sonyps4.ru

Реле регулятора напряжения генератора: устройство и принцип работы.

Для корректной работы автомобильного генератора необходима регулировка напряжения. Благодаря устройству потенциал поддерживается в рабочем диапазоне.

Общий вид автомобильного генератора

Важно знать об устройстве, принципе работы, диагностике, ремонте и замене регулятора напряжения в автомобиле. Это позволит избежать ряда негативных ситуаций в дороге, таких как незапуск двигателя, сгорание проводки автомобиля.

Строение генератора

Вне зависимости от марки и модели автомобиля, типа автомобильного генератора, всегда в конструкцию включен регулятор напряжения, позволяющий поддерживать работоспособность независимо от частоты вращения ротора. Регулировка осуществляется за счет изменения силы электротока на обмотке ротора.

Узлы генератора (схема):

  • Статор (корпус) – неподвижная часть автомобильного генератора.
  • Обмоток три, соединены они в одну звездой, которая формирует трехфазное переменное напряжение.
  • Ротор, на лопатках которого образуется магнитное поле, и ЭДС.
  • Выпрямитель трехфазный – полупроводниковые диоды, преобразующие напряжение. Одна сторона диодов токопроводящая, другая – с изолированной поверхностью.
  • Устройство автоматического регулирования напряжения.

Ротор генератора автомобиля

Три обмотки позволяют значительно снизить пульсацию за счет перекрытия фаз между собой.

Принцип работы генератора

При движении ротора возникает ЭДС на выходе автомобильного генератора, который напрямую связан с АКБ. С помощью регулировки она передается на обмотку возбуждения статора. При увеличении частоты вращения ротора, напряжение начинает изменяться.

Напряжение на обмотке присутствует всегда.

Для стабилизации величины напряжения устанавливается реле регулятора напряжения, где происходит обработка, сравнение (в аналитическом блоке) входного сигнала. При отклонении от нормы блок управления подает сигнал на исполнительный механизм, где происходит снижение силы тока. После этого напряжение на выходе автомобильного генератора стабилизируется. При слишком низком значении тока, регулятор повышает выходное напряжение.

Принцип работы регулятора напряжения

Для повышения надежности работы регуляторы выполняют по упрощенным схемам. Включает несколько устройств: сравнение сигнала, орган управления, задающий и специальный датчики.

Готовая схема состоит из двух основных элементов:

  • Регулятор. Устройство, которое позволяет настраивать и контролировать напряжение. Изготавливается в двух исполнениях – аналоговом (механическом) и цифровом (электронном).
  • Графитовые щетки, которые подключаются к полупроводниковым элементам. Предназначены для сообщения напряжения на ротор автомобильного генератора.

Графитовые щетки передают напряжение на ротор генератора автомобиля

Современные устройства имеют микропроцессорную базу.

Двухуровневая схема регулирования

В состав входят три основных элемента: генератор, аккумуляторная батарея, выпрямитель. Внутри устройства находится магнит, обмотка которого соединена с контроллером. В качестве задающих устройств используются металлические пружины, а сравнивающих – подвижные рычаги. Контактная группа используется в качестве измерительного прибора, а постоянное сопротивление в качестве устройства регулирования.

Двухуровневый регулятор напряжения

Принцип работы двухуровневого регулятора

При возникновении напряжения и электромагнитного поля происходит сравнение сигналов. В качестве сравнивающего устройства применяется пружина, которая действует на плечо рычага. Магнитное поле действует на рычаг в нескольких направлениях (замыкает, размыкает, остается неизменным), после чего схема регулятора действует в зависимости от величины напряжения.

При выходе сигнала из рабочего диапазона в большую сторону происходит размыкание контактов.

В цепь подключено постоянное напряжение.

При этом на обмотку подается меньший ток и напряжение стабилизируется. Если изначально происходит замыкание контактов, которое свидетельствует о низком напряжении, сила тока увеличивается, и генератор продолжает работать в нормальном режиме.

Недостатки механических моделей:

  • быстрый износ деталей;
  • применение электромагнитных реле.

Электронные регуляторы

Работают идентично аналоговым моделям за исключением того, что механические элементы заменены на цифровые датчики. Вместо электромагнитных классических реле применяют тиристоры, симисторы, транзисторы и др. Чувствительный элемент представляет собой систему постоянных резисторов, установленных на делителе напряжения.

Схема электронного регулятора

Принцип работы состоит в следующем: при подаче напряжения на тиристоры происходит сравнение выходных сигналов. Исполнительный орган в зависимости от полученных данных замыкает или размыкает, при необходимости включая в схему добавочное сопротивление.

Преимущества электронных моделей:

  • высокая точность регулировки;
  • регулятор установлен в едином блоке со щетками, что позволяет экономить место, упрощать диагностику, ремонт и замену оборудования;
  • повышенная надежность и долговечность;
  • более тонкая настройка прибора;
  • в качестве выпрямителей применяются полупроводниковые диоды, благодаря которым обеспечивается стабильность напряжения на выходе;
  • задающий элемент выполнен в виде стабилитрона.

Для новых моделей автомобилей целесообразно применение более совершенных систем регулирования ввиду более сложного технического устройства.

Снятие регулятора напряжения

Для того чтобы убрать регулятор с задней крышки автомобильного генератора, необходима отвертка (крестовидная или плоская). Сам автогенератор и ремень снимать не нужно.

Снимать конструкцию можно только после отсоединения аккумуляторной батареи. Далее необходимо отсоединить провод от автомобильного генератора, открутив крепежные болты.

Главные причины неисправностей автогенератора:

  • стирание угольных щеток;
  • пробой изоляции полупроводниковых элементов.

Проверка работоспособности регулятора

Практически на всех моделях авто реле регулятора диагностируется аналогично. Для проведения диагностики необходим источник постоянного напряжения (аккумулятор, батарейки), лампа 12 В или вольтметр.

Контакт минус присоединяется к пластине устройства, «плюс» – к разъему реле регулятора.

После снятия регулятора с корпуса необходимо проверить работоспособность щеток. Если они менее 5мм в длину, то щеточный узел подлежит замене.

Лампа накаливания должна быть включена в схему между парой щеток:

  • потухание лампочки при увеличении напряжения говорит об исправности аппарата;
  • постоянное свечение лампочки при изменении параметров сигнализирует о неисправности регулятора напряжения.

Пайка новых щеток не принесет результата, т.к. надежность конструкции значительно уменьшится. Недопустимо использовать для проверки светодиодную продукцию, т.к. проведение диагностики по данной схеме не даст реальных результатов.

Проверка без снятия напряжения

Заключается в измерении бортового напряжения в автомобиле. Наличие скачков в сети также определяется миганием ламп во время поездки. Для проверки понадобится мультиметр (либо обычная лампа накаливания). Мультиметр позволяет получить более точные результаты.

Порядок действий:

  1. Завести двигатель, включить фары.
  2. Присоединить измерительный прибор к АКБ.
  3. Рабочее напряжение колеблется в пределах 12..14,8 В. При выходе за данный интервал регулятор напряжения считается неисправным.

Проверка под напряжением не позволяет определить состояние щеточного узла. Выход за рабочие параметры напряжения может быть связан с ослаблением или окислением контактов.

Происходит усовершенствование работы систем регулирования в автомобилях. Для современных авто нет смысла использовать двухуровневое регулирование. Более совершенные системы имеют 2 и более добавочных сопротивлений. В новых моделях вместо традиционного добавочного сопротивления используется принцип увеличения частоты срабатывания электронного ключа.

Наравне с классическими, применяются системы следящего автоматического регулирования, в которых нет электромагнитного реле.

Самым распространенным методом является трехуровневая схема регулировки с частотной модуляцией для управления логическими элементами.

Трехуровневая схема регулирования

Качество зарядки аккумуляторной батареи зависит от эффективности работы регулятора напряжения. При неполной зарядке аккумулятор теряет емкость с большой скоростью, и впоследствии завести двигатель становится невозможно.

Трехуровневый регулятор напряжения

Двухуровневые модели имеют большой недостаток – разброс величины напряжения на выходе. Поэтому для повышения стабильности работы системы применяют трехуровневую систему регулировки, в состав которой входит тумблер (изменяет параметры системы).

Применение данного вида моделей позволяет более точно проводить диагностику и контролировать потенциал на выходе генератора, что важно для новых моделей среднего ценового уровня, где производители используют не всегда качественные механизмы.

Наиболее актуально применение данной системы в зимнее время года в регионах с холодным климатом, когда от низких температур сильно снижается емкость АКБ. На смену механическим регуляторам пришли бесконтактные трехуровневые, более совершенные.

Схема и принцип работы схожи с двухуровневыми моделями за исключением того, что напряжение сначала поступает в блок обработки информации. При отклонении от рабочего значения подается звуковой сигнал (рассогласования). После этого сила электротока, поступающая на обмотку, меняется до рабочего значения.

Принцип установки

Допускается установка трехуровневых моделей в любой автомобиль самостоятельно при условии знания схемы подключения:

  • Необходимо отсоединить щеточный узел, открутив болты.
  • Полупроводниковый узел установить на корпусе авто, сделав необходимые крепления.
  • Полупроводниковый узел устанавливается сначала на алюминиевый радиатор, т.к. требует эффективного охлаждения, а затем закрепляется на корпусе.

При отсутствии системы охлаждения регулирование будет происходить некорректно.

  • После установки двух узлов необходимо обеспечить электрическую связь между ними проводами, обеспечив качественную изоляцию корпусов.

Поверхности необходимо покрыть изолирующим материалом, чтобы предотвратить замыкания на корпус. Для коммутации полупроводников следует предусмотреть переключатель.

Для установки конструкции необходим корпус. Обычно применяют пластик или алюминий, который обладает большей теплоотдачей, т.е. охлаждение будет происходить более эффективно.

Видео. Генератор в автомобиле

Регулятор напряжения в схеме автомобиля занимает одно из ключевых мест. Необходимо постоянно следить за состоянием прибора, своевременно проводить плановые осмотры, зачищать контакты (для предотвращения сбоев в работе). Т.к. деталь расположена в нижней, не защищенной от пыли и влаги, стороне моторного отсека, регулярно очищать поверхности от загрязнений.

При наличии внешних дефектов и повреждений не следует пользоваться таким устройствам, т.к. в этом случае возможен быстрый разряд аккумулятора либо полный выход из строя автомобильного генератора, а также электрической части автомобиля (из-за резкого повышения напряжения в бортовой сети).

Реле-регулятор напряжения генератора — это неотъемлемая часть системы электрооборудования любого автомобиля. С его помощью производится поддержка напряжения в определенном диапазоне значений. В данной статье вы узнаете о том, какие конструкции регуляторов существуют на данный момент, в том числе будут рассмотрены механизмы, давно не используемые.

Основные процессы автоматического регулирования

Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

Что такое генератор

Любой автомобильный генератор состоит из нескольких частей:

1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

2. Статор с тремя обмотками, соединенными по схеме "звезда" (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 в системе впрыска) одинаков.

Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

Работа генератора

Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

Двухуровневые регуляторы

Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

Работа двухуровневого регулятора

При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

Электронный регулятор

У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

Трехуровневая система регулирования

Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора ("Форд Сиерра" также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

Современные системы регулирования напряжения

Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

Как снимать реле-регулятор

Снять реле-регулятор напряжения генератора ("Ланос" или отечественная "девятка" у вас - не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения имеет устаревшую конструкцию - он монтируется в подкапотном пространстве, отдельно от щеточного узла.

Проверка устройства

Проверяется реле-регулятор напряжения генератора ВАЗ 2106, "копеек", иномарок одинаково. Как только произведете снятие, посмотрите на щетки - у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

Выводы

В системе электрооборудования автомобиля реле-регулятор напряжения генератора "Бош" (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.

Выход из строя реле-регулятора – наиболее частая причина неисправности автомобильных генераторов. Именно поэтому с проверки регулятора обычно начинают контроль работоспособности узлов генератора.

В большинстве случаев это можно сделать самостоятельно даже без его снятия.

Принцип работы регулятора напряжения генератора

Генератор – один из наиболее консервативных узлов автомобилей. Разработанная в середине 60-х годов схема осталась практически неизменной вплоть до наших дней за исключением элементной базы.

Схема

В общем виде схему автомобильного генератора можно изобразить так:

Она содержит следующие основные узлы:

  • выпрямительный мост 5 и 6;
  • выпрямительный мост питания реле-регулятора 7;
  • щетки обмотки возбуждения 10;
  • обмотка возбуждения (якорь) 9;
  • обмотка статора 8;
  • индикаторная лампа 4;
  • аккумуляторная батарея 3;
  • контактная группа замка зажигания 1;
  • конденсатор 2 (может отсутствовать).

Общий принцип работы генераторов переменного тока придумал гениальный Тесла. Постоянный ток через обмотку возбуждения индуцирует магнитное поле. Во время вращения катушки возбуждения (якоря) внутри обмотки статора в последних генерируется переменное напряжение.

Это напряжение преобразуется в постоянное выпрямителем, выполненным на диодном мосте 5 и 6. Выпрямленное напряжение .

Чем выше ток в обмотке возбуждения, тем будет выше напряжение генератора.

Какую функцию выполняет реле-регулятор? По существу, он является усилителем с обратной связью. То есть, как только повышается напряжение, его схема уменьшает ток через обмотку возбуждения.

Соответственно, напряжение генератора уменьшается. Тогда он повышает ток обмотки, напряжение генератора увеличивается. И так до бесконечности. В конечном счете, напряжение генератора стабилизируется на определенном уровне. Весь этот процесс стабилизации длится доли секунды.

Виды

Реле-регуляторы классифицируют по элементной базе исполнения :

  • релейные;
  • транзисторно-релейные;
  • транзисторные (в автомобилях до 90-х годов);
  • интегральные (в современных автомобилях);
  • микропроцессорные с программным управлением (Audi, BMW).

По конструктивному исполнению :

  • внешние, закрепляемые на элементах кузова;
  • встроенные;
  • встроенные, совмещенные со щетками.

В современных автомобилях чаще всего используют устройства, совмещенные со щетками. В этом есть свой недостаток: когда изнашиваются щетки, приходится менять и реле-регулятор. И наоборот, отказ реле-регулятора может привести к замене здоровых щеток.

Некоторые специалисты меняют только щетки, расположенные совместно с реле-регулятором. Это не лучший вариант из соображений надежности, тем более стоимость реле-регуляторов распространенных автомобилей не так велика и может быть даже ниже стоимости замены щеток.

Возможные причины неисправности

В качестве основных причин неисправностей реле-регуляторов напряжения генераторов рассматриваются:

  • межвитковое замыкание обмотки возбуждения. Наиболее опасная причина неисправности. После замены реле-регулятора генератор определенное время работает без проблем. Но регулятор работает при повышенных токах и через пару месяцев вновь перегорает. В этом случае необходимо снимать генератор и везти его на тестирование;
  • выход из строя выпрямительного моста (пробой диодов). Менее опасен, тем более данная неисправность вызывает перегрев генератора, и диоды меняются в первую очередь;
  • переполюсовка или перепутывание полюсов аккумулятора. В этом случае выходят из строя и выпрямительные диоды;
  • разрушение щеток;
  • короткое замыкание на управляющем выводе реле-регулятора;
  • естественный износ.

Последствия неисправного реле-регулятора могут быть существенны:

  • повышенное напряжение генератора может привести к выходу из строя электронных блоков автомобиля, поэтому нельзя при заведенном двигателе;
  • внутреннее замыкание реле-регулятора приводит к перегреву обмотки возбуждения и, в конечном счете, более дорогостоящему ремонту;
  • разрушение щеток реле-регулятора может вызвать окончательную поломку генератора, его заклиниванию, обрыву ремня и более серьезным последствиям.

Основные признаки неисправности

Самый первый признак неисправности — отсутствие свечения контрольной лампочки (индикатора) на приборной панели при включении зажигания.

В возрастных машинах, где схема заряда аккумулятора аналогична, показанной на первом рисунке, автолюбителям еще рано паниковать. Возможно, это просто перегорела лампочка или нарушился контакт, и эти случаи довольно часты. Автовладельцы снимают генератор, везут на тестирование, а зря.

Второй признак – индикатор «аккумулятор» не гаснет после запуска двигателя. Это уже свидетельствует о нарушении процесса заряда и возможной неисправности генератора.

Еще один признак неисправности – яркость ближнего-дальнего света зависит от оборотов двигателя. Кстати, такую проверку рекомендуется производить регулярно. Для этого необходимо в темное время суток остановиться в неоживленном месте напротив какого-нибудь здания и на нейтралке погазовать, включив дальний свет. Изменение яркости свидетельствует о возможных проблемах с системой заряда.

Запах горелой обмотки в салоне также признак неисправности генератора, но его можно не почувствовать.

Как самостоятельно проверить реле-регулятор генератора мультиметром или лампой

В случае подозрения на неисправность системы заряда аккумулятора проверку следует начинать с контроля напряжения на АКБ при заведенном двигателе. Оно должно быть в пределах 13,3 – 14,5 Вольт. Напряжение более 15 Вольт – верный признак неисправности реле-регулятора.

Видео — как проверить реле-регулятор без регулируемого источника питания:

Иногда есть еще один для управления тахометром. Следует прозвонить управляющий провод на массу. Сопротивление ниже 10 Ом также будет свидетельствовать о неисправности реле-регулятора.

Следующие проверки следует производить на снятом с генератора реле-регуляторе. В большинстве случаев это можно и следует делать, не демонтируя генератор. Реле-регулятор обычно крепится на генераторе двумя-тремя болтиками или винтами.

После этого необходимо собрать простенькую схему.

или другой ее вариант

В качестве лампочки можно взять обычную салонную лампу. Ее свечение будет свидетельствовать об исправности реле-регулятора. На снятом реле также следует проверить состояние щеток.

В интернете можно найти схемы проверки практически для любого вида реле-регуляторов напряжения генераторов.

В том случае, если результаты проверки оказались отрицательными, следует менять регулятор. Обычно его стоимость не превышает 2000 рублей для распространенных марок.

При малейшем подозрении на неисправность системы заряда аккумулятора (изменении яркости свечения ламп, моргании индикаторной лампы, трудности запуска двигателя, перегреве устройства и других) следует немедленно проверить работоспособность генератора, особенно в холодное время года.

Для того, чтобы генератор прослужил дольше, соблюдайте следующие простые правила:

  • не допускайте чрезмерного загрязнения генератора (он имеет технологические отверстия для проветривания, туда может попадать грязь), производите очистку его поверхности;
  • периодически производите проверку натяжения ремня;
  • следите за состоянием обмоток статора, это можно сделать через технологические отверстия, они должны быть не потемневшими;
  • плохой контакт управляющего провода может привести к выходу из строя реле-регулятора;
  • для предотвращения перезаряда аккумулятора и выхода из строя электронных систем автомобиля периодически проверяйте напряжение на аккумуляторе при заведенном двигателе (напряжение заряда).

И пусть ваш генератор прослужит дольше!

Видео — как проверить регулятор напряжения генератора VALEO в автомобилях РЕНО:

Может заинтересовать:


Уникальный автомобильный сканер Scan Tool Pro

В настоящее время задачи регулирования напряжения получили материальную основу в виде регулирующих и компенсирующих устройств. Постоянство напряжения в каждой точке сети можно обеспечить применением локальных регуляторов в электрических цепях. Таким образом возникает вопрос о создании локальных систем автоматического регулирования напряжения в электрической сети.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ВВЕДЕНИЕ 3

Описание прибора 4

Основное назначение и область применения 5

Виды регуляторов напряжений 6

регуляторы переменного напряжения на основе тиристоров 7

регуляторы переменного напряжения на основе магнитных усилителей 8

регуляторы переменного напряжения на основе транзисторов 9

синхронный компенсатор: назначение, принцип работы 10

Принцип работы регулятора напряжения 1 3

Заключение 1 4

Список литературы 1 5

Введение: Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. В настоящее время задачи регулирования напряжения получили материальную основу в виде регулирующих и компенсирующих устройств. Расчеты показывают, что как правило, дополнительные затраты, связанные с применением регулирующих устройств и их автоматизацией, окупаются той экономией, которая достигается при улучшении режимов напряжений в электрических сетях и системах. Постоянство напряжения в каждой точке сети можно обеспечить применением локальных регуляторов в электрических цепях. Таким образом, возникает вопрос о создании локальных систем автоматического регулирования напряжения в электрической сети. Представляется целесообразным построение локальной системы автоматического регулирования с применением транзисторов.

Цель исследования : Изучить принцип работы и применения регуляторов напряжения для повышения эффективности функционирования электротехнических устройств.

Задачи исследования:

  1. Узнать область назначения и применения регулятора напряжения.
  2. Определить виды регуляторов напряжения.
  3. Изучить принцип работы регуляторов напряжения.
  4. Сделать выводы о проделанной работе.

1. Описание прибора:

Регулятор напряжения представляет собой электрический прибор, который регулирует электрическое напряжение, вырабатываемое генератором переменного тока или генератором постоянного тока в интервале от 14 до 14,4 В при номинальном напряжении сети 12 В и от 7 до 7,2 В при номинальном напряжении сети 6 В.

Регулируемое в указанном интервале напряжение обеспечивает правильную работу батареи и защиту приборов от разрушения. Предпосылкой правильной работы является недопущение возможности перегрузки электрической мощности регулятора. Например: Регулятор имеет максимальную электрическую мощность 200 Вт. Это значит, что мощность генератора переменного тока должна быть P alt <= 200 Вт. Далее, суммарное электропотребление приборов в сети транспортного средства не должно превышать 200 Вт. При перегрузке может наступить разрушение регулятора, либо разряд и разрушение батареи.

Регулятор напряжения переменного тока обеспечивает среднее значение напряжения в указанном интервале. Это означает, что, например, измеряемое осциллоскопом напряжение меняется периодически на большую величину, чем номинальное напряжение. Например, от +- 20 до 30 В. Это среднее значение гарантирует, что приборы типа электрических лампочек не разрушатся. Однако действует такое правило, по которому сумма электропотребления приборов должна быть Ps[Вт] <= Preg[Вт]. То есть, регулятор необходимо выбирать согласно номинальному напряжению [В] и макс. электропотреблению [Вт].

2. Основное назначение и область применения:

Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. Существуют различные способы регулирования напряжения. Разнообразие решений обусловлено требованиями по устойчивости, необходимой точности регулирования, параметрами нагрузок, экономическими и другими факторами.

Регулирование в источниках вторичного электропитания

Величину выпрямленного напряжения в ряде случаев нужно изменять. Такая необходимость может возникнуть при включении мощных двигателей, накала генераторных ламп, для уменьшения бросков тока при включении. Регулирование выпрямленного напряжения можно осуществлять на стороне переменного тока (входе), на стороне постоянного тока (выходе) и в самом выпрямителе применением регулируемых вентилей.

В качестве регуляторов напряжения на стороне переменного тока применяются:

регулируемые трансформаторы или автотрансформаторы.

регулирующие дроссели (магнитные усилители).

В регулируемом трансформаторе или автотрансформаторе первичная или вторичная обмотка выполняются с несколькими выводами. С помощью переключателя изменяется число витков обмотки и, следовательно выходное напряжение трансформатора или автотрансформатора. При коммутации обмоток часть витков может оказаться замкнутой накоротко движком переключателя, что приведет к созданию в замкнутых витках чрезмерно больших токов и к выходу трансформатора из строя. Поэтому такую коммутацию рекомендуется производить после отключения трансформатора из сети. Это является большим недостатком .

3. Виды регуляторов напряжений.

1. По количеству узлов в одном корпусе:

  • только регулятор напряжения
  • регулятор напряжения вместе с выпрямителем электрического тока
  • комбинированный регулятор для напряжения переменного тока и напряжения постоянного тока с выпрямителем

2. По номинальному напряжению в сети транспортного средства и изменению напряжения:

  • номинальное напряжение 6 или 12 В
  • напряжение переменного тока или напряжение постоянного тока

3. По электрической мощности (нагрузке) регулятора

4. По числу фаз на 1-фазные и 3-фазные

5. По типу регулируемого генератора постоянного тока – для генераторов с независимым возбуждением и генераторов с постоянными магнитами.

3.1. Регуляторы переменного напряжения на основе тиристоров:

Тиристорные регуляторы позволяют значительно уменьшить физические размеры устройства, снизить его стоимость и сократить потери электроэнергии, но они обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Тиристорные регуляторы переменного напряжения широко применяются в электроприводе, также для питания электротермических установок. Применение тиристоров для коммутации статорных цепей асинхронных двигателей с короткозамкнутым ротором позволяет решить задачу создания простого и надежного бесконтактного асинхронного электропривода. Можно эффективно воздействовать на процессы разгона, замедления, осуществлять интенсивное торможение и точную остановку. Безыскровая коммутация, отсутствие подвижных частей, высокая степень надежности позволяют применять тиристорные регуляторы во взрывоопасных и агрессивных средах.

Обобщенная схема тиристорного регулятора переменного напряжения приведена на рис. 1:

3.2. Регуляторы переменного напряжения на основе магнитных усилителей:

Рассмотрим регуляторы переменного напряжения на основе магнитных усилителей, тиристоров и транзисторов. Магнитный усилитель (МУ) представляет собой статический электромагнитный аппарат, позволяющий при помощи управляющего сигнала постоянного тока небольшой мощности управлять значительными мощностями в цепи переменного тока . Регулирующий дроссель (или магнитный усилитель) включается на входе выпрямителя. Если обмотки переменного тока магнитного усилителя включить последовательно с нагрузкой и изменить ток в обмотке управления, то будет изменяться индуктивное сопротивление обмоток дросселя и падение напряжения на этих обмотках. Следовательно, будет изменяться. При увеличении, уменьшается, уменьшается, уменьшается и растет.

Регуляторы напряжения, построенные на основе магнитных усилителей, обладают рядом достоинств: практически неограниченный срок службы, простота эксплуатации, высокая температурная и временная стабильность характеристик, высокий КПД. Несмотря на ряд достоинств, регуляторы, построенные на базе магнитных усилителей, редко применяются в современных системах управления, так как существенным недостатком таких устройств являются их большие габариты и масса, вызванные конструктивными особенностями магнитных усилителей.

3.3. Регуляторы переменного напряжения на основе транзисторов:

Транзисторный регулятор напряжения не вносит помех в электрическую сеть и его можно применять для управления нагрузкой, как с активным, так и индуктивным сопротивлением. Регулятор можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора.

Обобщенная схема транзисторных регуляторов переменного напряжения приведена на рисунке 2:

3.4. Синхронный компенсатор назначение, принцип работы:

Понимание того, насколько важно качество электроэнергии (соотношение ее активной и реактивной составляющих – коэффициент мощности), постоянно растет, и вместе с ним будет расти и применение компенсации коэффициента мощности (ККМ). Улучшение качества электроэнергии путем увеличения ее коэффициента мощности уменьшает расходы и гарантирует быстрое возвращение затраченных капиталов. В распределении мощности в сетях с малым и средним напряжением ККМ уделяет основное внимание соотношению активной и реактивной составляющих мощности (cosφ) и оптимизации стабильности напряжения, путем генерации реактивной мощности с целью увеличения качества и стабильности напряжения на распределительном уровне.

Компенсатор синхронный, синхронный электродвигатель, работающий без активной нагрузки, предназначенный для улучшения коэффициента мощности и регулирования напряжения в линиях электропередачи и в электрических сетях В зависимости от изменений величины и характера нагрузки (индуктивная или емкостная) электрической сети меняется напряжение у потребителя (на приемных концах линии электропередачи). Если нагрузка электрической сети велика и носит индуктивный характер, к сети подключают К. с., работающий в перевозбужденном режиме, что эквивалентно подключению емкостной нагрузки. При передаче электроэнергии по линии большой протяженности с малой нагрузкой на режим работы сети заметно влияет распределенная емкость в линии. В этом случае для компенсации емкостного тока в сети к линии подключают К. с., работающий в недовозбужденном режиме. Постоянство напряжения в линии поддерживается регулированием тока возбуждения от напряжения регулятора. Пуск К. с. осуществляется также, как и обычных синхронных двигателей; сила пускового тока К. с. составляет 30–100% его номинального значения. К. с. изготовляют мощностью до 100 ква и более; мощные К. с. имеют водородное или водяное охлаждение. Применяются главным образом на электрических подстанциях.

Любое электрооборудование, использующее магнитные поля (двигатели, дроссели, трансформаторы, оборудование индукционного нагрева, генераторы для дуговой сварки) подвержено определенному запаздыванию при изменении тока, которое называется индуктивностью. Это запаздывание электрооборудования сохраняет направление тока на определенное время, не смотря на то, что отрицательное напряжение пытается его переменить. Пока этот фазовый сдвиг сохраняется, ток и напряжение имеют противоположные знаки. Производящаяся все это время отрицательная мощность отдается обратно в сеть. Когда ток и напряжение по знаку снова уравниваются, необходима такая же энергия, чтобы восстановить магнитные поля индукционного оборудования. Эта магнитная реверсионная энергия называется реактивной мощностью. В сетях с напряжением переменного тока (50/60 Hz) такой процесс повторяется 50–60 раз в секунду. Очевидным выходом из данной ситуации является накопление реверсионной магнитной энергии в конденсаторах с целью освобождения сети (линии питания). Именно поэтому автоматические системы компенсации реактивной мощности (расстроенные / стандартные) устанавливаются на мощную нагрузку, например, на заводах. Такие системы состоят из нескольких конденсаторных блоков, которые могут быть подключены и отключены по мере надобности, и управляются контролером ККМ на основании данных трансформатора тока.

Низкий коэффициент мощности (cosφ) приводит: к повышению затрат и потребления энергии,уменьшению мощности, передающейся по сети, потерям мощности в сети, повышению потерь трансформатора, повышенному падению напряжения в распределенных сетях питания. Увеличение коэффициента мощности может быть достигнуто путем: компенсации реактивной мощности конденсаторами, активной компенсации – использование полупроводников, перевозбуждением синхронных машин (двигатель / генератор)

В системе электроснабжения потери в сетях составляют 8–12% от объема производства. Для уменьшения этих потерь необходимо: правильно о п ределять электрические нагрузки; рационально передавать и распределять электрическую энергию; обеспечивать необходимую степень надежности; обеспечивать необходимое качество электроэнергии; обеспечивать электр о магнитную совместимость приемника с сетью; экономить электроэнергию. Мероприятия, могущие обеспечить вышеперечисленные задачи это – созд а ние быстродействующих средств компенсации реактивной мощности, улу ч шающей качество; сокращение потерь достигается компенсацией реактивной мощности, увеличением загрузки трансформаторов, уменьшением потерь в них, приближением трансформаторов к нагрузкам, использование экономи ч ного оборудования и оптимизация его режимов работы. Режим работы энергосистемы характеризуется тремя параметрами: напряжением, током и активной мощностью. Вспомогательный параметр – реактивная мощность. Реактивная мощность и энергия ухудшают показатели работы энергосист и чивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях. Реактивную мо щ ность потребляют такие элементы питающей сети как трансформаторы эле к тростанций; главные понизительные электростанции, линии электропередач – на это приходится 42% реактивной мощности генератора, из них 22% на п о вышающие трансформаторы; 6,5% на линии электропередач районной си с темы; 12,5% на понижающие трансформаторы. Основные же потребители реактивной мощности – асинхронные электр о двигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами. Говоря иначе, существуют приемники электроэнергии, нуждающиеся в реактивной мощности. Одной реактивной мощности, выдаваемой генератором явно недостаточно. Увел и чивать реактивную мощность, выдаваемую генератором нецелесообразно из-за вышеперечисленных причин, т.е. нужно выдавать реактивную мо щ ность именно там, где она больше всего нужна.

4. Принцип работы регулятора напряжения:

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. При подключении регулятора к электросети не допускается менять полюса + и – батареи. Регулятор может разрушиться.

Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.

Заключение:

Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. Сделав выводы об устройстве и применении регулятора напряжения переменного тока можно с уверенностью сказать, что данное устройство может достаточно облегчить работу как радиотехника так и обычного человека в его использовании для улучшения качество потребляемой электроэнергии.

Список литературы:

  1. Бутов А. „Устройство защиты маломощных ламп накаливания“, Журнал „Радио“ №2, 2004г.
  2. Чекаров А. „Беспомеховый регулятор напряжения“ Журнал „Радио“, №11, 1999г.
  3. Основы радиотехники [Текст] / Н. М. Изюмов, Д. П. Линде. - 4-е изд., перераб. и доп. - М. : Радио и связь, 1983. - 376 с. : ил. - (Массовая радиобиблиотека; вып. 1059). - Б. ц.
  4. Радиотехника [Текст] : к изучению дисциплины / И. П. Жеребцов. - 4-е изд., перераб. и доп. - М. : [б. и.], 1958. - 495 с. - Б. ц.
  5. Практикум по электротехнике и радиотехнике [Текст] : пособие для студ. пед. ин-тов / Под ред. Н.Н. Малова. - М. : Учпедгиз, 1958. - 166 с. - Б. ц.
  6. Курс электротехники и радиотехники [Текст] : учебное пособие: для пед. ин-тов / Н.Н. Малов. - М. : Госфизмат, 1959. - 424 с. - Б. ц.

PAGE \* MERGEFORMAT 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

11466. Стратегический менеджмент как основа повышения эффективности функционирования предприятия в кризисной ситуации 32.6 KB
В прошлом предприятия могли успешно функционировать обращая внимание в основном на ежедневную работу на внутренние проблемы связанные с повышением эффективности использования ресурсов в текущей деятельности. Сейчас же хотя не снимается задача рационального использования потенциала в текущей деятельности исключительно важным становиться осуществление такого управления которое обеспечивает адаптацию предприятия к быстро меняющимся условиям окружающей среды. Стратегическими являются те решения и действия которые имеют...
16837. Проблема применения коэффициента замещения как основного индикатора эффективности функционирования пенсионной системы в России 8.8 KB
Главным образом с позиции застрахованного лица судить об эффективности функционирования схем пенсионного страхования в которых финансирование выплат осуществляется за счет уплаты страховых взносов можно по уровню замещения пенсией утраченного заработка работника. Такой показатель в теории пенсионного страхования называется коэффициентом замещения. Так в проекте Стратегии долгосрочного развития пенсионной системы РФ сказано что задачами развития пенсионной системы являются обеспечение коэффициента замещения трудовой пенсией по старости...
2542. Знакомство с практическими схемами автоматических регуляторов напряжения СГ 306.51 KB
Принципиальная схема АРН генераторов серии ТМВ Автоматическое регулирование напряжения СГ серии ТМВ обеспечивается с точностью 57 системой АФК. Кроме того регулятор имеет корректор напряжения который доводит точность стабилизации напряжения до 12. В качестве компаундирующего сопротивления используется трехфазный дроссель Др включенный в каждую фазу обмотки напряжения возбудительного трансформатора.
948. Пути повышения эффективности коммерческой работы в розничной торговой организации 100.41 KB
Теоретические основы исследования эффективности коммерческой деятельности торгового предприятия. Функции цели задачи коммерческой деятельности розничной торговой организации. Коммерческая деятельность является одной из важнейших областей человеческой деятельности возникших в результате разделения труда. Однако такое широкое толкование коммерческой деятельности не согласуется с ранее изложенным подходом к коммерции как торговым процессам по осуществлению актов куплипродажи товаров.
5380. Разработка учебного стенда Устройство и принцип работы принтера как средство повышения качества подготовки учащихся специальности Техническое обслуживание средств вычислительной техники и компьютерных сетей 243.46 KB
Классифицируются принтеры по пяти основным позициям: принципу работы печатающего механизма, максимальному формату листа бумаги, использованию цветной печати, наличию или отсутствию аппаратной поддержки языка PostScript, а также по рекомендуемой месячной нагрузке.
19917. Направления совершенствования обучения персонала и повышения эффективности работы АО ДБ «Банк Китая в Казахстане» 146.22 KB
Роль обучения персонала в стратегии развития организации. Процесс профессионального обучения и оценка его эффективности. Управление процессом обучения и формирования эффективного персонала организации. Методики совершенствования обучения персонала.
15626. Пути повышения эффективности организации социально-педагогической работы с педагогически запущенными подростками в общеобразовательном учреждении 68.85 KB
Анализ социально-педагогической работы с педагогически запущенными подростками как проблема исследования. Исследование зарубежного и отечественного опыта в изучении проблемы педагогической запущенности. Состояние организации социально-педагогической работы с педагогически запущенными подростками в общеобразовательном учреждении. Обоснование модели социально-педагогической работы с педагогически запущенными подростками в общеобразовательной школе.
598. Понятие защитного заземления и принцип его действия. Виды заземляющих устройств 8.92 KB
Понятие защитного заземления и принцип его действия. Назначение заземления – устранение опасности поражения электротоком в случае соприкосновения к корпусу. Расчет заземления производится по допустимым напряжениям прикосновения и шага или допустимому сопротивлению растекания тока заземлителя. Расчет заземления имеет целью установить главные параметры заземления – число вертикальных заземлителей и их размеров порядок размещения заземлителей длины заземляющих проводников и их сечения.
6655. Полевые транзисторы, принцип их работы 48.85 KB
При увеличении отрицательного значения напряжения U происходит увеличение ширины pn перехода за счет уменьшения ширины nканала см. Таким образом управление потоком рабочих носителей заряда в полевом транзисторе осуществляется за счет изменения сопротивления канала при изменении напряжения затвористок. Очевидно степень уменьшения ширины канала а следовательно его сопротивление будет увеличиваться при увеличении напряжения U. При малых значениях напряжения U обусловленное этим напряжением уменьшение ширины канала не существенно и...
14245. Назначение, устройство и принцип работы магнитолы 68.26 KB
Основными функциональными узлами магнитофона являются лентопротяжный механизм ЛПМ блок магнитных головок БМГ БВГ для записи воспроизведения и стирания сигналов и электронные устройства обеспечивающие работу БМГ. Характеристики ЛПМ в наибольшей степени влияют на качество звуковоспроизведения аппарата в целом потому что искажения которые неидеальный ЛПМ вносит в сигнал невозможно исправить никакой коррекцией в аналоговом электронном тракте...

Регулятор напряжения для авто – это прибор, функцией которого является поддержание напряжения в бортовой сети машины в установленных рамках, независимо от частоты вращения ротора генератора, внешней температуры, нагрузки и пр.

Регулятор напряжения для авто

Выполняет данное устройство и некоторые дополнительные функции: защита генератора и его элементов от перегрузок и работы в аварийных режимах, автоматическое включение системы сигнализации аварийной работы генератора или цепи обмотки возбуждения.

На напряжение генератора оказывают влияние три основных фактора: частота вращения его ротора, магнитный поток, который создается током обмотки возбуждения, а также сила тока, которая отдается генератором в нагрузку.

Напряжение генератора возрастает с ростом числа оборотов, а также со снижением нагрузки. Кроме того, увеличение напряжения вызывает возрастание силы тока в обмотке возбуждения.

Регулятор же напряжениястабилизирует напряжение путем корректировки тока возбуждения. В случае возрастания напряжения и выхода за требуемые пределы, регулятор увеличивает или уменьшает ток возбуждения, что приводит к стабилизации напряжения.

Регулятор напряжения для авто подключается к обмотке возбуждения генератора, а также к нему подводится напряжение с генератора или аккумулятора. Конечно, регуляторы с расширенным перечнем функций требуют большего числа подключений.

Регулятор напряжения для авто состоит из нескольких основных элементов:

{typography list_number_bullet_blue}1. Измерительный элемент;||2. Элемент, проводящий сравнение;||3. Регулирующий элемент.{/typography}
Очень чувствительной и уязвимой частью регулятора является его входной делитель напряжения. От него напряжение поступает к элементу сравнения. В данном случае эталонной величиной выступает напряжение стабилизации стабилитрона.

В случае если показатель напряжения ниже уровня стабилизации, то стабилитрон не пропускает ток через себя. В случае же превышения напряжением допустимых пределов, стабилитрон начинает пропускать через себя ток. На самом стабилитроне напряжение практически не изменяется.

Проходящий через стабилитрон ток активирует реле, коммутирующее цепь возбуждения так, что в обмотке возбуждения происходит корректировка тока в необходимом направлении. Автомобильные регуляторы напряжения осуществляют дискретное регулирование. Это возможно благодаря включению или выключению обмотки возбуждения в цепь питания. Такой принцип заложен в транзисторных регуляторах напряжения.

В вибрационных же или контактно-транзисторных регуляторах осуществляется включение обмотки возбуждения последовательно с обмоткой дополнительного резистора. Стоит отметить, что сегодня применяются лишь транзисторные регуляторы напряжения для авто, а вибрационные и контактно-транзисторные уже отошли в историю.

Регулятор напряжения для авто



Загрузка...