sonyps4.ru

Регулятор мощности с фазовым управлением симистора. Симисторный регулятор мощности своими руками

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.


Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм, R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.


Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 – 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 – 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 – 22 мкФ х 50 В; С2 – 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 – 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В – При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.


Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.


Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.


Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.


Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Из-за проблемы с электричеством люди все чаще покупают регуляторы мощности. Не секрет, что резкие перепады, а также чрезмерно пониженное или повышенное напряжение пагубно влияют на бытовые приборы. Для того чтобы не допустить порчи имущества, необходимо пользоваться регулятором напряжения, который защитит от короткого замыкания и различных негативных факторов электронные приборы.

Типы регуляторов

В наше время на рынке можно увидеть огромное количество различных регуляторов как для всего дома, так и маломощных отдельных бытовых приборов. Существуют транзисторные регуляторы напряжения, тиристорные, механические (регулировка напряжения осуществляется при помощи механического бегунка с графитовым стержнем на конце). Но самым распространенным является симисторный регулятор напряжения. Основой этого прибора являются симисторы, которые позволяют резко среагировать на скачки напряжения и сгладить их.

Симистор представляет собой элемент, который содержит пять p-n переходов. Этот радиоэлемент имеет возможность пропускать ток как в прямом направлении, так и в обратном.

Эти компоненты можно наблюдать в различной бытовой технике начиная от фенов и настольных ламп и заканчивая паяльниками, где необходима плавная регулировка.

Принцип работы симистора довольно прост. Это своего рода электронный ключ, который то закрывает двери, то открывает их с заданной частотой. При открытии P-N перехода симистора он пропускает небольшую часть полуволны и потребитель получает только часть номинальной мощности. То есть чем больше открывается P-N переход, тем больше мощности получает потребитель.

К достоинствам этого элемента можно отнести:

В связи с вышесказанными достоинствами симисторы и регуляторы на их основе используются довольно часто.

Эта схема довольно проста в сборке и не требует большого количества деталей. Такой регулятор можно применить для регулировки не только температуры паяльника, но и обычных ламп накаливания и светодиодных. К этой схеме можно подключать различные дрели, болгарки, пылесосы, шлифмашинки, которые изначально шли без плавной регулировки скорости.

Вот такой регулятор напряжения 220в своими руками можно собрать из следующих деталей:

  • R1 - резистор 20 кОм, мощностью 0,25 Вт.
  • R2 - переменный резистор 400−500 кОм.
  • R3 - 3 кОм, 0,25 Вт.
  • R4-300 Ом, 0,5 Вт.
  • C1 C2 - конденсаторы неполярные 0,05 Мкф.
  • C3 - 0,1 Мкф, 400 в.
  • DB3 - динистор.
  • BT139−600 - симистор необходимо подобрать в зависимости от нагрузки которая будет подключен. Прибор, собранный по этой схеме, может регулировать ток величиной 18А.
  • К симистору желательно применить радиатор, так как элемент довольно сильно греется.

Схема проверена и работает довольно стабильно при разных видах нагрузки .

Существует еще одна схема универсального регулятора мощности.

На вход схемы подается переменное напряжение 220 В, а на выходе уже 220 В постоянного тока. Эта схема имеет в своем арсенале уже больше деталей, соответственно и сложность сборки повышается. На выход схемы возможно подключить любой потребитель (постоянного тока). В большинстве домов и квартир люди стараются поставить энергосберегающие лампы. Не каждый регулятор справится с плавной регулировкой такой лампы, например, тиристорный регулятор использовать нежелательно. Эта схема позволяет беспрепятственно подключать эти лампы и делать из них своего рода ночники.

Особенность схемы заключается в том, что при включении ламп на минимум все бытовые приборы должны быть отключены от сети. После этого в счетчике сработает компенсатор, и диск медленно остановится, а свет будет продолжать гореть. Это возможность собрать симисторный регулятор мощности своими руками. Номиналы деталей нужных для сборки, можно увидеть на схеме.

Еще одна занимательная схема, которая позволяет подключить нагрузку до 5А и мощностью до 1000Вт.

Регулятор собран на базе симистора BT06−600. Принцип работы этой схемы заключается в открытии перехода симистора. Чем больше элемент открыт, тем больше мощность поступает на нагрузку. А также в схеме присутствует светодиод, который даст знать, работает устройство или нет. Перечень деталей, которые понадобятся для сборки аппарата:

  • R1 - резистор 3.9 кОм и R2 - 500 кОм своеобразный делитель напряжения, который служит для зарядки конденсатора С1.
  • конденсатор С1- 0,22 мкФ.
  • динистор D1 - 1N4148.
  • светодиод D2, служит для индикации работы устройства.
  • динисторы D3 - DB4 U1 - BT06−600.
  • клемы для подключения нагрузки P1, P2.
  • резистор R3 - 22кОм и мощностью 2 вт
  • конденсатор C2 - 0.22мкФ рассчитан на напряжение не меньше 400 В.

Симисторы и тиристоры с успехом используются в качестве пускателей. Иногда необходимо запустить очень мощные тэны, управлять включением сварочного мощного оборудования, где сила тока достигает 300−400 А. Механическое включение и выключение с помощью контакторов уступает симисторному пускателю из-за быстрого износа контакторов, к тому же при механическом включении возникает дуга, которая также пагубно влияет на контакторы. Поэтому целесообразным будет использовать симисторы для этих целей. Вот одна из схем.

Все номиналы и перечень деталей указаны на Рис. 4. Достоинством этой схемы является полная гальваническая развязка от сети, что обеспечит безопасность в случае повреждения.

Нередко в хозяйстве необходимо выполнить сварочные работы. Если есть готовый инверторный сварочного аппарата, то сварка не представляет особых трудностей, поскольку в аппарате присутствует регулировка тока. У большинства людей нет такого сварочного и приходится пользоваться обычным трансформаторным сварочным, в котором регулировка тока осуществляется путем смены сопротивления, что довольно неудобно.

Тех, кто пробовал использовать в качестве регулятора симистор, ждет разочарование. Он не будет регулировать мощность. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Но существует выход из этой ситуации. Следует подать на управляющий электрод однотипный импульс или подавать на УЭ (управляющий электрод) постоянный сигнал, пока не будет проход через ноль. Схема регулятора выглядит следующим образом:

Конечно, схема довольно сложная в сборке, но такой вариант решит все проблемы с регулировкой. Теперь не нужно будет пользоваться громоздким сопротивлением, к тому же очень плавной регулировки не получится. В случае с симистором возможна довольно плавная регулировка.

Если существуют постоянные перепады напряжения, а также пониженное или повышенное напряжение, рекомендуется приобрести симисторный регулятор или по возможности сделать регулятор своими руками. Регулятор защитит бытовую технику, а также предотвратит ее порчу.

Приборы, которые работают на потреблении электрического тока, можно настраивать. Для этого существуют специальные регуляторы. Сегодня всё большую популярность набирает симисторный подтип. Его существенным отличием стало двухстороннее действие. Благодаря тому, что в приборе есть анод и катод, в процессе их передвижения появляется возможность изменять направления тока.

Не стоит думать, то этот элемент можно заменить контакторами, пускателями или реле. Именно симисторы отличаются долговечностью, детали на приборе практически не изнашиваются. Основным положительным моментом от использования симистора, стало полное отсутствие искры в электрических приборах. Были проанализированы схемы, в которых использовались симисторы двунаправленные, их стоимость была значительно меньше, чем те, которые базировались на транзисторах и микросхемах .

Плюсы и минусы использования симисторов

Среди основных преимуществ можно назвать следующие:

  • минимальная стоимость прибора;
  • длительный срок эксплуатации;
  • возможность избежать механических контактов.

Есть и недостатки:

  • чтобы не произошло перегрева прибора, необходимо обязательно устанавливать радиатор;
  • симистор очень чувствителен к переходным процессам;
  • нет возможности использовать на больших частотах;
  • реагирует на посторонние помехи и шумы.

Особенности применения в электроприборах

Учитывая те показатели, которыми обладает симистор, его активно используют в работе приборов бытовой техники, таких как:

  • осветительные приборы, которые можно регулировать;
  • бытовые строительные электроинструменты;
  • нагревательные приборы;
  • приборы с наличием компрессора;
  • стиральные машины , пылесосы, вентиляторы, фены.

Как сделать регулятор мощности своими руками

Сегодня есть возможность установки простых диммеров в электрические приборы. Рассмотрим несколько вариантов схем по установке симисторов.

Для паяльника

Для этого прибора есть возможность собрать устройство настройки мощности до 100 Вт, необходимо всего несколько деталей. Именно с помощью него можно контролировать температуру жала паяльника, яркость настольной лампы, скорость вращения вентилятора. Сам регулятор можно собрать на основе симистора ВТА 16600. Его отличительными чертами станет то, что в цепи управляющего электрода симистора будет находить неоновая лампа.

Если вы решите использовать именно такой вид, то необходимо правильно выбрать неоновую лампу, она должна иметь минимальные показатели напряжения пробоя. Это очень важно, так как именно этот показатель и будет влиять на плавность регулировки мощности лампы или паяльника. Если устанавливать стартер в светильник, здесь можно неоновую лампочку не применять.

Варианты схем

Схемы диммера являются сами простыми. В качестве диодного моста используются диоды Д226, обязательно включаются тиристор КУ202Н, который имеет свою цепь управления. Если вы хотите иметь до 9 фиксированных положений регулировки, то нужно немного усложнить схему и добавить элемент логики – счётчик К561ИЕ8. Здесь также регулировать нагрузку будет тиристор. В схеме после установки диодного моста будет находиться обычный параметрический стабилизатор, который будет подавать питание на микросхему. Необходимо правильно для такой схемы подобрать диоды, их мощность должна равняться нагрузке, которую будет настраивать аппарат.

Существует ещё один вариант составления схемы для регулировки мощности пальника. В самой схеме нет ничего сложного, никаких дорогих или дефицитных деталей. С помощью установки светодиода можно контролировать включение и выключение прибора. Допустимые параметры выходного напряжения варьируются в пределах от 130 до 220 вольт. Для всех приборов можно использовать специальный индикатор напряжения. Его можно взять из старых моделей магнитофонов. Для того чтобы усовершенствовать такую головку, можно добавить светодиод. Он покажет включение и выключение прибора и будет подсвечивать шкалу мощности.

Не стоит забывать, что для такого прибора должен быть подобран правильный корпус. Его можно изготовить из обычного пластика, так как его удобно и легко резать, гнуть, обрабатывать, склеивать. Из куска пластика необходимо вырезать заготовку, зачистить края, и с помощью клея собрать коробку. В неё вкладывается собранный диммер. Когда собран сам прибор регулирования мощности, то его необходимо проверить перед введением в эксплуатацию.

Для проверки можно использовать обычный паяльник или мультиметр. Эти проборы достаточно подключить к выходу схемы, и постепенно вращать ручку регулятора. Это даст возможность определить плавность изменения выходного напряжения. Если в устройстве вы установили светодиод, то по его яркости свечения можно определить уменьшение или увеличение выходного напряжения.

Настройка устройства

Существуют схемы регулировки мощности, при нагрузке до 500 Вт или при переменном токе в 220 В. Это могут быть домашние вентиляторы, электродрели. Здесь нужно использовать устройства широкого диапазона, большой мощности. Симисторный регулятор будет использоваться в качестве фазового управления. Основным назначением прибора будет изменение момента включения симистора относительно перехода сетевого напряжения через ноль.

Изначально, в периоде положительного полупериода симистор закрыт. Как только начнёт увеличиваться напряжение, конденсатор заряжается и делится в двух направлениях. По мере увеличения сетевого напряжения, напряжение на конденсате отстаёт на величину, суммарного сопротивления делителя и ёмкости. Конденсатор будет заряжаться до момента получения напряжения около 32 В. В этот момент происходит открытие динистора, а с ним и симистора. Тогда начнёт поступать равный суммарному сопротивлению симистора и нагрузки. Симистор будет открыт на весь полупериод. Таким образом, происходит регулировка мощности напряжения.

Собрать симисторный регулятор мощности достаточно просто, даже не обладая специальными знаниями. Гораздо сложнее чётко усвоить правила его эксплуатации. Чрезвычайно важно, чтобы вышеизложенные нюансы строго соблюдались. В ином случае, собственноручная конструкция не будет функционировать качественно и может принести проблемы, связанные с целостностью и эффективной эксплуатацией электроприборов.

Видео: изготовление симисторного диммера

Подборка схем и описание работы регулятора мощности на симисторах и не только. Схемы симисторных регуляторов мощности хорошо подходят для продление срока эксплуатации ламп накаливания и для регулировки их яркости свечения. Или для запитки нестандартной аппаратуры например на 110 вольт.

На рисунке представлена схема симисторного регулятора мощности, которую можно менять за счет изменения общего количества сетевых полупериодов, пропускаемых симистором за определенный интервал времени. На элементах микросхемы DD1.1.DD1.3 сделан , период колебания которого около 15-25 сетевых полупериодов.

Скважность импульсов регулируется резистором R3. Транзистор VT1 совместно с диодами VD5-VD8 предназначен для привязки момента включения симистора во время перехода сетевого напряжения через нуль. В основном этот транзистор открыт, соответственно, на вход DD1.4 поступает "1" и транзистор VT2 с симистором VS1 закрыты. В момент перехода через нуль транзистор VT1 закрывается и почти сразу открывается. При этом, если на выходе DD1.3 была 1, то состояние элементов DD1.1.DD1.6 не изменится, а если на выходе DD1.3 был "ноль", то элементы DD1.4.DD1.6 сгенерируют короткий импульс, который усилится транзистором VT2 и откроет симистор.

До тех пор пока на выходе генератора будет логический ноль, процесс будет идти цикличиски после каждого перехода сетевого напряжения через точку нуля.

Основа схемы зарубежный симистор mac97a8, который позваляет коммутировать большие мощности подключенные нагрузки, а для ее регулировки использовал старый советский переменный резистор, а в качестве индикации использовал обычный светодиод.

В симисторном регуляторе мощности применен принцип фазового управления. Работа схемы регулятора мощности основана на изменении момента включения симистора относительно перехода сетевого напряжения через ноль. В первоначальный момент положительного полупериода симистор находится в закрытом состояние. С возрастанием сетевого напряжения, конденсатор С1 заряжается через делитель.

Возрастающее напряжения на конденсаторе сдвигается по фазе от сетевого на величину, зависящую от суммарного сопротивления обоих резисторов и емкости конденсатора. Заряд конденсатора происходит до тех пор, пока напряжение на нем не дойдет до уровня «пробоя» динистора, приблизительно 32 В.

В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания динистора и симистора, тем самым регулируя мощность. В момент действия отрицательного полупериода алгоритм работы схемы аналогичен.

Вариант схемы с небольшими доработками на 3,5 кВт

Схема регулятора несложная, мощность нагрузки на выходе устройства составляет 3,5 кВт. С помощью этой радиолюбительской самоделки вы можите регулировать освещение, нагревательные тэны и многое другое. Единственный существенный недостаток данной схемы, это то что подсоединить к ней индукционную нагрузку нельзя ни в коем случае, т.к симистор сгорит!


Используемые в конструкции радиокомпоненты: Симистор Т1 - BTB16-600BW или аналогичный (КУ 208 ил ВТА, ВТ). Динистор Т - типа DB3 или DB4. Конденсатор 0,1мкФ керамический.

Сопротивление R2 510Ом ограничивает максимальные вольты на конденсаторе 0,1 мкФ, если поставить движок регулятора в положение 0 Ом, то сопротивление цепи составит порядка 510 Ом. Заряжается емкость, через резисторы R2 510Ом и переменное сопротивление R1 420кОм, после того, как U на конденсаторе достигнет уровня открывания динистора DB3, последний сформирует импульс, отпирающий симистор, после чего, при дальнейшем проходе синусоиды, симистор запирается. Частота открывания-закрывания Т1 зависит от уровня U на конденсаторе 0.1мкФ, которое,зависит от сопротивления переменного резистора. Т.е, прерывая ток (с большой частотой) схема, тем самым регулирует мощность на выходе.

При каждой положительной полуволне входного переменного напряжения емкость С1 заряжается через цепочку резисторов R3, R4, когда напряжение на конденсаторе С1 станет равным напряжению открытия динистора VD7 произойдет его пробой и разрядка емкости через диодный мост VD1-VD4 , а также сопротивление R1 и управляющий электрод VS1 . Для открытия симистора используется электрическая цепочка из диодов VD5, VD6 конденсатора С2 и сопротивления R5.

Требуется подобрать номинал резистора R2 так, чтобы при обоих полуволнах сетевого напряжения, симистор регулятора надежно срабатывал, а также требуется подобрать номиналы сопротивлений R3 и R4 так, чтобы при вращении ручки переменного сопротивления R4 напряжение на нагрузке плавно изменялось от минимальных до максимальных значений. Вместо симистора ТС 2-80 можно использовать ТС2-50 или ТС2-25, хотя будет небольшой проигрыш по допустимой мощности в нагрузке.

В качестве симистора был использован КУ208Г, ТС106-10-4, ТС 112-10-4 и их аналоги. В тот момент времени когда симистор закрыт, осуществляется заряд конденсатора С1 через подключенную нагрузку и резисторы R1 и R2. Скорость заряда изменяется резистором R2, резистор R1 предназначен для ограничения максимальной величины тока заряда

При достижении на обкладках конденсатора порогового значения напряжения происходит открытие ключа, конденсатор С1 быстро разряжается на управляющий электрод и перключает симистор из закрытого состояния в открытое, в открытом состоянии симистор шунтирует цепь R1, R2, С1. В момент перехода сетевого напряжения через ноль происходит закрытие симистора, затем снова заряд конденсатора C1, но уже отрицательным напряжением.

Конденсатор С1 от 0,1...1,0 мкФ. Резистор R2 1,0...0,1 МОм. Симистор включается положительным импульсом тока на управляющий электрод при положительном напряжении на выводе условном аноде и отрицательным импульсом тока на управляющий электрод при отрицательном напряжении условного катода. Таким образом, ключевой элемент для регулятоpa должен быть двунаправленным. Можно в качестве ключа использовать двунаправленный динистор.

Диоды Д5-Д6 используются для защиты тиристора от возможного пробоя обратным напряжением. Транзистор работает в режиме лавинного пробоя. Его напряжение пробоя около 18-25 вольт. Если вы не найдете П416Б, то можно попытаться найти ему замену .

Импульсный трансформатор наматывается на ферритовом кольце диаметром 15 мм, марки Н2000.Тиристор можно заменить на КУ201

Схема этого регулятора мощности похожа на вышеописанные схемы, только введена помехоподавляющая цепь С2, R3, а ыыключатель SW дает возможность разрывать цепь зарядки управляющего конденсатора, что приводит к моментальному запиранию симистора и отключению нагрузки.

С1, С2 - 0,1 МКФ, R1-4k7, R2-2 мОм, R3-220 Ом, VR1-500 кОм, DB3 - динистор, BTA26-600B - симистор, 1N4148/16 В - диод, светодиод любой.

Регулятор используется для регулировки мощности нагрузки в цепях до 2000 Вт, ламп накаливания, нагревательных приборов, паяльника, асинхронных двигателей, зарядного устройство для авто, и если заменить симистор на более мощный можно применить в цепи регупировки тока в сварочных трансформаторах.

Принцип работы этой схемы регулятора мощности заключается в том, что на нагрузку поступает полупериод сетевого напряжения через выбранное число пропущенных полупериодов.


Диодный мост выпрямляет переменное напряжение. Резистор R1 и стабилитрон VD2, вместе с конденсатором фильтра образуют источник питания 10 В для питания микросхемы К561ИЕ8 и транзистора КТ315. Выпрямленные положительные полупериоды напряжения проходя через конденсатор С1 стабилизируются стабилитроном VD3 на уровне 10 В. Таким образом, на счетный вход С счетчика К561ИЕ8 следуют импульсы с частотой 100 Гц. Если переключатель SA1 подсоединен к выходу 2, то на базе транзистора будет постоянно присутствовать уровень логической единицы. Т.к импульс обнуления микросхемы очень короткий и счетчик успевает перезапуститься от того же импульса.

На выводе 3 установится уровень логической единицы. Тиристор будет открыт. На нагрузке будет выделяться вся мощность. Во всех последующих положениях SA1 на выводе 3 счетчика будет проходить один импульс через 2-9 импульсов.

Микросхема К561ИЕ8 это десятичный счетчик с позиционным дешифратором на выходе, поэтому уровень логической единицы будет периодически на всех выходах. Однако, если переключатель установлен на 5 выходе (выв.1), то счет будет происходить только до 5. При прохождении импульсом выхода 5 микросхема обнулится. Начнется счет с ноля, а на выводе 3 появится уровень логической единицы на время одного полупериода. На это время открывается транзистор и тиристор, один полупериод проходит в нагрузку. Для того чтобы было понятней привожу векторные диаграммы работы схемы.

Если требуется уменьшить мощность нагрузки, можно добавить еще одну микросхему счетчика, соединив вывод 12 предыдущей микросхемы с выводом 14 последующей. Установив еще один переключатель, можно будет регулировать мощность до 99 пропущенных импульсов. Т.е. можно получить примерно сотую часть общей мощности.

Микросхема КР1182ПМ1 имеет в своем внутреннем составе два тиристора и узел управления ими. Максимальное входное напряжение микросхемы КР1182ПМ1 около 270 Вольт, а максимум в нагрузке может достигать 150 Ватт без использования внешнего симистора и до 2000 Вт с использованием, а также с учетом того, что симистор будет установлен на радиаторе.


Для снижения уровня внешних помех используется конденсатор С1 и дроссель L1, а емкость С4 требуется для плавного включения нагрузки. Регулировка осуществляется с помощью сопротивления R3.

Подборка довольно простых схем регуляторов для паяльника упростит жизнь радиолюбителю

Комбинированность заключается в совмещении удобства применения цифрового регулятора и гибкости регулировки простого.


Рассмотренная схема регулятора мощности работает по принципу изменения числа периодов входного переменного напряжения, идущих на нагрузку. Это значит, что устройство нельзя использовать для настройки яркости ламп накаливания из-за заметного для глаза мигания. Схема дает возможность регулировать мощность в пределах восьми предустановленных значений.

Существует огромной количество классических тиристорных и симисторных схем регуляторов, но этот регулятор выполнен на современной элементной базе и кроме того являлся фазовым, т.е. пропускает не всю полуволну сетевого напряжения, а только некоторую её часть, тем самым и осуществляется ограничение мощности, т.к открытие симистора происходит только при нужном фазовом угле.

Такой простой, но в то же время очень эффективный регулятор, сможет собрать практически каждый, кто может держать в руках паяльник и хоть слегка читает схемы. Ну а этот сайт поможет вам осуществить своё желание. Представленный регулятор регулирует мощность очень плавно без бросков и провалов.

Схема простого симисторного регулятора

Такой регулятор можно применить в регулировании освещения лампами накаливания, но и светодиодными тоже, если купить диммируемые. Температуру паяльника регулировать - легко. Можно бесступенчато регулировать обогрев, менять скорость вращения электродвигателей с фазным ротором и ещё много где найдётся место такой полезной вещице. Если у вас есть старая электродрель, у которой не регулируются обороты, то применив этот регулятор, вы усовершенствуете такую полезную вещь.
В статье, с помощью фотографий, описания и прилагаемого видео, очень подробно описан весь процесс изготовления, от сбора деталей до испытания готового изделия.


Сразу говорю, что если вы не дружите с соседями, то цепочку C3 - R4 можете не собирать. (Шутка) Она служит для защиты от радиопомех.
Все детали можно купить в Китае на Алиэкспресс. Цены от двух до десяти раз меньше, чем в наших магазинах.
Для изготовления этого устройства понадобится:
  • R1 – резистор примерно 20 Ком, мощностью 0,25вт;
  • R2 – потенциометр примерно 500 Ком, можно от 300 Ком до 1 Мом, но лучше 470 Ком;
  • R3 - резистор примерно 3 Ком, 0, 25 Вт;
  • R4- резистор 200-300 Ом, 0, 5 Вт;
  • C1 и C2 – конденсаторы 0, 05 МкФ, 400 В;
  • C3 – 0, 1 МкФ, 400 В;
  • DB3 – динистор, есть в каждой энергосберегающей лампе;
  • BT139-600, регулирует ток 18 А или BT138-800, регулирует ток 12 А – симисторы, но можно взять и любые другие, в зависимости от того, какую нагрузку нужно регулировать. Динистор ещё называют диак, симистор – триак.
  • Радиатор охлаждения выбирается от величины планируемой мощности регулирования, но чем больше, тем лучше. Без радиатора можно регулировать не более 300 ватт.
  • Клеммные колодки можно поставить любые;
  • Макетную плату применять по вашему желанию, лишь бы всё вошло.
  • Ну и без прибора, как без рук. А вот припой применять лучше наш. Он хоть и дороже, но намного лучше. Хорошего припоя Китайского не видел.


Приступаем к сборке регулятора

Сначала нужно продумать расстановку деталей так, чтобы ставить как можно меньше перемычек и меньше паять, затем очень внимательно проверяем соответствие со схемой, а потом все соединения запаиваем.








Убедившись, что ошибок нет и поместив изделие в пластиковый корпус, можно опробовать, подключив к сети.



Загрузка...