sonyps4.ru

Схемотехника. Минимизация логических функций

При проектировании цифровых автоматов широко используются методы минимизации булевых функций, позволяющие получать экономичные схемы. Общая задача минимизации булевых функций может быть сформулирована следующим образом: найти аналитическое выражение заданной булевой функции в форме, содержащей минимально возможное число букв.

В основе методов минимизации лежит операция склеивания (алгоритм объединения соседний двоичных чисел):

где А - элементарная конъюнкция.

В выражении слагаемые являются соседними двоичными числами, которые отличаются друг от друга только одним разрядом. При выполнении операции склеивания над двумя соседними числами из набора исключается одна переменная, которая отличает одно число от другого, над четырьмя попарно соседними числами - две переменные, над восемью - три переменные и т.д.

Минимальной дизъюнктивной нормальной формой (МДНФ) булевой функции называется ДНФ, содержащая наименьшее число букв (по отношению ко всем другим ДНФ, представляющим заданную булеву функцию).

Минимизировать функции, то есть находить наиболее простое выражение для исходной функции можно различными методами. Все они практически различаются лишь на первом этапе - этапе получения сокращенной ДНФ. Следует отметить, что, к сожалению, поиск МДНФ всегда связан с некоторым перебором решений. Рассмотрим некоторые из них.

Минимизация сложных логических выражений с помощью матрицы Карно

Дли реализации алгоритма объединения необходимо из всей совокупности обязательных конституентов в совершенной дизъюнктивной нормальной форме функции алгебры логики отыскать соседние. Для отыскания соседних конституентов используются матрицы Карно, решетка соседних чисел, таблицы соседних конституентов.

Матрицы Карно целесообразно использовать для минимизации ФАЛ на наборах из 2,3,4,5 и 6 переменных. Номера столбцов в матрицах Карно образуют младшие разряды, а номера строк - старшие разряды наборов. Номера клеток составляются из номеров строк и столбцов и соответствуют наборам переменных.

Рассмотрим матрицу Карно для функции алгебры логики на наборах из 4-х переменных (табл. 1).

Таблица 1. Матрица Карно

Столбцы и строки в этой матрице обозначены двоичными соседними числами: 00-0I-II-I0. Поэтому номера смежных по горизонтали и вертикали клеток, а также крайних в строках и столбцах клеток являются соседними числами, например:

клетки с номерами и;

клетки с номерами;

клетки с номерами;

клетки с номерами.

Для минимизации функции алгебры логики, заданной в совершенной дизъюнктивной нормальной форме, с помощью матрицы Карно необходимо: подготовить матрицу Карно, вписав в клетки, соответствующие обязательным конституентам, единицы, объединить клетки с единицами в «подкубы», записать минимизированную функции алгебры логики в дизъюнктивной нормальной форме.

В «подкубы» объединяются:

  • - две клетки с номерами, являющимися соседними числами, при этом исключается одна переменная;
  • - четыре клетки (строка, столбец, квадрат, угловые клетки), при этом исключается две переменные;
  • - восемь клеток (две соседних или крайних строки (столбца)), при этом исключается три переменные.

Для обеспечения исключения возможно большего количества переменных размеры «подкубов» должны быть как можно больше, а число их как можно меньше. С этой целью можно одну и ту же клетку с единицей использовать несколько раз, включая в различные «подкубы». Число слагаемых в минимизированной функции алгебры логики равно числу подкубов и клеток с единицами, не объединенных в подкубы.

Пусть необходимо минимизировать следующую функцию алгебры логики:

Матрица Карно, заполненная в соответствии с этой формулой, может быть представлена в виде таблицы 2:

Таблица 2. Матрица Карно

В этой матрице можно выделить два двухклеточных подкуба. В результате минимизации будет получена следующая функция алгебры логики:

Метод Квайна

Для получения минимальной формы логической функции необходимо в совершенной дизъюнктивной нормальной форме функции (СДНФ) произвести все возможные склеивания и поглощения так, что в результате будет получена сокращенная дизъюнктивная нормальная форма функции. (ДНФ).Сокращенная ДНФ в общем случае может содержать лишние простые импликанты, которые необходимо выявить на втором этапе минимизации.

На первом этапе выполняется переход от функции, заданной в форме ДНФ, к сокращенной ДНФ. Суть метода заключается в последовательном выполнении всех возможных склеиваний и затем всех поглощений, что приводит к сокращенной ДНФ. Метод применим к совершенной ДНФ. Из соотношения поглощения следует, что произвольное элементарное произведение поглощается любой его частью. Для доказательства достаточно показать, что произвольная простая импликанта р = xi1 xi2 ... xin может быть получена. В самом деле, применяя к р операцию развертывания (обратную операции склеивания):

по всем недостающим переменным x ik , ..., xim исходной функции f, получаем совокупность S конституент единицы. При склеивании всех конституент из S получим импликанту р. Последнее очевидно, поскольку операция склеивания обратна операции развертывания. Множество S конституент обязательно присутствует в совершенной ДНФ функции f поскольку р - ее импликанта.

В результате выполнения склеивания получается конъюнкция n-1 ранга, а конъюнкции остаются в исходном выражении и участвуют в сравнении с другими членами СДНФ. Таким образом, удается снизить ранг термов.

Склеивание и поглощение выполняются до тех пор, пока имеются члены, не участвовавшие в попарном сравнении. Термы, подвергшиеся операции склеивания, отмечаются. Неотмеченные термы представляют собой простые импликанты и включаются в сокращенную ДНФ. Все отмеченные конъюнкции ранга n-1 подвергаются вновь операции склеивания до получения термов n-2 ранга и так далее до тех пор, пока количество неотмеченных конъюнкций больше 2. В результате выполнения первого этапа получена сокращенная ДНФ.

Полученное логическое выражение не всегда оказывается минимальным. На втором этапе переходят от сокращенной ДНФ к тупиковым ДНФ и среди них выбирают МДНФ.

Для формирования тупиковых ДНФ строится импликантная таблица (матрица), строки которой отмечаются простыми импликантами сокращенной ДНФ, а столбцы конститутиентами единицы исходной СДНФ. В строке напротив каждой простой импликанты ставится метка под теми наборами (конститутиентами единицы), на которых она принимает значение 1. Соответствующие конститутиенты поглощаются (покрываются) данной простой импликантой.

Из общего числа простых импликант необходимо отобрать их минимальное число, исключив лишние. Формирование тупиковых форм и выбор минимального покрытия начинается с выявления обязательных простых импликант, то есть таких, которые (и только они) покрывают некоторый исходный набор. Рассмотрим на примере минимизации логической функции:

f СДНФ = V (1,2,5,6,7)=x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

1 2 3 4 5

Выполним операцию склеивания:

  • 1 - 3 (x1 ) x2 x3 1
  • 2 - 4 (x1 ) x2 x3 2
  • 3 - 5 (x2 ) x1 x3 3
  • 4 - 5 (x3 ) x1 x2 4

В результате выполнения первого шага склеивания получаем четыре новые конъюнкции, простых импликант не выявлено. Полученные конъюнкции более не склеиваются и образуют сокращенную ДНФ.

f сокр СДНФ =x2 x3 + x2 x3 + x1 x3 + x1 x2

Для выявления обязательных простых импликант и фрормирования на их основе минимального покрытия строится импликантная таблица (таблица 3). В строках импликантгой таблицы записываются простые импликанты, а в столбцах конституэнты единицы. Звездочка ставится если простая импликанта покрывает контитуэнту.

Таблица 3. Импликантная таблица

x 1 x2 x3

X 1 x2 x3

x 1 x2 x3

x 1 x2 x3

x 1 x2 x3

Простые импликанты являются обязательными так как только они покрывают конституэнтыи включаются в минимальное покрытие. Остается одна непокрытая конституэнта x1 x2 x3 которая может быть покрыта одной из двух оставшихся простых импликант. Это приводит к получению двух тупиковых форм.

Метод Блейка - Порецкого

Метод позволяет получать сокращенную ДНФ булевой функции f из ее произвольной ДНФ. Базируется на применении формулы обобщенного склеивания:

справедливость которой легко доказать. Действительно,

Следовательно,

В основу метода положено следующее утверждение: если в произвольной ДНФ булевой функции f произвести все возможные oбобщенные склеивания, а затем выполнить все поглощения, то в результате получится сокращенная ДНФ функции f.

Рассмотрим пример. Пусть булева функция f задана произвольной ДНФ.

Необходимо используя метод Блейка - Порецкого получить сокращенную ДНФ функции f. Проводим обобщенные склеивания. Легко видеть, что первый и второй элемент исходной ДНФ допускают обобщенное склеивание по переменной х 1 . В результате склеивания получим:

Первый и третий элемент исходной ДНФ допускают обобщенное склеивание как по переменной х 1 , так и по х2 . После склеивания по x1 имеем:

После склеивания по x 2 имеем:

Второй и третий элемент ДНФ допускают обобщенное склеивание по переменной х 2 . После склеивания получаем:

Выполнив последнее обобщенное склеивание, приходим к ДНФ:

После выполнения поглощений получаем:

Попытки дальнейшего применения операции обобщенного склеивания и поглощения не дают результата. Следовательно, получена сокращенная ДНФ функции f. Далее задача поиска минимальной ДНФ решается с помощью импликантной матрицы точно так же, как в методе Квайна.

Минимизация не полностью определенных ФАЛ

Если при синтезе логической схемы, реализующей некоторую ФАЛ n переменных, окажется, что некоторые наборы из общего числа 2n никогда не смогут появиться на входах схемы, то данная логическая функция не определена на этих наборах. Тогда 2n наборов переменных можно подразделить на три группы: наборы, на которых функция принимает единичное значение L, нулевое значение D и группа наборов, на которых функция не определена N (неопределенные наборы). ФАЛ, содержащая неопределенные наборы, называется неполностью или частично определенной. Неопределенные наборы могут быть использованы для улучшения качества минимизации. При этом неопределенные наборы (при минимизации, например, картами Вейча, Карно) могут участвовать в образовании контуров как с единичными, так и с нулевыми наборами. Это приводит к формированию более простой минимизированной логической функции.

Универсальным методом минимизации является использование законов и соотношений алгебры логики, которые позволяют проводить минимизацию ФАЛ при любом числе переменных.

Продолжительность: 2 часа (90 мин.)

14.1 Ключевые вопросы

14 Лекция №13. Минимизация логических функций 1

14.1 Ключевые вопросы 1

14.2 Текст лекции 1

14.2.1 Минимизация логических функций 1

14.2.1.1 Расчетный метод 1

14.2.1.2 Карты Карно 4

14.2.2 Минимизация систем логических уравнений 7

14.2.3 Минимизация частично определенных логических функций 8

14.2.4 Вопросы для контроля 10

14.2 Текст лекции

14.2.1 Минимизация логических функций

Существует достаточно много методов минимизации логических функций, приведем только два метода, которые чаще всего применяются в инженерной практике:

    расчетный;

    карт Карно.

14.2.1.1 Расчетный метод

Здесь применяют:

– склеивание,

– поглощение,

– развертывание.

Склеивание

а) Если в выражении встречается сумма двух конъюнкций, в одной из которых одна из переменных стоит в прямом значении, а в другой в инверсном значении, а остальные переменные одинаковые, то эту сумму конъюнкций, можно заменить одной конъюнкцией, не содержащей переменную, имеющую разные значения:

Конъюнкции, отличающиеся только значениями одной переменной (в одну из них переменная входит без отрицания, а в другую с отрицанием), называются соседними.

Замечание:
и дистрибутивном законе конъюнкции относительно дизъюнкции (см. Лекцию № 10)

.

б) Если в выражении встречается произведение двух дизъюнкций, в одной из которых одна из переменных стоит в прямом значении, а в другой в инверсном значении, а остальные переменные одинаковые, то это произведение дизъюнкций, можно заменить одной дизъюнкцией, не содержащей переменную, имеющую разные значения:

Дизъюнкции, отличающиеся только значениями одной переменной (в одну из них переменная входит без отрицания, а в другую с отрицанием), называются соседними.

Замечание: Это правило основано на законе дополнительности

и дистрибутивном законе дизъюнкции относительно конъюнкции (см. Лекцию № 10)

в) Правила обобщенного склеивания.


В первом случае исчезло произведение bc , во втором исчезает суммаbc , в третьем снова произведениеbc (третий случай после раскрытия скобок сводится к первому). Доказываются эти правила, как обычно, составлением и сравнением таблиц истинности для левой и правой части или с помощью развертывания (см. ниже).

Поглощение

а) Если в выражении встречается сумма двух произведений, одно из которых является частью другого, то эту сумму можно заменить меньшим произведением:

б) Если в выражении встречается произведение двух сумм, одна из которых является частью другой, то это произведение сумм можно заменить меньшей суммой:

a (ab ) = a ; a (ab )(ac )…= a ; (ab )(abc )= ab .

Развертывание

Развертывание позволяет восстановить в формулах «потерянные» (например, в результате минимизации) переменные или перейти от ДНФ и КНФ к совершенным формам – СДНФ и СКНФ. Восстановление переменных для ДНФ и КНФ производится по–разному. Рассмотрим примеры.

Пусть имеем ДНФ

в которой, очевидно, потеряна переменная y . Для восстановления переменнойy произведение переменныхxz умножается на 1, затем 1 заменяется суммой прямого и инверсного обозначений недостающей переменной, и на основе дистрибутивного закона проводится преобразование

Пусть имеем КНФ
, где также потеряна переменнаяy . Для ее восстановления к сумме
добавляется 0, затем 0 заменяется произведением недостающей переменной на ее инверсию и применяется дистрибутивный закон

Используя развертывание, можно раскрыть смысл понятий «конституента единицы» и «конституента нуля».

Пусть n = 2 (переменныеa иb ).

Развернем единицу 1.

1= 1=
=.

Получили СДНФ функции двух переменных f = 1, где каждая конъюнкция является составляющей (конституентой) единицы.

Развернем 0.

Получили СКНФ функции двух переменных f = 0, где каждая дизъюнкция является составляющей (конституентой) нуля.

Полезность развертывания показывает пример доказательства правил обобщенного склеивания (см. п. 4.1.1):

Рассмотрим первое правило

Развернем левую часть тождества, в первом произведении которой недостает переменной c , во втором произведении недостаетb , а в третьем нетa .

После приведения подобных членов, применив простое склеивание

получаем правую часть, следовательно, тождество доказано.

Рассмотрим второе правило

Развернем левую часть тождества.

Используя дистрибутивный закон дизъюнкции относительно конъюнкции, получаем

После приведения подобных членов, применив простое склеивание, будем иметь

Получили правую часть, следовательно, правило доказано.

Общий порядок проведения минимизации функции, заданной СДНФ, здесь следующий.

    Сначала к членам СДНФ применяется операция склеивания (каждая конъюнкция может использоваться многократно , объединяясь с разными членами). При этом из них исключается по одной переменной. Затем приводятся подобные члены, и снова проводится склеивание. Этот процесс продолжается, пока в получаемом выражении не останется конъюнкций, отличающихся друг от друга значениями одной переменной. Полученное выражение называетсясокращенной нормальной формой . Каждой логической функции соответствует лишь одна такая форма.

    К сокращенной нормальной форме применяется операция обобщенного склеивания. В результате из нее исключаются лишние конъюнкции. Процесс продолжается, пока склеивания становятся невозможными. Получаемая форма называется тупиковой формой логической функции. Тупиковых форм у логической функции может быть несколько.

    Полученная тупиковая форма случайно может оказаться минимальной. В общем случае для поиска минимальной формы необходим перебор тупиковых форм.

С функциями, представленными в СКНФ, поступают аналогично с учетом их особенностей. Иногда оказывается удобно на промежуточном этапе перейти к дизъюнктивной нормальной форме и продолжать минимизацию так, как изложено выше.

Пример 1: Минимизировать функцию

После применения операции склеивания и приведения подобных членов получаем

Обобщенное склеивание здесь можно проводить по нескольким вариантам, которые дают следующие результаты:

.

Исключены
,
,
: (
), (
), (
).

В скобках показаны термы, участвующие в обобщенном склеивании.

Исключены
,
,
: (
), (
), (
).

Как видим, здесь имеется две минимальных нормальных формы. По сложности они одинаковы.

Пример 2: Продолжая решение задачи по созданию устройства рис. 3, проведем минимизацию мажоритарной функции (см. табл. 12), для которой выше были получены СДНФ и СКНФ.

Здесь первую сумму мы поочередно рассматривали в паре со второй, третьей и четвертой суммами и после склеивания этих пар получили результат.

для первого – X 3 X 4 ;

для второго – X 1 X 3 ;

для третьего – X 2 X 3 ;

для четвертого – X 1 X 2 X 4 ;

для пятого – X 1 X 2 X 4 ;


Минимальная ДНФ будет выглядеть так:

Сравнивая метод карт Карно с другими методами минимизации функции можно сделать вывод, что первый больше всего подходит для ручного исполнения. Время ручной работы значительно сокращается (за счет наглядного представления склеивающихся импликант). Программная реализация данного метода имеет свои сложности. Так, очень сложно будет реализовать оптимальный выбор правильных прямоугольников, особенно для большого числа аргументов.

1.3.5 Метод неопределенных коэффициентов

Этот метод может быть использован для любого числа аргументов. Но так как этот метод достаточно громоздок, то применяется только в тех случаях, когда число аргументов не более 5-6.

В методе неопределенных коэффициентов используются законы универсального и нулевого множеств и законы повторения. В начале все коэффициенты неопределенны (отсюда и название метода).

Построим матрицу неопределенных коэффициентов для четырех аргументов. В этом случае мы будем иметь систему из 16-ти уравнений.

Система приведена на следующей странице.

Приравняем все коэффициенты 0 в тех строках, которым соответствует 0 в векторе столбце. Затем приравняем 0 соответствующие коэффициенты в других строках. После этих преобразований система примет следующий вид:

V = 1 VVVVVV = 1 VVV V VV = 1 V = 1 VVV = 1 VVVVVV = 1 VVV = 1 VVVVV = 1 VVV = 1

Теперь в каждой строке необходимо выбрать коэффициент минимального ранга и приравнять его единице, а остальные коэффициенты – 0. После этого вычеркиваем одинаковые строки, оставляя при этом одну из них (те строки, у которых все коэффициенты равны 0, также вычеркиваются).

= 1 = 1 = 1 = 1 = 1

Запишем теперь конъюнкции, соответствующие коэффициентам, равным единицам. Мы получим минимальную ДНФ.

F(X 1 X 2 X 3 X 4) = X 1 X 3 V X 2 X 3 V X 3 X 4 V X 1 X 2 X 4 V X 1 X 2 X 4 .

Итак, мы получили несколькими способами минимальную ДНФ, Во всех случаях она получилась одинаковой, то есть любой из описанных методов может быть использован для минимизации функции. Однако эти методы существенно отличаются друг от друга как по принципу нахождения МДНФ, так и по времени исполнения. Для ручных расчетов очень удобен метод карт Карно. Он нагляден, не требует рутинных операций, а выбрать оптимальное расположение правильных прямоугольников не составляет большого труда. В то время как машинная реализация данного метода осложняется необходимостью нахождения оптимального расположения прямоугольников. Естественно применение других методов (метод Квайна, метод Квайна-Маккласки, метод неопределенных коэффициентов) для ручных расчетов нецелесообразно. Они больше подойдут для машинной реализации, так как содержат большое число повторяющихся простых операций.

Задание 2.

2.1 Схема алгоритма для метода Квайна

1. Начало.

2. Ввести матрицу ДСНФ исходной функции.

3. Проверить на склеиваемость i-ю (i=1,m-1: где m – количество строк в ДСНФ) и j-ую (j=i+1, m) строки. Если строки склеиваются, то перейти к пункту 6, в противном случае перейти к пункту 5.

4. Формировать массив простых импликант, предварительно пометив символом ‘*’ ту переменную, по которой данные строки склеиваются.

5. Перейти к пункту 2.

6. Строку, которая не склеилась ни с одной другой строкой записать в конечный массив.

7. Перейти к пункту 2.

8. Вывод полученной матрицы.

Логическая схема алгоритма в нотации Ляпунова

V H V 1 Z 1 ­ V 2 ¯ V 3 V 4 V K

V H – начало.

V 1 – ввести матрицу ДСНФ исходной функции.

V 2 – формировать массив простых импликант, предварительно пометив символом ‘*’ ту переменную, по которой данные строки склеиваются.

V 3 – строку, которая не склеилась ни с одной другой строкой записать в конечный массив.

V 4 – вывод полученной матрицы.

Z 1 – если строки склеиваются, то перейти к пункту 3, в противном случае перейти к пункту 5.

V K – конец.

Граф-схема алгоритма.


Описание машинных процедур

Procedure Stuck(S1, S2: Diz; IndexS1, IndexS2: byte);

Данная процедура склеивает два, передаваемых ей дизъюнкта. Дизъюнкты задаются в параметрах S1, S2. Индексы IndexS1, IndexS2 определяют индексы этих дизъюнктов в главном рабочем массиве. Алгоритм работы процедуры следующий: сначала ищется количество склеивающихся символов. Если их 0, то они одинаковые, и в конечный массив записывается только один из них. Если 1, то определяется местоположение символа, по которому данные две дизъюнкции склеиваются, и заменяем этот символ на ‘*’. Все полученные результаты заносятся в массив REZ.

Все остальные функции и процедуры программы связаны с действиями над массивами, то есть не имеют непосредственного отношения к данному методу нахождения МДНФ. Поэтому нет смысла их описывать.

2.2 Схема алгоритма для метода Петрика

1. Начало.

2. Ввести матрицу ДСНФ исходной функции и простые импликанты, полученные в методе Квайна.

3. Составить таблицу меток.

4. По таблице меток построить конъюнкцию дизъюнкций, каждая из которых есть совокупность тех импликант, которые в данном столбце имеют метки.

Процедура минимизации

Чтобы моделировать деформацию при нулевой температуре используется процедура минимизации, которая позволяет поддерживать систему вблизи локального минимума энергии все время. Деформация и минимизация выполняются одновременно. Алгоритм минимизации представляет собой модифицированный алгоритм МД. После каждого шага по времени МД для каждого атома вычисляется скалярное произведение между импульсом и силой. Для атомов, скалярное произведение для которых отрицательно, импульс зануляется, так как эти атомы движутся в направлении, в котором потенциальная энергия возрастает. Таким образом, кинетическая энергия атомов удаляется, тогда как потенциальная энергия приближается к локальному минимуму энергии вдоль направления движения атома. Такая процедура минимизации быстро сдвигает систему в окрестность локального минимума энергии, но полной сходимости не получается, так как полная сходимость требует числа шагов по времени порядка числа степеней свободы системы. Однако, обычно увеличении числа шагов процедуры минимизации приводит лишь к малым изменениям в эволюции системы.

Вычисление сил

Наибольших вычислительных усилий требует вычисление сил, действующих между атомами. Поэтому оптимизации алгоритма вычисления сил необходимо уделить особое внимание. Один из шагов в этом направлении состоит в замене сложных для вычисления выражений для сил (например, содержащих экспоненту) на легко вычисляемые выражения (например, сплайны третьего порядка). Второй шаг состоит в использовании потенциалов с ограниченным радиусом действия, или, как указывалось выше, в обрезании несущественной области потенциала, если радиус действия потенциала бесконечен. При этом необходимо вычислить только силы, действующие со стороны ближайших атомов, т.е. находящихся внутри сферы (окружности в двумерном случае) с радиусом равным радиусу обрезания.

Третий шаг состоит в оптимизации алгоритма поиска атомов, ближайших к данному атому. Дело в том, что прямолинейный перебор всех атомов, вычисление расстояний до них и отбрасывание тех атомов, расстояние до которых превышает радиус обрезания, требует количества операций пропорционального, где - число атомов в системе. Следовательно, с ростом число требуемых операций быстро возрастает, и поэтому выполнение вычислений сильно замедляется, а, для больших, делается практически невыполнимым. Таким образом, чтобы избежать этого замедления нужен алгоритм, для которого число требуемых операций росло бы с линейно, а не квадратично. В принципе такой алгоритм прост - нужно перебирать не все атомы, а только достаточно близкорасположенные. Такое утверждение представляет собой тавтологию, пока не конкретизировано понятие близкорасположенных атомов. Чтобы сделать это, разобьем ячейку моделирования на более мелкие субячейки. Тогда близкорасположенные к данному атому будут атомы, которые расположены в субячейках, соседних с субячейкой, содержащей данный атом или в субячейках соседних с соседними.

Удобно разбить ячейку моделирования на субячейки - параллелепипеды (прямоугольники в двумерном случае). Вследствие сильного отталкивания на малых расстояниях, атомы не могут подходить близко друг к другу. Поэтому можно выбрать такие размеры субячеек, что в каждой из них будет находится не более одного атома.

Таким образом, алгоритм поиска атомов, удаленных от данного атома на расстояние не больше радиуса обрезания, выглядит следующим образом. По номеру атома находим координаты атома и по ним субячейку, в которой находится атом. Затем находим субячейки, удаленные от нее на расстояние не более чем. Атомы, расположенные в этих субячейках, и будут искомыми (см. рис.1). Чтобы найти номер атома, хранящегося в заданной субячейке, удобно ввести массив, каждый элемент которого соответствует определенной субячейке. В этом элементе массива будет хранится номер атома, расположенного в этой субячейке, или нуль, если субячейка пуста. Элементы этого массива обновляются на каждом шаге по времени МД. Ясно, что изложенный алгоритм обеспечивает линейный рост числа операций с ростом числа атомов в системе. Вариации этого алгоритма используются в программах МД “Gromex”, “MOLDY”, “DL_POLY” и др.

Возможна и другая организация вычислений, которая будет удобна для организации параллельных вычислений. Именно для вычисления сил, действующих на данный атом, можно перейти от суммирования по близлежащим атомам, к суммированию по близлежащим субячейкам (см рис.1). Будем двигаться последовательно по субячейкам первого ряда. Дойдя до конца первого ряда, перейдем в начало второго ряда и т.д.

Рис.1 Схема поиска ближайших атомов.

Если в субячейке находится атом, то вычисляем силу, действующую на него, со стороны ближайших атомов, расположенных в близлежащих субячейках. Если же субячейка пуста, то переходим к следующей. Отметим при этом, что, например, для атома находящегося в субячейке 6 (см. рис.1) необходимо вычислить силу, действующую со стороны атомов расположенных в субячейках 1, 2, 3, 7. Силы, действующие со стороны атомов, расположенных в субячейках 5, 9, 10, 11 в силу третьего закона Ньютона, с точностью до знака уже известны. Они были вычислены, когда вычислялись силы, действующие на атомы, расположенные в этих субячейках. Таким образом, в данной организации вычислений, необходимо рассматривать лишь половину близлежайших субячеек. Далее, при переходе к смежной субячейке 7 нет необходимости исследовать все близлежащие субячейки для поиска находящихся в них близко расположенных атомов. Необходимо лишь исследовать ячейки 4 и 8. И к найденным в них атомам, добавить атомы, найденные для ячейки 6, за исключением атомов находящихся в субячейках 1 и 6. Таким образом, информация о ближайших атомах для данной субячейки не теряется, а используется при поиске ближайших атомов для смежной субячейки. Это естественно приводит к ускорению вычислений.

  • 1.6. Использование множеств в языке Паскаль
  • 2. Элементы общей алгебры
  • 2.1. Операции на множествах
  • 2.2. Группа подстановок Галуа
  • 2.3. Алгебра множеств (алгебра Кантора)
  • 2.4. Алгебраические системы. Решетки
  • 2.5. Задание множеств конституентами
  • 2.6. Решение уравнений в алгебре множеств.
  • 3. Элементы комбинаторики
  • 3.1. Комбинаторные вычисления
  • 3.2. Основные понятия комбинаторики
  • 3.3. Размещения
  • 3.4. Перестановки
  • 3.5. Сочетания
  • 3.6. Треугольник Паскаля.
  • 3.7. Бином Ньютона
  • 3.8. Решение комбинаторных уравнений
  • 4. Основные понятия теории графов
  • 4.1. Способы задания графов
  • 4.2. Характеристики графов
  • 4.3. Понятие о задачах на графах
  • 4.4. Задача о Ханойской башне
  • 5. Переключательные функции и способы их задания
  • 5.1. Понятие о переключательных функциях
  • 5.2. Двоичные переключательные функции и способы их задания
  • 5.3. Основные бинарные логические операции
  • 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
  • 5.5. Использование логических операций в теории графов
  • 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
  • 6.1. Элементарные переключательные функции одной переменной
  • 6.2. Элементарные переключательные (логические) функции двух переменных
  • 6.3. Функциональная полнота систем переключательных функций
  • 6.4. Базисы представления переключательных функций
  • 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
  • 7. Основные законы булевой алгебры и преобразование переключательных функций
  • 7.1. Основные законы булевой алгебры переключательных функций
  • 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
  • 7.3. Преобразование форм представления переключательных функций
  • 8. Минимизация переключательных функций
  • 8.1. Цель минимизации переключательных функций
  • 8.2. Основные понятия и определения, используемые при минимизации
  • 8.3. Аналитические методы минимизации переключательных функций
  • 8.4. Минимизация переключательных функций по картам Карно
  • 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
  • Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
  • 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
  • 8.7. Минимизация систем переключательных функций
  • 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
  • 9. Понятие об автомате и его математическом описании
  • 9.1. Основные определения теории конечных автоматов
  • 9.2. Описание конечных детерминированных автоматов
  • 9.3. Понятие о технической интерпретации конечных автоматов
  • 9.4. Синтез комбинационных автоматов в заданном базисе
  • 9.5. Булева производная
  • 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
  • 9.7. Синтез автомата – распознавателя последовательности
  • 10. Элементы теории кодирования
  • 10.1. Понятие о кодировании
  • 10.2. Системы счисления, как основа различных кодов
  • 10.3. Понятие о помехоустойчивом кодировании
  • 10.4. Кодирование по Хэммингу
  • 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
  • 10.6. Понятие о криптографической защите информации
  • 10.7. Понятие о сжатии информации
  • 8.3. Аналитические методы минимизации переключательных функций

    Метод Квайна .

    Метод основан на попарном сравнении и склеивании при возможности всех конституент (членов СДНФ). Для этого каждая конституента сравнивается с последующими, что приводит к получению импликант. Полученные импликанты вновь подвергаются сравнению и при возможности склеиваются – и т.д. до тех пор, пока оставшиеся импликанты уже не будут поддаваться склеиванию. Это и есть простые импликанты, их дизъюнкция представляет собой сокращенную ДНФ.

    Для упорядочения целесообразно разбивать конституенты на группы по числу неинверсированных переменных. В этом случае каждая очередная конституента, начиная сверху, сравнивается только с конституентами группы, соседней снизу, с числом неинверсированных переменных на единицу больше.

    Пусть имеется переключательная функция, заданная СДНФ:

    Разобьем конституенты на группы по числу неинверсированных переменных.

    Римская цифра номера группы соответствует числу неинверсных переменных. Проведем линии, указывающие склеиваемые конституенты. Результатом склеивания является всегда элементарная конъюнкция, представляющая собой общую часть исходных конъюнкций (в частности, конституент).

    Полученные импликанты также допускают склеивание, причем в результате получается одна и та же импликанта
    .

    Дальнейшие склеивания невозможны, поэтому полученные импликанты – простые, а сокращенная ДНФ имеет вид:

    Первый этап выполнен. На втором этапе необходимо исключить лишние простые импликанты. Это делается с помощью специальной импликантной таблицы Квайна (таблицы покрытий). Строки таблицы отмечаются простыми импликантами переключательной функции, т.е. членами сокращенной ДНФ, а столбцы – конституентами единицы, т.е. членами СДНФ переключательной функции.

    Как уже отмечалось, простая импликанта поглощает некоторую конституенту единицы, если является ее собственной частью. Соответствующая клетка импликантной таблицы на пересечении строки данной простой импликанты и столбцов с конституентами единицы отмечается, например, знаком «+». Минимальные ДНФ строятся по импликантной таблице следующим образом:

    1) ищутся столбцы импликантной таблицы, имеющие только один крестик, соответствующие этим крестикам простые импликанты называются базисными и составляют так называемое ядро переключательной функции. Ядро обязательно входит в минимальную ДНФ;

    2) рассматриваются различные варианты выбора совокупности простых импликант, которые накроют крестиками остальные столбцы импликантной матрицы, и выбираются варианты с минимальным суммарным числом букв.

    Ядром нашей функции (табл. 35) являются импликанты
    и х 1 х 2 х 3 , т.е. функция имеет единственную тупиковую и минимальную ДНФ:

    Таблица 35

    Импликантная таблица Квайна

    Конституенты 1 (члены СДНФ)

    импли-канты

    Видно, что импликанта х 2 х 3 х 4 является лишней, так как она покрывает конституенты, уже покрытые импликантами
    , х 1 х 2 х 3 .

    Число крестиков в строке является степенью числа 2; более того, можно убедиться, что оно равно N=2 n - k , где k – число букв в простой импликанте, n – число переменных, от которых зависит функция.

    Если вначале не задана СДНФ, то ее надо получить, используя, например, уже известные нам методы.

    Ясно, что для больших импликантных таблиц трудно визуально выявить варианты с минимальным числом букв. Поэтому используется метод Петрика, позволяющий получать все тупиковые ДНФ по импликантной таблице путем построения так называемого конъюнктивного ее представления. Для этого все простые импликанты обозначаются разными буквами (А, В, С в табл. 35), а затем для каждого столбца строится дизъюнкция всех букв, обозначающих строки таблицы, пересечение которых с данным столбцом отмечено крестиком. Конъюнктивное представление импликантной матрицы образуется как конъюнкция построенных дизъюнкций для всех столбцов. К конъюнктивному представлению импликантной таблицы могут быть применены все соотношения булевой алгебры переключательных функций с целью его упрощения. После раскрытия скобок и выполнения всех возможных поглощений получается дизъюнкция конъюнкций, каждая из которых содержит все импликанты тупиковой ДНФ.

    Это означает, что тупиковая ДНФ содержит две простые импликанты (
    и одновременно С=х 1 х 2 х 3) и имеет вид:

    Метод Квайна-Мак-Класки.

    Метод представляет собой формализацию метода Квайна, ориентированную на использование ЭВМ. Формализация заключается в записи конституент единицы (членов СДНФ) их двоичными номерами. Все номера разбиваются на непересекающиеся группы по числу единиц в двоичном номере. Склеивания производятся только между соседними группами. Ликвидируемый разряд обозначается знаком «–» («тире»). Дальнейшие группы из полученных импликант образуются с учетом однинакового расположения тире. Такое обозначение импликант называется обобщенными кодами. Пусть задана логическая функция

    111101001000110.

    Сгруппируем эти конституенты единицы по числу единиц:

    Дальнейшие склеивания невозможны. Нахождение минимальных ДНФ далее производится по импликантной таблице (табл. 36):

    Это означает, что тупиковые ДНФ содержат по три простые импликанты и имеют вид:

    (две инверсии);

    (три инверсии).

    Таблица 36

    Импликантная таблица Квайна-Мак-Класки

    импликанты

    Конституенты единиц

    Заметим, что склеивание двух импликант с тире возможно только при соответствующем их расположении, например:

    Можно выбрать любую из полученных ТДНФ, а с учетом меньшего числа инверсий – первую.

    Метод Блейка-Порецкого .

    Метод позволяет получать сокращенную ДНФ булевой функции по ее произвольной ДНФ, а не по СДНФ, как в методах Квайна и Квайна-Мак-Класки, используя закон обобщенного склеивания . В основу метода положено следующее утверждение: если в произвольной ДНФ булевой функции провести всевозможные операции, обратные обобщенному склеиванию, а затем выполнить все поглощения, то в результате получится сокращенная ДНФ функции.

    Пусть задана ДНФ функции:

    Видно, что к первой и второй конъюнкциям можно применить закон обобщенного склеивания по переменной х 1 ; получим:

    Аналогично для первой и третьей конъюнкций:

    т.е. все остается, как есть!

    Вторая и третья конъюнкции допускают обобщенное склеивание по х 2:

    Переходим к ДНФ:

    После применения закона идемпотентности (повторения) и поглощения получаем:

    Попытки дальнейшего применения обобщенного склеивания и поглощения не дают результата. Следовательно, получена сокращенная ДНФ функции.

    Таблица 37

    Импликантная таблица для иллюстрации метода Блейка-Порецкого

    импликанты

    Наборы функции

    и ее значения

    Таким образом, рабочие (единичные) наборы можно покрыть тремя простыми импликантами, например,
    ,
    ,
    . В ядро входят импликанты
    ,
    . Тогда тупиковые ДНФ имеют вид:

    (лучше по числу инверсий).



    Загрузка...