sonyps4.ru

Рекомендации по использованию стандарта сжатия mp3. Сжатие звука

Итак, как мы уже знаем, для передачи звука с качеством аудио-компакт-дисков требуется пропускная способность, равная 1,411 Мбит/с. Понятно, что для практической передачи подобных данных через Интернет требуется значительное сжатие. Для этого были разработаны различные алгоритмы сжатия оцифрованного звука. Одним из самых популярных форматов является аудио-MPEG, имеющий три уровня (разновидности). Самым известным и качественным является MP3 (MPEG layer 3 - MPEG 3-го уровня). В Интернете можно найти огромное количество записей в MP3, не все из которых на самом деле являются легальными. Это привело к множеству судебных разбирательств, инициированных ущемленными в своих законных правах артистами и обладателями авторских прав. MP3 - это часть стандарта MPEG, предназначенного для сжатия видеосигнала. Методы сжатия движущихся изображений мы рассмотрим позднее в этой главе, а сейчас обратимся к сжатию звука.

Существуют две концепции сжатия звука. При кодировании формы сигналов сигнал раскладывается на компоненты при помощи преобразования Фурье. На рис. 2.1, а показан пример в виде временной функции и амплитуд, получающихся в результате ее разложения в ряд Фурье. Амплитуда каждого компонента кодируется с минимальными искажениями. Задачей является максимально аккуратная передача формы сигнала с минимально возможной затратой битов.

Другая концепция называется перцепционным кодированием. Она основана на некоторых недостатках слухового аппарата человека, позволяющих шифровать сигнал таким образом, что слушатель не ощутит никакой разницы по сравнению с настоящим сигналом, хотя на осциллографе эта разница будет весьма заметна. Наука, на которой базируется перцепционное кодирование, называется психоакустикой. Она изучает восприятие звука человеком. Формат MP3 использует перцепционное кодирование.

Ключевым свойством перцепционного кодирования является то, что одни звуки могут маскировать другие. Представьте себе, что теплым летним вечером вы медитируете на лужайке, слушая живой концерт для флейты с оркестром. Затем, откуда ни возьмись, появляется бригада рабочих с отбойными молотками в руках, которая начинает вскрывать асфальт на близлежащей улице. Расслышать флейту, к сожалению, уже никто не в состоянии. Нежные звуки, издаваемые ею, подверглись маскированию звуками отбойных молотков. Если рассматривать ситуацию с точки зрения передачи данных, то в этот момент достаточно кодировать лишь диапазон частот, в котором работают отбойные молотки, - все равно флейту за этим грохотом не слышно. Способность громких звуков определенного диапазона частот «прятать» более тихие звуки других диапазонов (которые были бы слышны при отсутствии громких звуков) называется частотным маскированием. На самом деле, даже после того как рабочие выключат отбойные молотки, слушатели не будут слышать флейту в течение некоторого небольшого периода времени. Это связано с тем, что при появлении очень громкого звука коэффициент усиления человеческого уха резко снизился, и после прекращения работы отбойных молотков требуется время для его возвращения в нормальное состояние. Этот эффект называется временным маскированием.

Чтобы перейти от качественного описания этих эффектов к количественным, представим себе проведение некого эксперимента 1. Человек, находящийся в тихом помещении, надевает наушники, соединенные со звуковой картой компьютера. Компьютер генерирует звук (чистую синусоидальную звуковую волну) с частотой 100 Гц, сила которого постепенно возрастает. Испытуемый должен нажать клавишу на клавиатуре, как только он услышит звук. Компьютер запоминает силу звука, при которой была нажата клавиша, и повторяет эксперимент на частотах 200 Гц, 300 Гц и т. д., доходя до верхнего предела слышимых частот. Эксперимент необходимо провести над большим количеством испытуемых. На рис. 7.27, а показан график с логарифмическим масштабом на обеих осях, показывающий усредненную зависимость порога слышимости от частоты звука. Наиболее очевидный вывод, который можно сделать при взгляде на эту кривую, состоит в том, что нет никакой необходимости когда бы то ни было кодировать частоты, амплитуда которых ниже порога слышимости.

Например, если сила звука на частоте 100 Гц равна 20 дБ, этот звук можно не кодировать, и качество звучания при этом не ухудшится, так как уровень 20 дБ при 100 Гц находится ниже порога слышимости (рис. 7.27, а).

Теперь рассмотрим эксперимент 2. Пусть компьютер повторяет действия эксперимента 1, но на этот раз на каждую тестовую частоту будет накладываться синусоидальная звуковая волна постоянной амплитуды с частотой, скажем, 150 Гц. Мы обнаружим, что порог слышимости для частот, расположенных вблизи 150 Гц, резко возрастает. Это отражено на графике на рис. 7.27, б.


Рис. 7.27. Порог слышимости как функция частоты (а); эффект маскирования (б)

Из последнего наблюдения можно сделать следующий вывод: зная, какие сигналы маскируются более мощными сигналами на близлежащих частотах, мы можем пренебречь соответствующими частотами и не кодировать их, экономя тем самым биты. Из рис. 7.27, б очевидно, что сигналом с частотой 125 Гц мо^ п ° полностью пренебречь, и никто не заметит разницы. Знание свойств времени° г ° маскирования позволяет даже после прекращения звучания громкого сип* 2 ^ в каком бы то ни было частотном диапазоне в течение некоторого времени (пока ухо настраивается на меньшую мощность звука) продолжать пренебрегать кодированием этой частоты. Суть алгоритма MP3 состоит в разложении сигнала в ряд Фурье для получения силы звука на каждой из частот с последующей передачей исключительно немаскированных частот, кодируемых минимально возможным числом бит.

Теперь, зная основной принцип, мы можем рассмотреть, как производится само кодирование. Сжатие звука выполняется путем замеров формы сигналов, производимых с частотой 32 000, 44 100 или 48 000 раз в секунду. Замеры могут сниматься по одному или двум каналам в одной из четырех комбинаций:

1. Монофонический звук (один входной поток).

2. Двойной монофонический звук (например, звуковая дорожка на английском

и японском).

3. Разъединенное стерео (каждый канал сжимается отдельно).

4. Объединенное стерео (учитывается межканальная избыточность сигнала).

Для начала выбирается желаемая выходная битовая скорость. С помощью алгоритма MP3 можно сжать записанную на компакт-диск стереофоническую запись рок-н-ролла до 96 Кбит/с с потерей качества, едва заметной даже для фанатов рок-н-ролла, не лишенных слуха. Если мы хотим «перегнать в MP3» фортепианный концерт, нам понадобится битовая скорость по крайней мере 128 Кбит/с. Чем обусловлена такая разница? Дело в том, что соотношение сигнал/шум в рок-н- ролле гораздо выше, чем в фортепианном концерте (только в техническом смысле, разумеется). Можно, впрочем, выбрать меньшую битовую скорость и получить более низкое качество воспроизведения.

После этого отсчеты обрабатываются группами по 1152 (что занимает около 26 мс). Каждая группа предварительно проходит через 32 цифровых фильтра, выделяющих 32 частотных диапазона. Одновременно входной сигнал заводится в психоакустическую модель для определения маскирующих частот. Затем каждый из 32 частотных диапазонов преобразуется с целью получения более точного спектрального разрешения.

Следующим шагом является распределение имеющегося запаса бит между частотными диапазонами. При этом большее число бит отводится под диапазон с наибольшей немаскированной спектральной мощностью, меньшее - под немаскируемые диапазоны с меньшей спектральной мощностью, и совсем не отводятся биты под маскируемые диапазоны. Наконец, битовые последовательности шифруются с помощью кода Хаффмана (Huffman), который присваивает короткие коды числам, появляющимся наиболее часто, и длинные - появляющимся редко.

На самом деле, эта тема далеко не исчерпана. Существуют методы шумоподавления, сглаживания сигналов, использования межканальной избыточности (при наличии такой возможности), однако все это, к сожалению, невозможно охватить в рамках нашей книги. Более формально изложенные математические основы этих процессов даются в книге (Pan, 1995).

Наиболее известны Audio MPEG, PASC и ATRAC. Все они используют так называемое "кодирование для восприятия" (perceptual coding) при котором из звукового сигнала удаляется информация, малозаметная для слуха. В результате, несмотря на изменение формы и спектра сигнала, его слуховое восприятие практически не меняется, а степень сжатия оправдывает незначительное уменьшение качества. Такое кодирование относится к методам сжатия с потерями (lossy compression), когда из сжатого сигнала уже невозможно точно восстановить исходную волновую форму. Приемы удаления части информации базируются на особенности человеческого слуха, называемой маскированием: при наличии в спектре звука выраженных пиков (преобладающих гармоник) более слабые частотные составляющие в непосредственной близости от них слухом практически не воспринимаются (маскируются). При кодировании весь звуковой поток разбивается на мелкие кадры, каждый из которых преобразуется в спектральное представление и делится на ряд частотных полос. Внутри полос происходит определение и удаление маскируемых звуков, после чего каждый кадр подвергается адаптивному кодированию прямо в спектральной форме. Все эти операции позволяют значительно (в несколько раз) уменьшить объем данных при сохранении качества, приемлемого для большинства слушателей. Каждый из описанных методов кодирования характеризуется скоростью битового потока (bitrate), с которой сжатая информация должна поступать в декодер при восстановлении звукового сигнала. Декодер преобразует серию сжатых мгновенных спектров сигнала в обычную цифровую волновую форму.

Audio MPEG - группа методов сжатия звука, стандартизованная MPEG (Moving Pictures Experts Group - экспертной группой по обработке движущихся изображений). Методы Audio MPEG существуют в виде нескольких типов - MPEG-1, MPEG-2 и т.д.; в настоящее время наиболее распространен тип MPEG-1. Существует три уровня (layers) Audio MPEG-1 для сжатия стереофонических сигналов: 1 - коэффициент сжатия 1:4 при потоке данных 384 кбит/с; 2 - 1:6..1:8 при 256..192 кбит/с; 3 - 1:10..1:12 при 128..112 кбит/с. Минимальная скорость потока данных в каждом уровне определяется в 32 кбит/с; указанные скорости потока позволяют сохранить качество сигнала примерно на уровне компакт-диска. Все три уровня используют входное спектральное преобразование с разбиением кадра на 32 частотные полосы. Наиболее оптимальным в отношении объема данных и качества звука признан уровень 3 со скоростью потока 128 кбит/с и плотностью данных около 1 Мб/мин. При сжатии с более низкими скоростями начинается принудительное ограничение полосы частот до 15-16 кГц, а также возникают фазовые искажения каналов (эффект типа фэйзера или фленжера). Audio MPEG используется в компьютерных звуковых системах, CD-i/DVD, "звуковых" дисках CD-ROM, цифровом радио/телевидении и других системах массовой передачи звука. комплект MPEG-1 предусмотрен для кодирования сигналов, оцифрованных с частотой дискретизации 32, 44.1 и 48 КГц. Как было указано выше, комплект MPEG-1 имеет три уровня (Layer I, II и III). Эти уровни имеют различия в обеспечиваемом коэффициенте сжатия и качестве звучания получаемых потоков. Layer I позволяет сигналы 44.1 КГц / 16 бит хранить без ощутимых потерь качества при скорости потока 384 Кбит/с, что составляет 4-х кратный выигрыш в занимаемом объеме; Layer II обеспечивает такое же качество при 194 Кбит/с, а Layer III - при 128 (или 112). Выигрыш Layer III очевиден, но скорость компрессии при его использовании самая низкая (надо отметить, что при современных скоростях процессоров это ограничение уже не заметно). Фактически, Layer III позволяет сжимать информацию в 10-12 раз без ощутимых потерь в качестве. - Стандарт MPEG-2 был специально разработан для кодирования ТВ сигналов вещательного телевидения. В апреле 1997 этот комплект получил «продолжение» в виде алгоритма MPEG-2 AAC (MPEG-2 Advanced Audio Coding - продвинутое аудио кодирование).

Стандарт MPEG-4 - это особая статья. MPEG-4 не является просто алгоритмом сжатия, хранения и передачи видео или аудио информации. MPEG-4 - это новый способ представления информации, это - объектно-ориентированное представление мультимедиа данных. Стандарт оперирует объектами, организует из них иерархии, классы и прочее, выстраивает сцены и управляет их передачей. Объектами могут служить как обычные аудио или видео потоки, так и синтезированные аудио и графические данные (речь, текст, эффекты, звуки...). Такие сцены описываются на специальном языке.

Стандарт MPEG-7 вообще в корне отличается от всех иных стандартов MPEG. Стандарт разрабатывается не для установления каких-то рамок для передачи данных или типизации и описания данных какого-то конкретно рода. Стандарт предусмотрен как описательный, предназначенный для регламентации характеристик данных любого типа, вплоть до аналоговых. Использование MPEG-7 предполагается в тесной связи с MPEG-4.

Для удобства обращения со сжатыми потоками, все алгоритмы MPEG разработаны таким образом, что позволяют осуществлять декомпрессию (восстановление) и воспроизведение потока одновременно с его получением (download ) - потоковая декомпрессия «на лету» (stream playback ). Эта возможность очень широко используются в интернете, где скорость передачи информации ограничена, а с использованием подобных алгоритмов появляется возможность обрабатывать информацию прямо во время ее получения не дожидаясь окончания передачи.

PASC Precision Adaptive Sub-band Coding - точное адаптивное внутриполосное кодирование) - частный случай Audio MPEG-1 Layer 1 со скоростью потока 384 кбит/с (сжатие 1:4). Применяется в системе DCC.

ATRAC Adaptive TRansform Acoustic Coding - акустическое кодирование адаптивным преобразованием) базируется на стереофоническом звуковом формате с 16-разрядным квантованием и частотой дискретизации 44.1 кГц. ATRAC (Adaptive TRansform Acoustic Coding) разделяет 16-битный 44,1 кГц цифровой аудио сигнал на 52 частотных диапазона (после быстрого преобразования Фурье). Диапазоны с низкими частотами передаются более точно, чем с высокими. Алгоритм использует психо-акустическое кодирование, где применяется эффект маскировки и порог слышимости звука, в результате чего часть информации может быть отброшена и выходящий поток данных имеет размер в 1/5 оригинального. Каждый канал обрабатывается независимо (портативный MD привод Sony MZ-1 использует один чип ATRAC кодера/декодера на канал). Другой алгоритм кодирования, PASC (Precision Adaptive Sub-band Coding - сейчас используется Philips в DCC ) разделяет цифровой сигнал на промежутки равного размера и удаляет часть информации (уменьшая поток до 1/4 оригинального). PASC является алгоритмом MPEG Layer 1 (его можно распаковать проигрывателями MPEG Layer 1 после небольшой предварительной коррекции).
Оба алгоритма выполняют сжатие данных, обеспечивая хранение 16-битного звукового потока. Цель алгоритма - сжать поток для уменьшения занимаемого им пространства на диске. Существует огромного множество алгоритмов сжатия. Некоторые алгоритмы сжимают данные без потерь (они используются, к примеру, в архиваторах), при этом информация после декомпрессии не отличается от оригинала. PASC и ATRAC относятся к алгоритмам с потерей части информации, они не пытаются сохранить каждый бит входящих данных, они просто стараются выделить и сохранить акустически "важные" биты. Поэтому важно найти звуки, которые будут замаскированы человеческой слуховой системой, которые человек не сможет услышать даже при их воспроизведении. Оба алгоритма сжатия звука прекрасно справляются с этой задачей. Какой звуковой поток записывается на минидиск после сжатия ATRAC? Для стерео сигнала - 292162,5 бит/с. ATRAC сжимает 512 входящих 16-битовых семплов (1024 байта) в "звуковые группы" ATRAC (212 байт), в результате получается коэффициент сжатия 4,83:1. - 44100 семплов/с (входящий поток одного канала) - 512 семплов на звуковую группу (получаем 86,133 звуковых групп/с/канал) - 2 канала (получаем 172,266 звуковых групп/с)
- 212 байт/звуковую группу (получаем 36,5 кбайт/с в стерео) - 8 бит/байт (получаем кбит/с) - 292162,5 бит/с ATRAC (используется в MDLP) работает на 132 кбит/с (LP2) и 66 кбит/с (LP4).

Цифровой звук, если это не музыка, которую можно закодировать в виде MIDI, столь же неудобен для сжатия, как и картинка. Звуковой сигнал редко обладает избыточностью, т.е. имеет повторяющиеся участки (в основном из-за шумов). А значит, плохо сжимается с использованием алгоритмов компрессии без потерь, аналогичных LZW или методу Хаффмана.

В 1940 г. Харви Флетчер, выдающийся американский физик, отец стереозвука, привлёк для исследований человеческого слуха большое число испытуемых. Он проанализировал зависимость абсолютного порога слышимости от частоты сигнала, т.е. при какой амплитуде звук определённой частоты не слышен для человека. В построенной на основе опытов кривой максимальные значения находятся, как и ожидалось, на границах диапазона слышимости (около 20 Гц и ближе к 20 кГц), а минимум - приблизительно 5 кГц. Но главное, на что он обратил внимание, - это способность слуха адаптироваться к появлению новых звуков, что выражается в повышении порога слышимости. Иначе говоря, одни звуки способны делать неслышимыми другие, что называют маскированием одного звука другим.

Последнее свойство слуха при компрессии позволяет после громкого звукового сигнала некоторое непродолжительное время вообще не воспроизводить, а значит и не сохранять никакого звука. Например, громкий щелчок продолжительностью в 0,1 с может замаскировать последующие за ним звуки на 0,5 с, которые не надо сохранять. Говорят, что коэффициент компрессии в этом примере достигает , а описанную процедуру сжатия обычно называют маскированием во временной области .

При маскировании в частотной области синусоидальный сигнал маскирует более тихие, близкие по частоте сигналы, в том числе и синусоидальные сигналы много меньшей амплитуды. Удобно использовать разбиение спектра на полосы различной ширины, основываясь на особенностях слуха человека. Обычно выделяют 27 так называемых критических полос (critical band): 0-я от 50 до 95 Гц, 1-я от 95 до 140 Гц, …, 26-я от 20250 Гц и выше.

Для выполнения алгоритма сжатия исходный сигнал разбивается на кадры, которые подвергаются частотному анализу. Алгоритм сжатия выглядит примерно так:

1. При помощи специальных алгоритмов (ими могут быть быстрое преобразование Фурье или аналогичные), сигналы разделяются на 32 равные полосы спектра, при этом в одну получившуюся полосу могут попасть сразу несколько критических полос.

2. Используя так называемую психоакустическую модель (в которую, как правило, и входит частотное маскирование), определяют уровень маскирования полосы соседними.

3. Уровень в полосе, не превышающий вычисленный порог, считается равным нулю и не сохраняется. Наоборот, немаскированный уровень записывается в выходные данные.


В дальнейшем на каждый ненулевой уровень выделяется некоторое число битов, достаточное для его примерного представления. Так, в той части спектра, где человеческое ухо имеет наименьший порог слышимости, информация кодируется шестнадцатью битами, а на краях, там, где ухо менее чувствительно к искажениям, шестью и менее битами. К полученному потоку битов можно, например, применить алгоритм сжатия Хаффмана.

Различаются три версии алгоритма описанного MPEG-сжатием звука. В каждой версии данные разделяются на кадры, т.е. отдельный кадр состоит из 32 полос по 12 значений в каждой.

В MPEG layer1 (дословно "слой 1") в частотном фильтре используются один кадр и алгоритмы, основанные на дискретном косинусе - преобразовании (DCT). Психоакустическая модель задействует только частотное маскирование. Алгоритм позволяет упаковывать при соотношении 1:4 с потоком 384 Кбит/с.

MPEG layer2 использует три кадра в частотном фильтре(предыдущий, текущий и последующий) общий объём 32 полосы по 12 значений в 3 кадрах. Модель использует и временное маскирование. Упаковывает с соотношением от 1:6 до 1:8.

В общих чертах смысл сжатия без потерь таков: в исходных данных находят какую-либо закономерность и с учётом этой закономерности генерируют вторую последовательность, которая однозначно описывает исходную. Например, для кодирования двоичных последовательностей, в которых много нулей и мало единиц, мы можем использовать такую замену:

00 > 0
01 > 10
10 > 110
11 > 111

В таком случае шестнадцать битов:

00 01 00 00 11 10 00 00

будут преобразованы в тринадцать битов:

0 10 0 0 111 110 0 0

Если мы запишем сжатую строку без пробелов, мы всё равно сможем расставить в ней пробелы - а значит, восстановить исходную последовательность.

FLAC (Free Lossless Audio Codec - свободный аудио-кодек без потерь)

Принцип кодирования: алгоритм пытается описать сигнал такой функцией, чтобы полученный после её вычитания из оригинала результат (называемый разностью, остатком, ошибкой) можно было закодировать минимальным количеством битов.

Когда модель подобрана, алгоритм вычитает приближение из оригинала, чтобы получить остаточный (ошибочный) сигнал, который затем кодируется без потерь.

Сжатие с потерями (MP3, AAC, WMA, OGG)

Используется алгоритм сжатия с потерями, размер MP3-файла со средним битрейтом 128 кбит/с примерно равен 1/11 от оригинального файла с аудио CD (несжатое аудио формата CD-Audio имеет битрейт 1411,2 кбит/с). MP3 файлы могут создаваться с высоким или низким битрейтом, что влияет на качество результата.

Принцип сжатия заключается в снижении точности некоторых частей звукового потока, что практически неразличимо для слуха большинства людей. Звуковой сигнал разбивается на равные по продолжительности отрезки, каждый из которых после обработки упаковывается в свой фрейм (кадр). Разложение в спектр требует непрерывности входного сигнала, в связи с этим для расчётов используется также предыдущий и следующий фрейм. В звуковом сигнале есть гармоники с меньшей амплитудой и гармоники, лежащие вблизи более интенсивных - такие гармоники отсекаются, так как среднестатистическое человеческое ухо не всегда сможет определить присутствие либо отсутствие таких гармоник. Такая особенность слуха называется эффектом маскировки. Также возможна замена двух и более близлежащих пиков одним усреднённым (что, как правило, и приводит к искажению звука). Критерий отсечения определяется требованием к выходному потоку. Поскольку весь спектр актуален, высокочастотные гармоники не отсекаются, а только выборочно удаляются, чтобы уменьшить поток информации за счёт разрежения спектра. После спектральной «зачистки» применяются математические методы сжатия и упаковка во фреймы.

Типы битрейта MP3

CBR расшифровывается как Constant Bit Rate, то есть постоянный битрейт, который задаётся пользователем и не изменяется при кодировании произведения. Таким образом, каждой секунде произведения соответствует одинаковое количество закодированных бит данных (даже при кодировании тишины).

VBR расшифровывается как Variable Bit Rate, то есть изменяющийся битрейт или переменный битрейт, который динамически изменяется программой-кодером при кодировании в зависимости от насыщенности кодируемого аудиоматериала и установленного пользователем качества кодирования (например, тишина закодируется с минимальным битрейтом). Минусом данного метода кодирования является то, что VBR считает «незначительной» звуковой информацией более тихие фрагменты, таким образом получается, что если слушать очень громко, то эти фрагменты будут некачественными, в то время как CBR делает с одинаковым битрейтом и тихие, и громкие фрагменты.

ABR расшифровывается как Average Bit Rate, то есть усредненный битрейт, который является гибридом VBR и CBR: битрейт в кбит/c задаётся пользователем, а программа варьирует его, постоянно подгоняя под заданный битрейт. Таким образом, кодек будет с осторожностью использовать максимально и минимально возможные значения битрейта, так как рискует не вписаться в заданный пользователем битрейт. Это является явным минусом данного метода, так как сказывается на качестве выходного файла, которое будет немного лучше, чем при использовании CBR, но хуже, чем при использовании VBR (при том же размере файла) .

Аудиоинформации удается при использовании специальных методов, основанных на анализе структуры данных и последующим сжатием с некоторыми потерями .

Реальная возможность обработки звука, сравнимых по качеству с существующими аналоговыми примерами, появилась только в конце 80-х годов. В 1988 году Международной организацией стандартов ISO (International Standards Organization) был сформирован комитет MPEG (Moving Pictures Expert Group, группа экспертов в области движущихся изображений), основной задачей которого является разработка стандартов кодирования подвижных изображений, звука и их комбинации. За десять лет своего существования комитет выработал ряд стандартов по данному вопросу. В результате обобщив обширные исследования в этой области, был рекомендован ряд специфических форматов для хранения данных, отличных по качеству результатов и скорости потока данных.

В настоящее время наиболлее распространены три стандарта хранения видеоданных: MPEG-1, MPEG-2 и MPEG-4. В рамках первых двух форматов существуют также форматы хранения звуковой информации – Layer-1, Layer-2 и Layer-3. Эти три звуковых формата определены для MPEG-1 и незначительными расширениями используются в MPEG-2. Все три формата похожи друг на друга, но используют различные уровни компромисса между сжатием и сложностью. Уровень Layer-1 - наиболее простой, не требует значительных затрат на сжатие, но и дает незначительную степень сжатия. Уровень Layer-3 – наиболее трудоемкий и обеспечивает самое лучшее сжатие. В последнее время этот формат завоевал огромную популярность. Его часто называют MP3. Такое название связано с расширением звуковых файлов, хранящихся в этом формате.

Основанная идея, на которой основаны все методики сжатия аудио сигнала с потерями , – пренебрежение тонкими деталями звучания оригинала, лежащие вне пределов которые воспринимает человеческое ухо. Здесь можно выделить несколько моментов.

Уровень шума. Звуковое сжатие базируется на простом факте – если человек находиться рядом с громко воющей сиреной, то вряд ли он услышит разговор стоящих неподалеку людей. Причем это происходит не оттого, что человек обращает большое внимание на громкий звук, а в большей степени оттого, что человеческое ухо фактически теряет звуки, лежащие в том же диапазоне частот, что и более громкий звук. Этот эффект носит название маскирующего, он изменяется с различием в громкости и частоте звука.

Вторым моментом является деление полосы звуковых частот на подполосы, каждая из которых далее обрабатывается отдельно. Программа кодирования выделяет самые громкие звуки в каждой полосе и использует эту информацию для определения приемлемого уровня шума для этой полосы. Лучшие программы кодирования учитывают также влияние соседних полос. Очень громкий звук в одной полосе может повлиять на маскирующий эффект и на близлежащие полосы.

Еще одним моментом кодирования является использование психоакустической модели, опирающейся на особенности человеческого восприятия звука. Сжатие с использованием этой модели основано на удалении заведомо неслышимых частот с более тщательным сохранением звуков, хорошо различаемых человеческим ухом. К сожалению, здесь не может быть точных математических формул. Восприятие звука человеком – сложный, до конца не изученный процесс, поэтому выбор методов сжатия выполняется на основе анализирующего прослушивания и сравнения по-разному сжатых звуков группами экспертов. Зато здесь имеются практически неограниченные возможности в сфере улучшения психоакустических моделей. Большинство существующих алгоритмов для кодировки человеческого голоса основано на высокой предсказуемости такого сигнала – универсальные алгоритмы сжатия MPEG с переменным успехом пытаются применить этот прием.

Еще одним приемом сжатия является использование так называемого совмещенного стерео. Известно, что слуховой аппарат человека может определить направление лишь средних частот – высокие и низкие звучат как бы отдельно от источника. Значит, эти фоновые частоты можно кодировать в моно сигнал. Кроме всего этого для сжатия используется различие в сложности потоков в каналах. Например, если в правом канале какое-то время полная тишина, это "зарезервированное" место используется для повышения качества левого канала или туда "впихиваются" необходимые биты, не влезшие в поток чуть раньше. На последней стадии сжатия используется алгоритм сжатия Хаффмана . Этот процесс позволяет улучшить степень сжатия для относительно однородных сигналов, которые плохо сжимаются с помощью описанных выше приемов. На основе описанных идей строятся алгоритмы сжатия, позволяющие достигать степени компрессии 10:1 или выше практически без потери в качестве звучания. При кодировании задают требуемый уровень компрессии, а алгоритмы сжатия добиваются требуемого значения уровня сжатия за счет потери качества. Требуемый уровень сжатия обычно указывают в виде величины потока данных (bit rate), измеряемого в Кбит/сек.

В качестве начального шага обработки изображения форматы сжатия MPEG-1 и MPEG-2 разбивают опорные кадры на несколько равных блоков, над которыми затем производится дискетное косинусное преобразование (DCT). По сравнению с MPEG-1, формат сжатия MPEG-2 обеспечивает лучшее разрешение изображения при более высокой скорости передачи видео данных за счет использования новых алгоритмов сжатия и удаления избыточной информации, а также кодирования выходного потока данных. Также формат сжатия MPEG-2 дает возможность выбора уровня сжатия за счет точности квантования. Для видео с разрешением 352х288 пикселей формат сжатия MPEG-1 обеспечивает скорость передачи 1,2 – 3 Мбит/с, а MPEG-2 – до 4 Мбит/с.

По сравнению с MPEG-1, формат сжатия MPEG-2 обладает следующими преимуществами:

  • MPEG-2 обеспечивает масштабируемость различных уровней качества изображения в одном видеопотоке.
  • В формате сжатия MPEG-2 точность векторов движения увеличена до 1/2 пикселя.
  • Пользователь может выбрать произвольную точность дискретного косинусного преобразования .
  • В формат сжатия MPEG-2 включены дополнительные режимы прогнозирования.

MPEG-4 использует технологию так называемого фрактального сжатия изображений. Фрактальное (контурно-основанное) сжатие подразумевает выделение из изображения контуров и текстур объектов. Контуры представляются в виде т.н. сплайнов (полиномиальных функций) и кодируются опорными точками. Текстуры могут быть представлены в качестве коэффициентов пространственного частотного преобразования (например, дискретного косинусного или вейвлет -преобразования).

Диапазон скоростей передачи данных, который поддерживает формат сжатия видео изображений MPEG 4, гораздо шире, чем в MPEG 1 и MPEG 2 . Дальнейшие разработки специалистов направлены на полную замену методов обработки, используемых форматом MPEG 2. Формат сжатия видео изображений MPEG 4 поддерживает широкий набор стандартов и значений скорости передачи данных. MPEG 4 включает в себя методы прогрессивного и чересстрочного сканирования и поддерживает произвольные значения пространственного разрешения и скорости передачи данных в диапазоне от 5 кбит/с до 10 Мбит/с. В MPEG 4 усовершенствован алгоритм сжатия , качество и эффективность которого повышены при всех поддерживаемых значениях скорости передачи данных.


Назад К cодержанию Вперёд


Загрузка...