала ему покоя ни на лекции, ни в трамвае... Как шахматист, играющий в уме, он не только знал наизусть каждую строчку, он видел ее в десяти комбинациях сразу.

Прошло время. Однажды, когда он смотрел на светлые пятна окон подходящего к перрону поезда, каким-то внутренним зрением он

увидел перед собой всю рукопись - и с такой необыкновенной отчетливостью, как это бывает только во сне.

Блочные шифры

В связи с тем, что открытый текст сообщения обычно имеет произвольную длину, иногда достаточно большую, то он разбивается на более мелкие блоки фиксированной длины. Тексты этих блоков шифруются отдельно и независи­мо друг от друга.

Одноключевые блочные шифры подразделяются на 3 группы:

Шифры перестановки

Шифры замены (подстановки)

Составные шифры.

При использовании шифров перестановки, которые предназначены для ус­транения смысла сообщения путем изменения порядка чередования его сим­волов, знаки открытого текста переставляются по некоторому правилу (клю­чу) в пределах заданного блока. В результате этого нарушается нормальный порядок их следования и сам смысл информационного сообщения. При этом различают шифры простой и сложной перестановки.

Шифр простой перестановки переупорядочивает группу букв текста регу­лярным образом в соответствии с выбранным ключом (правилом) переста­новки. Из истории известно множество примеров использования таких шиф­ров для ручного шифрования. При этом часто использовались специальные таблицы, которые давали простые шифрующие процедуры (ключи), согласно которым производились перестановки букв в сообщении. Ключом у таких таб­лиц служили размеры таблицы, фраза, задающая перестановку или другие специальные особенности таблицы.

Пример простейшего шифра перестановки представлен на рис. 5.5.

Рис. 5.5. Простейший шифр перестановки.

Как видно из рис. 5.5, для того чтобы зашифровать сообщение «ЮСТАС АЛЕКСУ ВСТРЕЧАЙТЕ СВЯЗНОГО», последнее необходимо записать в виде таблицы, состоящей, например, их 5 строк и 6 столбцов. Текст сообщения записы­вается по столбцам, исключая пробелы. Если последний стол­бец оказывается неполным, он заполняется произвольно лю­быми буквами. Для получения зашифрованного сообщения ис­ходный текст считывается по­строчно (слева направо) и за­писывается группами, напри­мер, по 5 цифр. Последняя

процедура не относится к процессу шифрования и делается только для того, чтобы было удобнее записывать текст, лишенный всякого смысла. Для рас­шифрования такого текста необходимо знать ключ, а именно количество строк и столбцов в таблице или иными словами, ее размер.

Более практический метод шифрования, очень похожий на предыдущий, опи­сывается ниже. Он отличается лишь тем, что колонки таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

При шифровании простой перестановкой шифруемый текст последова­тельными строками записывается под символами ключевого слова, кото­рые не должны повторяться Для упрощения запоминания ключа использу­ют ключевое слово, буквы которого, пронумерованные в порядке их рас­положения в алфавите, задают правило перестановки. Зашифрованный текст выписывается колонками в той последовательности, в которой располага­ются в алфавите буквы ключа или в порядке следования цифр в натураль­ном ряду, если ключ цифровой. Наглядно процесс шифрования с использо­ванием шифра простой перестановки представлен на рис. 5.6. Предполо­жим, что необходимо зашифровать информационное сообщение



«ЗАСЕДАНИЕ СОСТОИТСЯ ЗАВТРА ЮСТАС».

Для шифрования этого открытого текста запишем его без пробелов (уча­стие последних в процедуре шифрования, из-за их высокой частоты повто­рения, значительно ослабляет криптостойкость шифра) и выберем ключ шифрования, например, 245 136. Согласно этому ключу, состоящему из 6 цифр, поделим все информационное сообщение на блоки, каждый из кото­рых будет содержать по 6 букв текста. После деления на блоки у нас полу­чилось 4 блока, содержащих по 6 букв в каждом, и 1 блок - по 5 букв. В таких случаях последняя группа букв исходного сообщения произвольно дополняется различными символами до получения полного блока. В на­шем случае не достает только одной буквы, поэтому выбираем любую букву, например Ъ, и добавляем ее в конце пятого блока.

Рис. 5.6. Шифр простой перестановки

Далее, используя ключ 245 136, производится перестановка букв исходно­го открытого текста. Например, первая цифра ключа - 2, указывает на то, что в новом блоке первой буквой зашифрованного текста будет вторая буква бло­ка открытого текста, вторая цифра ключа - 4, показывает, что вторая буква шифротекста - это четвертая буква в блоке открытого текста и т. д.

В конечном итоге, после проведения перестановок во всех блоках, по­лучаем зашифрованный текст. Прочитав его, мы видим, что он полностью лишен какого-либо смыслового содержания.

Для упрощения запоминания ключа обычно используется ключевое слово. В данном случае - это слово «КОРЕНЬ». В нем цифре 1 ключа соответ­ствует буква Е, так как она первой из всех букв этого слова встречается в нашем алфавите, цифре 2 - буква К (по той же причине) и т. д.

То же сообщение можно зашифровать с использованием таблицы, состоя­щей, например, из 5 строк и 6 столбцов (по длине ключевого слова). Исход­ный текст записывается по столбцам и образует таблицу (рис. 5.7). Ключевое слово задает правило перестановки столбцов. Если в ключевом слове встре­чаются одинаковые буквы, то они нумеруются по порядку слева направо. По­лученный второй шифротекст, как это видно из рис. 5.7, совершенно не похож на первый.

Рис. 5.7. Шифрование с помощью таблицы

Основным недостатком данного шифра является его невысокая криптостойкость. Разложив зашифрованный текст на множители (не так уж мно­го получается вариантов), можно легко определить вероятную длину кодо­вого слова, которое использовалось при шифровании.

Для повышения криптостойкости полученного выше шифрованного тек­ста можно попробовать зашифровать его еще раз. Этот способ шифрования известен под названием двойная перестановка. Суть этого способа заключа­ется в следующем. Полученный после первого шифрования текст шифрует­ся вторично с использованием таблицы с другой размерностью (длины строк и столбцов подбираются другими). Кроме того, в одной таблице можно пе­реставлять строки, а в другой столбцы. Заполнять таблицу исходным тек­стом можно разными способами: зигзагом, змейкой, по спирали и т. п.

Шифр простой перестановки с использованием свойств таблиц, назы­ваемых магическими квадратами (рис. 5.8), использовался еще в средние века. Магическими квадратами называются равносторонние таблицы, все клетки которых заполнены натуральными числами, начиная от 1. При­чем эти числа в сумме дают по каждому столбцу, по каждой строке и по диагоналям магического квадрата одно и тоже число (в нашем случае - это число 34). Исходный текст - ЖДУ ВСТРЕЧИ ЮСТАС, при заполне­нии магического квадрата, вписывается по порядку следования натураль­ных чисел, например, число 1 заменялось 1 буквой исходного текста (Ж), число 12 - 12 буквой сообщения (С) и т.п. После записи открытого тек­ста содержимое таблицы считывается по строкам в результате чего и получался шифротскст с перестановкой букв.

Рис. 5.8. Магический квадрат

Шифры перестановки

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов, т.е. преобразования приводят к изменению только порядка следования символов исходного сообщения. Рассмотрим некоторые наиболее часто встречающиеся разновидности этого метода - простую, усложненную по таблице и усложненную по маршрутам перестановку.

Шифрование простой перестановкой (вертикальной перестановкой) осуществляется следующим образом:

1) выбирается ключевое слово с неповторяющимися символами;

2) шифруемый текст записывается последовательными строками под символами ключевого слова;

3) зашифрованный текст выписывается колонками в той последовательности, в которой располагаются в алфавите буквы ключа (или в порядке следования цифр в натуральном ряду, если ключ цифровой).

В качестве иллюстрации приведем пример шифрования способом простой перестановки сообщения: «БУДЬТЕ ОСТОРОЖНЫ С ПРЕДСТАВИТЕЛЕМ ФИРМЫ "ФЕНИКС". При этом применим цифровой ключ 5 – 8 – 1 – 3 – 7 – 4 – 6 – 2. В исходном тексте вместо пробелов используется буква а.

Б У Д Ь Т Е а О
С Т О Р О Ж Н Ы
А С а П Р Е Д С
Т А В И Т Е Л Е
М а Ф И Р М Ы а
Ф Е Н И К С а а

Выписывая текст по колонкам и группируя символы по пять, получаем зашифрованный текст в виде:

ДО ВФ НОЫСЕ ЬРП ИИИЕЖ ЕЕМСБ С ТМФ НДЛЫ TOPT РКУТС A E .

Расшифрование выполняется в следующем порядке:

1) подсчитываем число знаков в зашифрованном тексте и делим на число знаков ключа;

2) выписываем ключевое слово и под его знаками в соответствующей последовательности выписываем символы зашифрованного текста в определенном выше количестве;

3) по строкам таблицы читаем исходный текст.

Число ключей не более m!, где m - число столбцов таблицы.

Слабость шифрования простой перестановкой обуславливается тем, что при большой длине шифруемого текста в зашифрованном тексте могут проявиться закономерности символов ключа. Для устранения этого недостатка можно менять ключ после зашифровки определенного числа знаков. При достаточно частой смене ключа стойкость шифрования можно существенно повысить. При этом, однако, усложняется организация процесса шифрования и расшифрования.

Для получения и запоминания числового ключа существуют различные методы. Один из самых распространенных состоит в том, чтобы приписывать буквам числа в соответствии с алфавитным порядком букв. Возьмем, например, слово ПЕРЕСТАНОВКА. Присутствующая в нем буква А получает №1. Если какая-то буква входит несколько раз, то ее появления нумеруются последовательно слева направо. Поэтому второе вхождение буквы А получает №2. Буквы Б в этом слове нет, то буква В получает №3, и т.д.:

П Е Р Е С Т А Н О В К А

Усложнение перестановки по таблице заключается в том, что для записи символов шифруемого текста используется специальная таблица, в которую введены некоторые усложняющие элементы. Усложнение состоит в том, что определенное число клеток таблицы не используется (на рисунке они пусты). Количество и расположение неиспользуемых элементов является дополнительным ключом шифрования. Шифруемый текст блоками по m х n – s элементов (m х n – размеры таблицы,s – число неиспользуемых элементов) записывается в таблицу. Далее шифрование аналогична простой перестановке.

Б У Д Ь Т Е а О С
Т О Р О Ж Н Ы а
С а О Р Е Д С Т А
В И Т Е Л Е М а Ф
И Р М Ы а Ф Е Н И
К С а а а а А а а

Зашифрованный текст будет выглядеть так: ДОПР БСВИК РРТМ ОЫ Н ЕНСЕФ УТ И СС АФ И ЬОЕ ЕЫ Т МЕ ТЖ ДЛ .

При расшифровании знаки зашифрованного текста записываются столбцами таблицы в последовательности знаков ключа с пропуском неиспользуемых элементов. Исходный текст считывается по строкам. Варьируя размерами таблицы, последовательностью символов ключа, количеством и расположением неиспользуемых элементов, можно получить требуемую стойкость зашифрованного текста.

Еще один вариант - шифр "Поворотная решетка" . предназначен для сообщений длины 4mk. Берется трафарет размером 2m*2k клеток, вырезается m*k клеток так, что при наложении его на лист бумаги того же размера 4 различными способами (поворачивая на 90°) его вырезы полностью покрывают всю площадь листа. Буквы сообщения последовательно вписываются в вырезы трафарета по строкам, в каждой строке слева направо, при каждом из 4-х его возможных положений в заранее установленном порядке. Число возможных трафаретов, т.е. количество ключей этого шифра составляет 4 mk (при размере трафарета 8*8 число вариантов превосходит 4 миллиарда).

Весьма высокую стойкость шифрования можно обеспечить усложнением перестановок по маршрутам типа гамильтоновских. При этом для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считываются по маршрутам Гамильтона, причем используется несколько различных маршрутов. Для примера рассмотрим шифрование по маршругам Гамильтона при n =3. Структура и три маршрута показаны на Рис. 7, а пример шифрования – на Рис. 8.



Загрузка...