sonyps4.ru

Разрешение сканера — какое значение оптимальное.

Оптическое разрешение. Является основной характеристикой сканера. Сканер снимает изображение не целиком, а по строчкам. По вертикали планшетного сканера движется полоска светочувствительных элементов и снимает по точкам изображение строку за строкой. Чем больше светочувствительных элементов у сканера, тем больше точек он может снять с каждой горизонтальной полосы изображения. Это и называется оптическим разрешением. Оно определяется количеством светочувствительных элементов (фотодатчиков), приходящихся на дюйм горизонтали сканируемого изображения. Обычно его считают по количеству точек на дюйм - dpi (dots per inch). Нормальный уровень разрешение не менее 600 dpi, увеличивать его еще дальше - значит, применять дорогую оптику, дорогие светочувствительные элементы, и увеличивать время сканирования. Для обработки слайдов необходимо более высокое разрешение 1200 dpi.

Разрешение по X. Этот параметр показывает количество пикселей у фоточувствительной линейки, из которых формируется изображение. Разрешение является одной из основных характеристик сканера. Большинство моделей имеет оптическое разрешение сканера 600 или 1200 dpi (точек на дюйм). Его достаточно для получения качественной копии. Для профессиональной работы с изображением необходимо более высокое разрешение.

Разрешение по Y. Этот параметр определяется величиной хода шагового двигателя и точностью работы механики. Механическое разрешение сканера значительно выше оптического разрешения фотолинейки. Именно оптическое разрешение линейки фотоэлементов будет определять общее качество отсканированного изображения.

Скорость сканирования. Скорость сканирования зависит от разрешения при сканировании и от размера оригинала. Обычно производители указывают этот параметр для формата А4. Скорость сканирования может измеряться количеством страниц в минуту или временем, необходимым для сканирования одной страницы. Иногда измеряется в количестве сканируемых линий в секунду.

Глубина цвета. Как правило, производители указывают два значения для глубины цвета - внутреннюю глубину и внешнюю. Внутренняя глубина - это разрядность АЦП (аналого-цифрового преобразователя) сканера, она указывает на то, сколько цветов сканер способен различить в принципе. Внешняя глубина - это количество цветов, которое сканер может передать компьютеру. Большинство моделей используют для цветопередачи 24 бита (по 8 на каждый цвет). 24 бита соответствует 16 777 216 оттенков. Для стандартных задач в офисе и дома этого вполне достаточно. Но если вы собираетесь использовать сканер, для серьезной работы с графикой, попробуйте найти модель с большим числом разрядов.

Максимальная оптическая плотность. Максимальная оптическая плотность у сканера - это оптическая плотность оригинала, которую сканер отличает от «полной темноты». Чем больше это значение, тем больше чувствительность сканера и, тем выше качество сканирования темных изображений.

Тип источника света.

Ксеноновые газоразрядные лампы отличаются чрезвычайно малым временем прогрева, высокой стабильностью излучения, небольшими размерами и долгим сроком службы. С другой стороны, они требуют высокого напряжения, потребляют большой ток и имеют неидеальный спектр, что пагубно сказывается на точности цветопередачи.

Люминесцентные лампы с горячим катодом обладают очень ровным, управляемым в определенных пределах спектром и малым временем прогрева. В качестве недостатков можно назвать крупные габариты и относительно короткий срок службы.

Люминесцентные лампы с холодным катодом служат в десять раз дольше предшественниц с горячим катодом, имеют низкую рабочую температуру и ровный спектр, однако время прогрева у них велико - от 30 секунд до нескольких минут. Именно такие лампы используются в большинстве современных CCD-сканеров.

Светодиоды (LED) применяются, как правило, в CIS-сканерах, не требуют времени для прогрева и обладают небольшими габаритами и энергопотреблением. В большинстве случаев используются трехцветные светодиоды, меняющие с большой частотой спектр излучаемого света. Светодиоды имеют довольно низкую интенсивность светового потока и неравномерный, ограниченный спектр излучения, поэтому у сканеров с таким источником света страдает качество цветопередачи, увеличивается уровень шума на изображении и снижается скорость сканирования.

Тип датчика сканера. В сканерах МФУ обычно используется один из двух типов датчиков: контактный (CIS) или ПЗС (CCD). CIS представляет собой линейку фотоэлементов, которая равна ширине сканируемой поверхности. Во время сканирования она перемещается под стеклом и строка за строкой передает информацию об изображении на оригинале в виде электрического сигнала. Для освещения обычно используются светодиоды, которые расположены в непосредственной близости от фотолинейки на той же подвижной платформе. Сканеры на базе CIS имеют простую конструкцию, тонкий корпус и небольшой вес, они обычно дешевле сканеров на базе CCD. Основной недостаток CIS состоит в малой глубине резкости.

В традиционной фотографии разрешение определяется максимальным количеством раздельно передаваемых штрихов, приходящихся на 1 мм изображения. В цифровой фотографии разрешение определяется количеством точек в изображении. Чем выше разрешение, тем меньшие детали объекта способна передать фотокамера.На разрешающую способность цифрового изображения влияют характеристики оптики, свойства ЭОП, программные преобразования, производимые процессором ЦФК. Определяется стандартно - путем съемки тест-объектов, как предельная пространственная частота, воспроизводимая ЦФК.

Для матриц вводятся понятия «оптическое разрешение» и «интерполяционное разрешение».

Оптическое разрешение матрицы характеризует шаг дискретизации фиксируемого изображения. Оптическое разрешение выражается в пикселях на дюйм,ppi(pixelsperinch).

Оптическое разрешение фотоматрицы задают двумя способами:

Ее размером в пикселях по горизонтали и по вертикали;

Общим количеством пикселей, которые она содержит. Например: изображение 1600х1200 пикселей или 1.92 млн. пикселей.

Увеличение оптического разрешения достигают или увеличением размеров ПЗС-матрицы, или уменьшением размеров ячейки.

Большинство любительских фотоаппаратов имеют разрешение 8-10 млн пикселов. Для сравнения, оптическое разрешение человеческого глаза составляет порядка 120 млн пикселов, традиционные 35-мм слайды, по разным оценкам, содержат от 10-20 млн элементов изображения.

Интерполяционное разрешение – это программное повышение оптического разрешения. Оно не повышает степень детализации изображения, а лишь понижает его зернистость. При интерполяции ПЗС-матрица считывает графическую информацию на пределе своего оптического разрешения. После этого каждый пиксель изображения разбивается на несколько более мелких пикселей, которым присваиваются усредненные значения цвета соседних, реально считанных пикселей.

4. Шумы матриц

Физический размер матрицы и размер каждого пикселя в отдельности значительно влияют на кол-во шумов. Чем больше физический размер матрицы, тем больше ее площадь и тем больше света на нее попадает, в результате чего полезный сигнал матрицы будет сильнее и соотношение сигнал / шум будет лучше. Это позволяет получать более яркую, качественную картинку с естественными цветами. Так же при большом размере каждого отдельного пикселя, слой изоляции, разделяющий пиксели друг от друга, толще и меньше зарядов ее пробивает, т.е. токов утечки меньше, а соответственно шумов меньше.

Аналогом шумов ПЗС-матрицы у пленок является зернистость.

Обеспечение достаточной оптической плотности (заливки) знаков и изображений на странице является важным фактором в субъективной оценке качества печати. Нарушения в электрофотографическом процессе могут вызвать нежелательные отклонения темноты (заливки) изображения. Эти отклонения могут находиться в допустимых пределах или выходить из них. Величина этих допустимых отклонений устанавливается в технических условиях на расходные материалы к конкретному аппарату и может существенно отличаться для разных аппаратов. Объективная оценка плотности заливки характеризует неоднородность процесса и определяется как предел и стандартное отклонение коэффициента отражения печатного знака поперек страницы.

Термин оптическая плотность используется для характеристики меры пропускания света - для прозрачных объектов и отражения - для непрозрачных. Количественно определяется, как десятичный логарифм величины, обратной коэффициенту пропускания (отражения). В электрографии этот термин используется для оценки качества элементов изображения на копиях, полученных при определенных условиях проявления (использовании определенного типа тонера, оценки величины контраста скрытого электростатического изображения, качества копий при применении того или иного способа проявления и т. д.). В полиграфии эта характеристика используется для оценки издательских оригиналов, промежуточных изображений и оттисков.

Оптическая плотность обозначается OD(Optical Density) или просто D. Минимальное значение оптической плотности D=0 соответствует белому цвету. Чем больше света поглощается средой, тем она темнее, т.е., например, черный цвет имеет большую оптическую плотность, чем серый.

Коэффициент отражения связан с оптической плотностью и плотностью контраста следующим образом:

D = lg (1/R pr) и D c =R pr /R pt

где D - оптическая плотность изображения;

R pt - коэффициент отражения в точке измерения;

D c - плотность контраста;

R pr - коэффициент отражения бумаги.

Значения оптической плотности изображения на копиях для черного в электрографии для различных аппаратов (как отмечалось выше) существенно различны. Как правило по спецификациям производителей тонера для лазерных принтеров эти значения (минимально допустимые при нормальном состоянии аппаратуры) лежат в диапазоне от 1,3D до 1,45D. Для качественных тонеров оптическая плотность принимает значения в диапазоне от 1,45D до 1,5D и не превышают 1,6D. В технических условиях принято устанавливать ограничения по нижнему допустимому пределу со стандартным отклонением по оптической плотности 0,01.

Величину оптической плотности измеряют специальным прибором - денситометром, принцип работы которого основан на измерении потока, отраженного от отпечатка и пересчета этого показателя в единицы измерения оптической плотности.

В электрографии оптическую плотность изображений используют для характеристики проявителя (тонера) с целью определения требуемых значений оптической плотности линий установленной ширины при определенных условиях проявления или характеристики электрофотографического изображения на копиях в режиме номинального функционирования аппаратуры

Понятие оптической плотности (Optical Density) относится прежде всего к сканируемому оригиналу. Этот параметр характеризует способность оригинала поглощать свет; он обозначается как D или OD. Оптическая плотность вычисляется как десятичный логарифм отношения интенсивностей падающего и отраженного (в случае непрозрачных оригиналов) или проходящего (в случае прозрачных оригиналов) света. Минимальная оптическая плотность (D min) соответствует самому светлому (прозрачному) участку оригинала, а максимальная плотность (D max) соответствует самому темному (наименее прозрачному) участку. Диапазон возможных значений оптической плотности заключен между 0 (идеально белый или абсолютно прозрачный оригинал) и 4 (черный или абсолютно непрозрачный оригинал).

Типичные значения оптической плотности некоторых типов оригиналов представлены в следующей таблице:

Динамический диапазон сканера определяется максимальным и минимальным значениями оптической плотности и характеризует его способность работать с различными типами оригиналов. Динамический диапазон сканера связан с его разрядностью (битовой глубиной цвета): чем выше разрядность, тем больше динамический диапазон и наоборот. Для многих планшетных сканеров, главным образом, предназначенных для офисных работ, этот параметр не указывается. В таких случаях считается, что значение оптической плотности приблизительно равно 2,5 (типовое значение для офисных 24-битных сканеров). Для 30-битного сканера этот параметр равен 2,6-3,0, а для 36-битного - от 3,0 и выше.

С увеличением динамического диапазона сканер лучше передает градации яркости в очень светлых и очень темных участках изображения. Наоборот, при недостаточном динамическом диапазоне детали изображения и плавность цветовых переходов в темных и светлых участках теряются.

Разрешение

Разрешение (Resolution) или разрешающая способность сканера - параметр, характеризующий максимальную точность или степень детальности представления оригинала в цифровом виде. Разрешение измеряется в пикселах на дюйм (pixels per inch, ppi). Нередко разрешение указывают в точках на дюйм (dots per inch, dpi), но эта единица измерения является традиционной для устройств вывода (принтеров). Говоря о разрешении, мы будем использовать ppi. Различают аппаратное (оптическое) и интерполяционное разрешение сканера.

Аппаратное (оптическое) разрешение

Аппаратное (оптическое) разрешение (Hardware/optical Resolution) непосредственно связано с плотностью размещения светочувствительных элементов в матрице сканера. Это - основной параметр сканера (точнее, его оптико-электронной системы). Обычно указывается разрешение по горизонтали и вертикали, например, 300x600 ppi. Следует ориентироваться на меньшую величину, т. е. на горизонтальное разрешение. Вертикальное разрешение, которое обычно вдвое больше горизонтального, получается в конечном счете интерполяцией (обработкой результатов непосредственного сканирования) и напрямую не связано с плотностью чувствительных элементов (это так называемое разрешение двойного шага ). Чтобы увеличить разрешение сканера, нужно уменьшить размер светочувствительного элемента. Но с уменьшением размера теряется чувствительность элемента к свету и, как следствие, ухудшается соотношение сигнал/шум. Таким образом, повышение разрешения - нетривиальная техническая задача.

Интерполяционное разрешение

Интерполяционное разрешение (Interpolated Resolution) - разрешение изображения, полученного в результате обработки (интерполяции) отсканированного оригинала. Этот искусственный прием повышения разрешения обычно не приводит к увеличению качества изображения. Представьте себе, что реально отсканированные пикселы изображения раздвинуты, а в образовавшиеся промежутки вставлены «вычисленные» пикселы, похожие в каком-то смысле на своих соседей. Результат такой интерполяции зависит от ее алгоритма, но не от сканера. Однако эту операцию можно выполнить средствами графического редактора, например, Photoshop, причем даже лучше, чем собственным программным обеспечением сканера. Интерполяционное разрешение, как правило, в несколько раз больше аппаратного, но практически это ничего не означает, хотя может ввести в заблуждение покупателя. Значимым параметром является именно аппаратное (оптическое) разрешение.

В техническом паспорте сканера иногда указывается просто разрешение. В этом случае имеется в виду аппаратное (оптическое) разрешение. Нередко указываются и аппаратное, и интерполяционное разрешение, например, 600х 1200 (9600) ppi. Здесь 600 - аппаратное разрешение, а 9600 - интерполяционное.

Различимость линий

Различимость линий (Line detectability) - максимальное количество параллельных линий на дюйм, которые воспроизводятся с помощью сканера как раздельные линии (без слипаний). Этот параметр характеризует пригодность сканера для работы с чертежами и другими изображениями, содержащими много мелких деталей. Его значение измеряется в линиях на дюйм (lines per inch, Ipi).

Какое разрешение сканера следует выбрать

Этот вопрос чаще других задают при выборе сканера, поскольку разрешение - один из самых главных параметров сканера, от которого существенно зависит возможность получения высококачественных результатов сканирования. Однако это вовсе не означает, что следует стремиться к максимальному возможному разрешению, тем более, что оно дорого стоит.

Вырабатывая требования к разрешению сканера, важно уяснить общий подход. Сканер является устройством, преобразующим оптическую информацию об оригинале в цифровую форму и, следовательно, осуществляющим ее дискретизацию. Наданном этапе рассмотрения кажется, что чем мельче дискретизация (больше разрешение), тем меньше потерь исходной информации. Однако результаты сканировании предназначены для отображения с помощью некоторого устройства вывода, например, монитора или принтера. Эти устройства имеют свою разрешающую способность. Наконец, глаз человека обладает способностью сглаживать изображения. Кроме того, печатные оригиналы, полученные типографским способом или посредством принтера, также имеют дискретную структуру (печатный растр), хотя это может быть и не заметно для невооруженного глаза. Такие оригиналы обладают собственным разрешением.
Итак, есть оригинал с собственным разрешением, сканер со своей разрешающей способностью и результат сканирования, качество которого должно быть как можно выше. Качество результирующего изображения зависит от установленного разрешения сканера, но до некоторого предела. Если установить разрешение сканера больше собственного разрешения оригинала, то от этого качество результата сканирования, вообще говоря, не улучшится. Мы не хотим сказать, что сканирование с более высоким, чем у оригинала, разрешением бесполезно. Есть ряд причин, когда это нужно делать (например, когда мы собираемся увеличивать изображение при выводе на монитор или принтер или когда надо избавиться от муара). Здесь мы обращаем внимание на то, что улучшение качества результирующего изображения за счет повышения разрешения сканера не беспредельно. Можно увеличивать разрешение сканирования, не добиваясь при этом улучшения качества результирующего изображения, но зато увеличивая его объем и время сканирования.

О выборе разрешения сканирования мы еще неоднократно будем говорить в данной главе. Разрешение сканера - это максимальное разрешение, которое можно установить при сканировании. Так какая же величина разрешения нам нужна? Ответ зависит от того, какие изображения вы собираетесь сканировать и на какие устройства выводить. Ниже мы приведем лишь ориентировочные значения.
Если вы собираетесь сканировать изображения для последующего вывода на экран монитора, то обычно достаточно разрешения 72-l00ppi. Для вывода на обычный офисный или домашний струйный принтер - 100-150 ppi, на высококачественный струйный принтер - от 300 ppi.

При сканировании текстов из газет, журналов и книг с целью последующей обработки программами оптического распознавания символов (OCR - Optical Character Recognition) обычно требуется разрешение 200-400 ppi. Для вывода на экран или принтер эта величину можно уменьшить в несколько раз.

Для любительских фотографий обычно требуется 100-300 ppi. Для иллюстраций из роскошных типографских альбомов и буклетов - 300-600ppi.

Если вы собираетесь увеличивать изображение для вывода на экран или принтер без потери качества (четкости), то разрешение сканирования следует установить с некоторым запасом, т. е. увеличить его в 1,5-2 раза по сравнению с приведенными выше значениями.

Рекламным агентствам, например, требуется высококачественное сканирование слайдов и бумажных оригиналов. При сканировании слайдов для вывода на печать в формате 10x15 см потребуется разрешение 1200 ppi, а в формате А4 - 2400 ppi.
Обобщая изложенное выше, можно сказать, что в большинстве случаев аппаратного разрешения сканера 300 ppi достаточно. Если же сканер имеет разрешение 600 ppi, то это очень хорошо.

Здравствуйте, дорогие читатели блога о . Сегодня мы поговорим о таком важном параметре сканирования, как разрешение . Разрешение определяет количество деталей, записываемое . Оно измеряется в точках на дюйм (dots per inch, dpi). Чем больше значение dpi, тем выше разрешение.

Качество изображения повышается вместе с повышением разрешения, но лишь до определенного момента, после которого дальнейшее увеличение разрешения ведет лишь к тому, что файл становится слишком большого размера для того, чтобы им можно было управлять. К тому же, изображения с большим разрешением дольше печатаются. В большинстве случаев разрешения 300 dpi для сканов более чем достаточно.

Говоря о разрешении сканера , не следует забывать о разнице между оптическим разрешением и интерполяции. Оптическое разрешение является «родным» для сканера и зависит от оптики, которая используется в конструкции аппарата. Интерполированное разрешение – это разрешение, увеличенное с помощью специальных программ. И хотя интерполяция может быть полезной в некоторых случаях (например, при сканировании графических рисунков или когда требуется увеличить изображение маленького размера), качество и четкость картинки, полученной таким способом, ниже, чем при использовании только оптического разрешения.

Как выбрать оптимальные настройки разрешения?

Сканирование при высоком разрешении требует больше времени, памяти и дискового пространства. Задавая настройки разрешения, принимайте во внимание тип изображения и метод печати, который вы собираетесь применить в дальнейшем, либо устройство вывода.

Самый простой способ определить необходимое разрешение – это выяснить количество линий на дюйм (значение lpi) устройства вывода изображения и для большей верности умножить это число на два.

Пример: Чтобы «подогнать» отсканированное изображение под стандартный печатающий пресс для журналов со значением lpi 133, просто умножьте 133 на 2. В результате вы получите оптимальное значение разрешение 266 dpi. Однако, если вы собираетесь увеличить изображение после сканирования, помните, что разрешение при этом снизится, поэтому, будьте аккуратнее с масштабированием.

Число lpi варьируется в зависимости от качества печати. Для газеты требуется примерно 85 lpi, для журнала – 133-150 lpi, а для цветной книги может понадобиться от 200 до 300 lpi.

Если вы выводите изображения на монитор (например, для публикации в интернете), нет необходимости с разрешением более 72 dpi, так как мониторы не способны отображать более 72 dpi. Изображение большего разрешения не станет лучше или четче; оно лишь приведет к увеличению размера файла, за счет чего его сложнее будет обрабатывать.

Помните, что чем выше разрешение, тем больше размер файла. Например, цветное фото формата 8.5 на 11 дюймов с разрешением 72 dpi будет «весить» примерно 1.6 мегабайт. Увеличесние разрешения до 150 dpi приведет к увеличению файла до 6.3 мегабайт (примерно в четыре раза)! А при 300 dpi этот же файл будет «весить» уже 26.2 мегабайт.

Таким образом, нужно всегда стараться выбирать самое низкое разрешение из возможных, чтобы сохранить качество изображения и в то же время, получить не слишком большой для удобного использования файл.

Когда нужно высокое разрешение?

Высокое разрешение важно в том случае, если пропускаете изображение через высокотехнологичную систему управления цветом, которая сохраняет при печати все данные, полученные в процессе сканирования. В этом случае высокое разрешение позволит сделать конечное изображение более четким и резким.

Когда использовать интерполированное изображение?

Функция интерполяции полезна для сканирования графических и карандашных рисунков, а также для увеличения изображений маленького размера. Также к этой категории относится любая черно-белая или одноцветная графика, чернильные или карандашные наброски, эскизы или механические светокопии.

Для графики: установите разрешение равное разрешению печатающего устройства. Например, если вы собираетесь распечатывать изображение на устройстве с разрешением 1200 dpi, установите на сканере значение 1200 dpi для получения оптимальных результатов. Это обеспечит большую плавность линий и устранит неровности и расплывчатость.

Для увеличения маленьких оригиналов: Предположим, что вы сканируете 1- или 2-дюймовую фотографию с разрешением 300 dpi, и максимальное оптическое разрешение сканера тоже составляет 300 dpi. Чтобы увеличить изображение в два раза по сравнению с оригиналом без потери деталей, интерполируйте изображение до 600 dpi. Таким образом, изображение сохранит резкость и четкость, а его размер увеличится вдвое.



Загрузка...