sonyps4.ru

Пк водяной. Сборка компьютера с водяным охлаждением

Водное охлаждение компьютера позволяет снизить температуру процессора и графической платы примерно на 10 градусов, что повышает их долговечность. Кроме того, за счет снижения нагрева система подвергается меньшей нагрузке. Это также позволяет разгрузить вентилятор, значительно снизив его обороты, и, таким образом, получить практически бесшумную систему.

Встроить водное охлаждение довольно просто. Мы расскажем как это сделать в нашем пошаговом руководстве. В статье описывается установка водного охлаждения на примере готового набора Innovatek Premium XXD и корпуса Tower Silverstone TJ06. Монтаж других систем производится аналогичным образом.

Установка водяного охлаждения

Для успешной установки системы охлаждения вам понадобятся инструменты. Мы остановили свой выбор на чрезвычайно удобном швейцарском ноже Victorinox Cyber Tool Nr. 34. В него кроме самого ножа входят клещи, ножницы, маленькая и средняя крестообразная отвертка, а также набор насадок. Кроме того, приготовьте гаечные ключи на 13 и 16. Они потребуются для затягивания соединений.

В цикле охлаждения радиатор обеспечивает стабилизацию температуры воды, как правило, на уровне порядка 40° C. Теплообменнику помогают один или два 12-сантиметровых вентилятора, которые вращаются довольно тихо, но при этом обеспечивают вывод тепла изнутри наружу. При установке вентилятора следите за тем, чтобы стрелка на раме вентилятора показывала в сторону радиатора, а также чтобы провода питания сходились к середине.

Пора прикрутить к радиатору угловые соединительные элементы для трубок. Для надежности затяните накидные гайки ключом на 16. Затягивайте крепко, однако не до упора. После этого радиатор монтируется к корпусу. Single-радиатор (то есть только с одним вентилятором) можно установить снизу за передней панелью, в том месте, где обеспечивается штатная подача воздуха. В некоторых типах корпусов для этого также может подойти пространство сзади процессора.

Наш двойной dual-радиатор требует несколько больше места, поэтому мы его располагаем на боковой стенке. Самостоятельно делать необходимые гнезда и отверстия мы рекомендуем только опытным умельцам. Если вы себя к таковым не относите, лучше всего воспользоваться специально предусмотренным корпусом для конкретного типа охлаждения. Innovatek предлагает системы охлаждения в комплекте с корпусом - при желании даже в смонтированном состоянии. Для нашего проекта мы выбрали модель Silverstone TJ06 с подготовленной Innovatek боковой стенкой.

Рисунок A: Расположите боковую стенку перед собой на рабочем столе так, чтобы отверстия под вентиляторы были направлены на вас узкими частями. После этого положите радиатор на отверстия вентиляторами вверх. Угловые соединения шлангов должны быть направлены в ту сторону, которая позже будет соединена с передней панелью корпуса. Теперь поверните боковую стенку вместе с радиатором и соедините отверстия, сделанные на корпусе с резьбой на радиаторе.

Рисунок B: Для красоты положите на гнезда вентиляторов сверху две черные заглушки и прикрутите их восемью прилагающимися черными шурупами Torx.

Стандартный вентилятор питается от напряжения 12 В. При этом он достигает указанной в спецификации скорости вращения и, таким образом, максимальной громкости. В системе водного охлаждения часть тепла поглощает кулер радиатора, поэтому 12-
вольтное питание для пары наших вентиляторов, пожалуй, не понадобится. В большинстве случаев достаточно 5-7 В - это позволит сделать систему практически бесшумной. Для этого соедините разъемы питания обоих вентиляторов и подключите к прилагающемуся адаптеру, который позже будет подключен к блоку питания.

Теперь речь пойдет о графической плате, главном источнике шума у большинства компьютеров. Мы оснастим водным охлаждением модель ATI All-in-Wonder X800XL для PCI Express. Аналогичным образом система охлаждения устанавливается и на другие модели видеоадаптеров.

Прежде чем вы приступите к сборке, еще два замечания. Первое: с переоборудованием графической платы теряет силу гарантия, поэтому перед установкой проверьте работоспособность всех функций устройства. И второе: человек при хождении по ковру заряжается статическим электричеством и разряжается при соприкосновении с металлом (например, дверной ручкой).

Если вы разрядитесь о графическую плату, при определенном стечении обстоятельств она может приказать долго жить. Поскольку же у вас, как и у большинства непрофессиональных сборщиков, вряд ли имеется антистатический коврик, кладите видеоадаптер только на антистатическую упаковку и периодически разряжайтесь, касаясь батареи отопления.

Рисунок А: Для того чтобы отсоединить вентилятор от выбранной нами модели серии Х800, необходимо открутить шесть шурупов. Два маленьких шурупа, удерживающие натяжную пружину, оптимизируют давление блока охлаждения на графический процессор, в то время как четыре остальных несут на себе всю тяжесть кулера. Даже после того как будут удалены все шесть шурупов, кулер будет все еще достаточно крепко присоединен теплопроводящей пастой. Отсоедините кулер, плавно поворачивая его по и против часовой стрелки.

Рисунок B: После того как вы снимите старую систему охлаждения, удалите остатки теплопроводящей пасты с графического процессора и других микросхем. Если паста не стирается, можно использовать немного жидкости для снятия лака. Естественно, и водная система охлаждения нуждается в теплопроводной пасте, так что нужно нанести новую. Здесь основное правило таково: чем меньше, тем лучше! Маленькой капельки, распределенной тонким слоем по поверхности каждой детали, вполне достаточно.

На самом деле теплопроводная паста является достаточно посредственным проводником тепла. Она призвана заполнять микроскопические неровности поверхности, так как воздух проводит тепло еще хуже. Для нанесения пасты в качестве миниатюрного шпателя можно использовать старую визитную карточку.

Рисунок С: После нанесения пасты положите новый кулер на рабочую поверхность таким образом, чтобы соединительные трубки были сверху, и совместите отверстия на графической плате с резьбой на блоке охлаждения. Натяжная пружина заменяется квадратной пластмассовой пластиной. Для защиты окружающих контактов наклейте между печатной платой и пластиной, точнее говоря, непосредственно к 3D-процессору, пенопластовую прокладку.

Новый кулер удерживается на трех несущих шурупах. Сперва затяните их, причем, как и при замене автомобильного колеса, вначале затягивайте шурупы не до конца, и затем по очереди их подтягивайте. Это поможет избежать перекосов. После этого аналогичным образом затяните шурупы на пластмассовой пластине.

Наибольшее количество тепла чаще всего вырабатывает центральный процессор. Поэтому система охлаждения, защищая его от перегрева, работает достаточно шумно. Заменить воздушный кулер на водный достаточно просто. Сначала осторожно снимите с процессора воздушный кулер. Преодолевать сопротивление термопасты также необходимо мягкими вращательными движениями влево-вправо, иначе процессор может выскочить из сокета. После этого удалите всю старую термопасту.

Затем отвинтите имеющуюся рамку сокета и смонтируйте вместо нее подходящую для этого типа процессора рамку из набора водного охлаждения. Перед установкой кулера нанесите на процессор тонким слоем термопасту. В завершение зафиксируйте крепежные скобы с обеих сторон рамки сокета и перекиньте фиксатор.

Насос - очень важная деталь системы, поэтому его необходимо поставить на пьедестал - в прямом смысле этого слова. Для этого ввинтите в алюминиевую плату четыре резиновые ножки. Резина здесь используется для того, чтобы изолировать вибрации насоса. На эти ножки установите насос и зафиксируйте его четырьмя прилагающимися шайбами и гайками. Гайки затяните небольшими плоскогубцами.

Теперь необходимо оснастить насос и компенсационную емкость соединительными трубками. Затяните для надежности соединения ключом на 13. В завершение подсоедините компенсационную емкость с округлой стороны насоса. Насос приделывается изнутри к передней панели корпуса, прилагающейся клейкой лентой таким образом, чтобы компенсационная емкость «смотрела» наружу (см. рис. 11).

После завершения установки всех компонентов внутри корпуса необходимо соединить их шлангами. Для этого поставьте открытый корпус напротив себя и положите перед ним боковую стенку с радиатором. Шланг должен идти от компенсационной емкости к графической плате, оттуда к процессору, от процессора к радиатору, завершается же круг соединением радиатора и насоса.

Отмерьте необходимую длину устанавливаемого шланга и ровно отрежьте его. Открутите на соединении накидную гайку и подведите ее к концу надеваемого шланга. После того как шланг надет на соединение вплоть до резьбы, зафиксируйте его накидной гайкой. Затяните гайку ключом на 16. Теперь ваша система должна выглядеть так, как это показано на рисунке 11.

9. Подготовка насоса к заполнению водой

Как это показано на нашей картинке, подключите насос к разъему питания для жестких дисков. На данном этапе к блоку питания не должно быть подключено больше ничего. Сейчас мы готовим насос к заполнению водой. Другие компоненты нельзя подключать без воды в системе охлаждения, иначе им грозит мгновенный перегрев.

Так как блоки питания не работают без подключения к материнской плате, необходимо использовать прилагающуюся перемычку. Черный провод служит для «обмана» питания материнской платы. Таким образом, после включения тумблера насос начнет работать. Если у вас под рукой не нашлось перемычки, закоротите зеленый и находящийся рядом черный провода блока питания (пины 17 и 18).

Наполните компенсационную емкость жидкостью до нижнего края резьбы и подождите, пока насос выкачает воду. Продолжайте процедуру наполнения до тех пор, пока в системе не прекратится бурление.

Проверьте герметичность соединений. Если на каком-либо из них образуется капелька, скорее всего, это значит, что плохо затянута накидная гайка. Если система наполнена достаточным количеством воды, но продолжается бурление, поможет следующая хитрость: возьмите двумя руками боковую стенку корпуса с радиатором и покачайте ее так, как будто это сковородка, по которой вы хотите распределить горячее масло. Если после 15 минут работы все соединения остались сухими и не возникло никаких посторонних звуков, закройте компенсационную емкость.

Теперь можно снять перемычку с блока питания и начать подключение компонентов компьютера. Некоторой сноровки потребует установка боковой стенки с радиатором. Зазоры здесь очень малы, и даже слегка неверно установленное шланговое соединение может помешать. В этом случае необходимо просто повернуть соединение в нужном направлении. Также при закрытии корпуса уделите особое внимание шлангам, чтобы ни один из них не был перегнут или сдавлен.


Радиаторы и кулеры – об этом даже писать не так интересно, потому что все это давно есть в любом компьютере и этим никого не удивишь. Жидкий азот и всякие там системы с фазовым переходом – еще одна крайность, шансы встречи с которой в хозяйстве обычного человека почти нулевые. А вот «водянка»… в вопросе охлаждения компьютера это как золотая середина – необычно, но доступно; почти не шумит, но в то же время охладить может что угодно. Справедливости ради, СВО (система водяного охлаждения) правильней называть СЖО (система жидкостного охлаждения), ведь, по сути, залить внутрь можно что угодно. Но, забегая вперед, я использовал обычную воду, так что орудовать больше буду именно термином СВО.

Совсем недавно я достаточно подробно писал про сборку нового системного блока. Получившийся стенд выглядел следующим образом:

Вдумчивое изучение списка говорит о том, что тепловыделение некоторых устройств не просто высокое, а ОЧЕНЬ высокое. И если подключить все как есть, то внутри даже самого просторного корпуса будет как минимум жарко; а как показывает практика, будет еще и очень шумно.

Напомню, что корпусом, в который собирается компьютер, является пусть и не очень практичный (хотя с каждым разом я убеждаюсь в обратном), но очень презентабельный Thermaltake Level 10 – у него есть минусы, но за один только внешний вид ему можно очень многое простить.

На этом этапе материнская плата была установлена в корпус, в нее поставлена видеокарта – предварительно в самый верхний PCI-слот.

Установка радиатора/помпы/резервуара

Один из самых интересных этапов работы, на который у нас ушло больше всего времени (если бы мы сразу пошли по легкому пути, то управились бы за полчаса, но сперва мы перепробовали все сложные варианты, из-за которых все работы суммарно растянулись на 2 дня (конечно же, далеко неполных).

Система водяного охлаждения очень похожа на ту, что применяется в автомобилях, просто немного побольше – там тоже есть радиатор (чаще всего не один), кулер, охлаждающая жидкость и т.д. Но у автомобиля есть одно преимущество – солидный встречный поток холодного воздуха, который играет ключевую роль в охлаждении системы во время движения.

В случае с компьютером, отводить тепло приходится тем воздухом, который есть в комнате. Соответственно, чем больше размеры радиатора и количество кулеров, тем лучше. А так как хочется минимум шума, то эффективное охлаждение будет достигаться в основном за счет поверхности радиатора.

А суть проблемы заключалась в следующем. В скайпе мы предварительно сошлись на мнении «повесим сзади радиатора на 2-3 секции – его более чем хватит!», но как только мы взглянули на корпус, оказалось, что все не так-то просто. Во-первых, для трехсекционного радиатора там действительно было маловато места (если крепить радиатор на то отверстие, куда предполагается установка выдувного кулера корпуса), а во-вторых, даже если бы и хватило, то никак не получилось бы открыть сам корпус – мешалась бы «дверь» системного отсека:)

В общем, вариантов установки радиатора в корпус Thermaltake Level 10 мы насчитали минимум четыре – все они возможны, на каждый потребовалось бы разное количество времени и у каждого были бы свои плюсы и минусы. Начну с тех, что мы рассматривали, но которые нам не подошли:

1. Установка радиатора на задней (от пользователя) боковой стороне, то есть на съемной дверце.
Плюсы:
+ Возможность горизонтальной и вертикальной установки любого радиатора, хоть на 3-4 кулера
+ Размеры корпуса особо не увеличились бы

Минусы:
- Пришлось бы сверлить в дверце от 4 до 6-8 отверстий
- Снимать дверцу было бы очень неудобно
- При горизонтальном расположении потребовался бы радиатор с нестандартным расположением отверстия для залива жидкости
- При вертикальном расположении шланги были бы очень длинными и с большим изгибом
- Корпус будет стоять слева от меня (на подоконнике), а теплый воздух от кулеров в лицо мне не нужен:)

2. Установка радиатора сверху, на «кожухе» отсека блока питания. Плюсы и минусы идентичны

3. Установка двухсекционного радиатора внутри системного отсека

Плюсы:
+ Простота решения
+ Внешне не было бы никаких изменений
+ Дверца системного отсека открывалась бы без проблем

Минусы:
- Подошел бы только 2-секционный радиатор (этого мало для железа конфига)
- В таком случае браться холодному воздуху было бы не откуда, а гонять туда-сюда теплый воздух не хотелось.
- Были бы сложности по «расстановке» помпы и резервуара
- Даже если использовать сверхтонкие кулеры, перекрывались бы все SATA-разъемы (если бы они выводились на пользователя, а не вбок, то этой проблемы бы не было)

В общем, все эти варианты мы в той или иной степени попробовали – потратили много времени на поиски нужных компонентов, их примерку и т.д.

Самым последним вариантом оказалось достаточно необычное решение – может быть не самое на первый взгляд красивое, но действительно практичное. Это установка радиатора на задней стороне корпуса через специальный регулируемый переходник с механизмом типа «ножницы» .

Плюсы:
+ Ничего не пришлось сверлить
+ Возможность повесить ЛЮБОЙ радиатор
+ Отличная продуваемость
+ Не перекрывался доступ к разъемам материнской платы
+ Минимальная длина шлангов, минимум изгибов
+ Конструкция съемная и транспортабельна

Минусы:
- Не самый презентабельный внешний вид:)
- Открыть дверь системного отсека теперь не так просто
- Достаточно дорогой переходник

Почему мы пришли к этому варианту в последнюю очередь? Потому что во время поисков для предыдущих трех вариантов, совершенно случайно нашли переходник, про который все забыли, а в в интернет магазине его не было) Глядя на единственный (последний) экземпляр монтажной рамки Koolance Radiator Mounting Bracket , я подумал «И чего только не придумают!». Суть в следующем – в отверстия для крепления к корпусу заднего выдувного кулера вставляются 4 «конусных гвоздя», на которые вешается специальная рамка.

Конструкция этой рамки такова, что ее длинна может изменяться путем подкручивания фиксаторов, а снимается она смешением двух частей ее корпуса (чтобы отверстия разжались и ее можно было снять с «гвоздиков») – вот я загнул!) Гораздо проще понять все по фото.

Рамка металлическая и очень прочная – в этом я убедился, когда мы на пробу повесили 3-секционный (на 3 кулера) радиатор. Ничего не болтается и не качается, все висит намертво, но в «разжатом» случае дверь вполне себе открывалась – такой вариант меня полностью устраивал!

Радиаторов на выбор было огромное количество – черные, белые, красные… В этом вопросе меня больше всего удивил 4-секционный TFC Monsta , способный отвести до 2600Вт тепла (это, видимо, SLI из четырех 480ых)! Но мы люди гораздо проще, поэтому решили остановиться на том радиаторе, который примеряли - Swiftech MCR320-DRIVE . Его преимущество в том, что он объединяет в себе сразу три компонента – радиатор (MCR320 QP Radiator для трех 120мм кулеров), резервуар для жидкости и помпу высокого давления (MCP350 Pump , полный аналог «обычной» помпы Laing DDC ). По сути, с такой железякой для СВО потребуется докупить только водоблоки, шланги и прочие мелочи, что у нас уже было. Помпа работает от 12В (от 8 до 13.2), издавая шум 24~26 dBA. Максимальное создаваемое давление составляет 1.5бар, что примерно равно 1.5 «атмфосферам».

Для радиатора было три кулера-претендента – Noctua , Be Quiet и Scythe . В итоге остановились на индонезийских (с японскими корнями) Scythe Gentle Typhoon (120мм, 1450 об/мин, 21 dBA) – эти вертушки не первый день пользуются большим спросом у многих пользователей. Они ооочень тихие, а качество балансировки подшипников просто удивляет – кулер будет неестественно долго крутиться даже от самого легкого прикосновения. Срок службы составляет 100000 часов при 30°C (или 60000 часов при 60 °C), чего хватит для морального устаревания данного системника.

Обзор этих «тайфунов» был на ФЦентре – советую почитать . Поверх кулеров были поставлены защитные решетки, чтобы ребенок не засунул в вентиляторы чего-нибудь жизненно необходимого.

Примеряем получившуюся конструкцию к системному блоку – выглядит очень необычно) Но зато смотрите, как удобно – чтобы залезть внутрь корпуса (или снять систему охлаждения), достаточно нажать одну «кнопку» и вся конструкция, фактически, уже отсоединена. Сжимаем монтажную рамку и имеем полный доступ к внутренностям – там более чем просторно, ведь мы туда ничего не громоздили. Может быть я описал не самый удобный вариант, но… если учесть, что после сборки компьютера лазить внутрь практически не придется, а хорошее охлаждение гораздо важнее, то я считаю наше решение правильным.

Конструкция в сборе весит 2.25 килограмма, а с жидкостью и фитингами, наверное, все 3 – забегая вперед, даже такой вес рамке от Koolance оказался по силам, за что ей респекты и уважухи:)

Финишная прямая

Дело осталось за малым – установить все компоненты, «обвязать водой» и протестировать получившийся компьютер. Все началось с установки фитингов – красивые такие железки (в виде «ёлочек»), которые через специальные прокладки (и иногда, когда резьба фитинга очень длинная, через специальные спэйсеры) устанавливаются в соответствующее отверстие водоблока или резервуара – для затягивания мы использовали небольшой разводной ключ, но тут тоже важно не перестараться.

Помимо фитингов, в два отверстия водоблока видеокарты были установлены специальные заглушки:

После этого мы продумали маршрут, по которому будет идти вода. Правило простое – от менее нагретого к более. Соответственно, «выход» радиатора соединяется сперва с водоблоком материнской платы, из него выход на процессор, затем в видеокарту и уже потом обратно на вход в радиатор, остужаться. Так как вода одна на всех, то температура всех компонентов в результате будет примерно одинаковой – именно из этих соображений делают многоконтурные системы и именно по этой причине не имеет смысла подключать к одному контуру еще и всякие там жесткие диски, оперативку и т.д.

Роль шланга досталась красному Feser Tube (ПВХ, рабочая температура от -30 до +70°C, давление на разрыв 10МПа), для нарезки которого использовался специальный хищный инструмент.

Ровно отрезать шланг – может быть и не так сложно, но очень важно! Почти на все шланги были надеты специальные пружины против изгибов и изломов шланга (минимальный радиус петли шланга становится равным ~3.5см).

На каждый шланг (с обеих сторон) в области фитинга нужно установить по «хомуту» – мы использовали красивые Koolance Hose Clamp . Устанавливаются они с помощью обычных плоскогубцев (с грубой мужской силой), поэтому нужно действовать аккуратно, чтобы случайно не задеть чего-нибудь.

Пришло время поработать над соединением «внутреннего мира» с «внешним». Для того, чтобы иметь возможность снять радиатор-резервуар-помпу (например, для открытия корпуса или для транспортировки), мы поставили на трубки так называемые «быстросъемы» (быстросъемные клапаны), принцип действия которых до безобразия прост.

Когда мы поворачиваем соединение (как у BNC-коннекторов), отверстие в трубке закрывается-открывается, благодаря чему разобрать «водянку» можно меньше чем за минуту, без всяких луж и прочих последствий. Еще парочка дорогих, но прекрасно выглядящих железяк:

Расходы

5110 - Водоблок EK FB RE3 Nickel на материнскую плату
3660 - Водоблок EK-FC480 GTX Nickel+Plexi на видеокарту
1065 - Бэкплэйт EK-FC480 GTX Backplate Nickel на видеокарту
2999 - Водоблок Enzotech Stealth на процессор
9430 - Помпа/радиатор/резервуар Swiftech MCR320-DRIVE
2610 - Два быстросъемных клапана Release Coupling
4000 - Переходник Koolance Radiator Mounting Bracket
1325 - Три кулера Scythe Gentle Typhoon (120мм) для радиатора
290 - Четыре фитинга EK-10mm High Flow Fitting
430 - Термопаста Arctic-Cooling-MX-3
400 - Девять зажимов для шлангов Koolance Hose Clamp
365 - Жидкость Nanoxia HyperZero
355 - Шланг Feser Tube

Столь высокая цена в данном случае вызвана тем, что использовались fullcover-водоблоки для ОЧЕНЬ горячих железок, все тепло от которых нужно рассеивать соответствующим радиатором. Для более простых систем подобные решения просто не понадобятся, так же можно обойтись и без декоративных накладок и всяких быстросъемных клапанов – в таких случаях можно запросто уложиться и в половину стоимости. Цена среднестатистической «водянки» составляет 12-15 тысяч рублей, что в 4-5 раз превышает стоимость действительно хорошего процессорного кулера.

Включение и работа

После того, как все компоненты системы были соединены, подошло время к «leak-тесту» (тест на протечку) – в радиатор была залита охлаждающая жидкость (дважды дистиллированная вода Nanoxia HyperZero красного цвета, с антикоррозийными и антибиологическими присадками) – в контур вошло порядка 500 мл.


Парень в хабрамайке заправляет радиатор)

Т.к. нельзя исключать вероятность того, что к компонентам компьютера что-то было подсоединено не так, было решено отдельно проверить работу самой системы водяного охлаждения. Для этого все провода (от кулеров и от помпы) были подсоединены, а в 24-пиновый разъем блока питания вставлена скрепка – для «холостого хода». На всякий случай внизу мы положили салфеток, чтобы малейшую течь было легче обнаружить.

Нажатие кнопки и… все как задумывалось) Честно сказать, до этого мне приходилось видеть водянки (помимо интернетов) только на различных выставках и конкурсах, где было очень шумно; поэтому я подсознательно готовился к «журчанию ручья», но уровень шума приятно удивил – по большей части было слышно только работу помпы. Первоначально присутствовали «шипящие» звуки – из-за пузырьков воздуха, находящихся внутри контура (их было видно в некоторых местах шлангов). Для решения этой проблемы была открыта пробка резервуара-радиатора – от циркуляции потока воздух постепенно вышел и система стала работать еще тише. После долива жидкости пробка была закрыта и компьютер поработал еще минут 10. Шума от кулера блока питания и от трех на радиаторе не было слышно вообще, хотя их воздушные потоки давали о себе знать.

Убедившись в том, что система полностью работоспособна, мы решили окончательно собрать тестовый стенд. Подключение проводов заняло не больше минуты – гораздо дольше искали монитор и провод для его подключения, т.к. все работали на ноутбуках;) Фраза «Reboot and select proper boot device or insert boot media in selected boot device and press a key» стала бальзамом на душу – мы вставили один из «рабочих» SSD-дисков (с Windows 7 на борту) - хорошо, что новый комп принял такой вариант. Для полного счастья только обновили драйвера для чипсета и установили драйвера для видеокарты.

Запускаем диагностического монстра Everest , где на одной из вкладок находим показания датчиков температуры: 30°C были справедливы для всех компонентов системы – CPU, GPU и материнской платы – что ж, очень приятные цифры. Равенство цифр вызвало предположение о том, что охлаждение в режиме простоя ограничено комнатной температурой, ведь ниже нее температуры в обычной водянке быть не может. В любом случае гораздо интересней посмотреть, какая ситуация будет при нагрузке.

15 минут «офисной работы» и температура видеокарты поднялась до 35°C.

Начинаем с проверки CPU, для чего используем программу OCCT 3.1.0 – спустя достаточно продолжительное время в режиме 100% нагрузки, максимальная температура процессора составила 38°C, а температура ядер 49-55°C соответственно. Температура материнской платы составляла 31°C, северного моста - 38°C, южного - 39°C. Кстати, это очень примечательно, что у всех четырех ядер процессора была практически равная температура – судя по всему, это заслуга именно водяного блока, который отводит тепло равномерно со всей поверхности крышки процессора. 50+ градусов для 4-ядерного Intel Core i7-930 с TDP в 130Вт – на такой результат едва способен хоть один стоковый воздушный кулер. А если и способен, то шум от его работы при этом вряд ли кому-то понравится (интернет гласит о температуре данного процессора в 65-70 градусов с кулером Cooler Master V10 – тот, что с элементом Пельтье).

Видеокарту по привычке прогревали программой FurMark 1.8.2 (в простонародье «бублик») – вряд ли на скорую руку можно было придумать что-то более ресурсоемкое и информативное.

Помимо «Эвереста» так же была установлена программа EVGA Precision 2.0 . На максимально доступном разрешении (с максимальным сглаживаниями) был запущен стресс-тест с ведением лога температуры – уже минуты через 3 температура видеокарты устоялась на отметке в 52 градуса! 52 градуса в нагрузке для топовой (на данный момент) видеокарты NVIDIA GTX 480 на архитектуре Fermi – это не просто здорово, это замечательно!)

Для сравнения, температура видеокарты в нагрузке со штатным кулером может доходить до 100 градусов, а с хорошим нереференсным – до 70-80.

В общем, температурный режим в полном порядке – в нагрузке кулеры выдувают из радиатора практически холодный воздух, а сам радиатор еле теплый. Не буду говорить в этой статье про разгонный потенциал, скажу лишь, что он есть. Но гораздо приятней совсем другое - система работает практически бесшумно!

The end

Можно долго рассуждать о получившемся результате, но он мне понравился, как и всем тем, кто его уже успел посмотреть. Как ни крути, а в корпусе Thermaltake Level 10 мне удалось собрать более чем производительный конфиг, который еще долгое время будет актуальным. Более того, почти без проблем «встала» полноценная система водяного охлаждения, которая помимо хорошего охлаждения начинки дает +5 к внешнему виду. Говоря о температурном режиме, можно смело говорить и о солидном потенциале для разгона – сейчас даже в нагрузке система охлаждения работает далеко не на пределе возможностей.

Я забыл написать про еще один важный плюс – интересность. Пожалуй, это самое интересное, что мне приходилось делать с железками – ни одна сборка компьютера не приносила столько удовольствия! Одно дело, когда ты собираешь обычные «бездушные» компики, совсем другое дело – когда понимаешь всю ответственность и подходишь к делу со всей душой. Такая работа занимает далеко не 5 минут – все это время ты ощущаешь себя ребенком, играющим во взрослый конструктор. А еще инженером-технологом-конструктором-сантехником-дизайнером, да просто гиком… в общем, интересность сильно повышенная!

Успехов и морозной свежести!

Теги: Добавить метки

Современные компьютере всё больше и больше нуждаются в качественной системе охлаждения. Особенно это правило касается тех моделей, которые подвергаются высоким нагрузкам в связи со своей спецификой. Классическое воздушное охлаждение не всегда справляется со своей задачей, а также издаёт много шума, поэтому как альтернатива ему появилось водяное охлаждение. Все его особенности, преимущества и недостатки будут рассмотрены далее.

Преимущества системы водяного охлаждения

В большинстве случаев системы водяного охлаждения не имеют в своей конструкции вырабатывающих холод элементов. Охлаждение происходит за счёт воздуха рядом со стенками системного блока. Для того, чтобы охлаждение происходило ещё более эффективно система водяного охлаждения может быть совмещена с системой воздушного охлаждения. Однако чаще всего в этом нет какой-либо необходимости.

Чтобы добиться такого же эффекта охлаждения от обычных кулеров и радиаторов, придётся возводить громоздкие конструкции внутри системного блока, которые при этом будут издавать слишком много шума. В случае с водяным охлаждением шума практически не наблюдается, да и места такая система занимает немного меньше.

Также нужно понимать, что эффективность системы охлаждения зависит от жидкости, которая циркулирует по трубкам. Вместо обычной воды там могут быть специальные охлаждающие растворы. Они обеспечивают более лучшее охлаждение компьютера, однако некоторых из них рекомендуется менять с определённой периодичностью, что влечёт за собой дополнительные расходы на обслуживание.

Однако кроме явных преимуществ такой системы охлаждения у неё есть и определённые недостатки:

  • Сложность установки конструкции;
  • Любая протечка может означать быструю поломку компьютера;
  • Цена такой системы охлаждения гораздо выше, чем на её воздушные аналоги.

Конструкция системы водяного охлаждения

В любой системе водяного охлаждения обязательно будут присутствовать элементы, речь о которых пойдёт ниже. Основываясь на этом описании, вы сможете самостоятельно собрать или выбрать уже готовую систему.

Водоблок

Это самый важный элемент, который и отвечает за охлаждение процессора и видеокарты. Он крепится непосредственно на их поверхность и подсоединяется к трубкам, по которым в него подаётся вода или другая охлаждающая жидкость.

При выборе этого элемента нужно в первую очередь обращать на материал, из которого сделано его дно и сам рельеф дна. Медные или алюминиевые модели позволяют лучше отводить тепло от процессора/видеокарты, следовательно, более эффективны. Модели, на дне которых есть различные неровности тоже значительно лучше справляются со своей задачей, чем их аналоги с плоским дном. Однако такая конструкция дна уменьшает скорость движения воды в системе, что тоже не очень хорошо, так как для нормальной циркуляции потребуется приобретать более мощную помпу.


Помпа

Многие считают, что лучше всего приобрести мощную помпу, так как она обеспечивает более лучшую циркуляцию воды. Это мнение отчасти ошибочное, так как основная функция помпы обеспечивать оптимальную скорость движения воды по системе, чтобы она не застаивалась в трубках и не перегревалась. В том случае, если вся ваше система состоит из пары трубок и водоблока с плоской поверхностью дна, то смысла в приобретении мощной помпы нет.

Другое дело, если у вас установлена витиеватая система трубок, которые к тому же имеют резкие перепады высот, плюс несколько водоблоков с неровным дном. В таком случае определённо лучше покупать помпу с определённым запасом мощности.


Радиатор

В большинстве случаев это тоже является обязательным компонентом системы охлаждения. Радиатор должен быть изготовлен из материалов с высокой теплопроводностью. В идеале это должны быть металлы, например, медь или алюминий. Конструкция радиатора представляет из себя специальный блок из металлических пластин. Обычно в комплекте с ним идёт вентилятор для того, чтобы обеспечить ещё и воздушное охлаждение.
Продвинутые радиаторы могут оснащаться несколькими вентиляторами разной мощности. Также присутствуют сложные конструкции из металлических плит и трубок, обеспечивающих функцию теплоотвода. Иногда радиатор в системе жидкого охлаждения ПК может представлять из себя полноценную систему воздушного охлаждения.

Однако не стоит забывать про первоначальное предназначение радиатора – рассеивать тепло. Для этого в большинстве случаев хватит одного маломощного вентилятора и нескольких металлических пластин, установленных в нужных местах.


Соединительные трубки

Нужны для того, чтобы разносить охлаждающую жидкости по всей системе. Должны быть достаточно толстыми и прочными, чтобы избежать возможных протечек, которые могут привести к фатальным последствиям. Рекомендуемые размеры сечения трубок составляют от 6 до 13 мм. С таким сечением они не занимают много места и способствуют беспрепятственному протоку охлаждающих жидкостей.

Трубки ещё можно поделить на прозрачные и непрозрачные. Первые, как правило, более прочные, хотя попадаются и исключения. Последние чаще выбирают в тех случаях, когда помимо решения практической задачи, система водяного охлаждения должна ещё украшать компьютер. Например, в тех случаях, когда по трубкам течёт окрашенная жидкость.


Охлаждающая жидкость

Практически всегда в этой роли выступает обычная дистиллированная вода. Довольно часто в неё добавляют специальные примеси, например, для снижения коррозирующих свойств, а также для уничтожения вводе бактерий, которые со временем приводят к тому, что в неё образуются микроводоросли, а вода меняет цвет. Также есть специальные добавки для придания жидкости в трубках эстетического эффекта. Например, делающие так, что вода светится в темноте.

Классификация систем жидкого охлаждения

На рынке существуют два основных типа систем жидкого охлаждения, которые более подробно будут рассмотрены ниже. В зависимости от класса изменяется процесс и сложность установки, а также процесс эксплуатации системы.

Необслуживаемая

Самая простая в установки и эксплуатации. Она поставляется с завода уже полностью собранной и с залитым теплоносителем. Она может быть уже установлена в компьютер. Также есть разновидности, которые нужно самостоятельно устанавливать. Производитель специально делает их таким образом, чтобы их можно было поставить в большинство компьютеров.


Из основных недостатков такой системы принято отмечать:

  • Сложность ремонта. Все элементы системы запаяны с друг другом практически «намертво». С одной стороны, это делает практически невозможной разгерметизацию, но с другой заменить испортившейся элемент системы будет очень дорого и сложно, если не невозможно;
  • Сложность замены теплоносителя. Так как такие системы крайне герметичны, то вода из труб никуда не исчезает. Но её всё равно рекомендуется менять раз в несколько лет. К сожалению, далеко не все такие системы имеют заливочные отверстия;
  • Цена на такую систему может оказаться выше, чем на её ближайший аналог;
  • Систему нельзя как-то модернизировать или использовать для компьютеров с нестандартной конструкцией. Всё ограничено только теми решениями, которые предлагает сам производитель.

Из преимуществ можно выделить:

  • Удобство установки. Она монтируется в систему не сложнее, чем радиатор с кулером;
  • Крайне низкая вероятность протечки;
  • Отлично работает с теми конструкциями, под которые изначально разрабатывалась производителем.

Обслуживаемая система жидкого охлаждения

Такая система поставляется в виде отдельных деталей. Её сборка и установка требует больше времени, сноровки и опыта. Зато её можно модифицировать по своему желанию. Также нет практически никаких ограничений, накладываемых производителем. Нет сложностей с ремонтом и замены определённых элементов.

Любая система водяного охлаждения, вне зависимости от её типа должна поддерживаться сокетом материнской платы. В противном случае придётся приспосабливать всю систему под другой сокет, купив соответствующий водоблок. Однако так можно сделать только в случае с обслуживаемыми СЖО.

На что ещё нужно обратить внимание при выборе СЖО

Помимо тех основных параметров, на которые рекомендуется обращать внимание в первую очередь при выборе системы охлаждения, обязательно учитывайте ещё и эти:

  • Количество вентиляторов в системе. Как правило, они не оказывают сильного влияния на эффективность всей системы, но чем их больше, тем ниже будет производимый шум. Это больше актуально для систем, где так или иначе требуется установить хотя бы один вентилятор. Если вы решили устанавливать систему вообще без них, то этот пункт можно оставить без внимания;
  • Максимальный воздушный поток. Этот параметр характерен для радиатора и считается в футах в минуты (обозначается CFM). Определяет объём прогоняемого воздуха. Чем выше значения, тем выше вклад вентилятора в работу радиатора. Для крупных радиаторов, имеющих высокий коэффициент CFM придётся покупать более мощные вентиляторы;
  • Материал радиатора. Практически такой же важный параметр, как и его конструкция. Рекомендуется выбирать варианты, где используется чистая медь или медь со сплавами. Варианты из алюминия выбирайте в тех случаях, когда радиатор имеет сложную конструкцию и большую площадь;
  • Материал водоблока. Это важный параметр, на который нужно обращать внимание. Рекомендуется брать водоблоки только из меди. Всё дело в том, что у них небольшая площадь и как правила конструкция не слишком замысловатая;
  • Максимальный уровень шума, производимый системой охлаждения. Для СЖО это не такой важный параметр, как для систем воздушного охлаждения. Но всё равно, если в конструкции присутствует хотя бы один вентилятор, то нужно обращать внимание на уровень шума. В идеале он должен составлять в районе 30-40 Дб для комфортной работы за компьютером;
  • Наличие подсветки, прозрачных труб и прочие декоративные элементы. Это необязательные компоненты конструкции, но если вам хочется как-то «разнообразить» внешний вид своей рабочей машины, то устанавливать подобную «красоту» имеет смысл только в корпусах с прозрачной стенкой.

Как видите, на при выборе жидкой системы охлаждения для ПК нужно учитывать определённые параметры. Также стоит учитывать ту вероятность, что во время сборки и монтажа системы вам придётся докупать недостающие комплекты.

Зачастую после покупки компьютера пользователь сталкивается с таким неприятным явлением, как сильный шум, идущий от охлаждающих вентиляторов. Могут наблюдаться сбои в работе операционной системы из-за нагрева до высоких температур (90°C и более) процессора или видеокарты. Это весьма существенные недостатки, устранить которые возможно с помощью дополнительно устанавливаемого на ПК водяного охлаждения. Как изготовить систему своими руками?

Жидкостное охлаждение, его положительные свойства и недостатки

Принцип действия системы жидкостного охлаждения компьютера (СЖОК) основан на использовании соответствующего теплоносителя. Жидкость за счёт постоянной циркуляции поступает к тем узлам, температурный режим которых необходимо контролировать и регулировать. Дальше теплоноситель по шлангам поступает в радиатор, где и охлаждается, отдавая тепло воздуху, который затем отводится за пределы системного блока с помощью вентиляции.

Жидкость, имея более высокую теплопроводность по сравнению с воздухом, быстро стабилизирует температуру таких аппаратных ресурсов, как процессор и графический чип, приводя их к норме. В результате можно добиться существенного повышения производительности ПК за счёт его системного разгона. При этом надёжность работы компонентов компьютера не будет нарушена.

При использовании СЖОК можно обходиться вообще без вентиляторов или применять маломощные бесшумные модели. Работа компьютера становится тихой, в результате чего пользователь чувствует себя комфортно.

К недостаткам СЖОК следует отнести её дороговизну. Да, готовая система жидкостного охлаждения является удовольствием не из дешёвых. Но ведь при желании её можно сделать и установить самостоятельно. Это займёт время, но будет стоить недорого.

Классификация охлаждающих водяных систем

Жидкостные охлаждающие системы могут быть:

  1. По типу размещения:
    • внешние;
    • внутренние.

      Отличие между внешними и внутренними СЖОК в том, где расположена система: снаружи или внутри системного блока.

  2. По схеме соединения:
    • параллельные - при таком подключении разводка идёт от основного радиатора-теплообменника к каждому водоблоку, обеспечивающему охлаждение процессора, видеокарты или другого узла / элемента компьютера;
    • последовательные - каждый водоблок соединяется друг с другом;
    • комбинированные - такая схема включает одновременно параллельные и последовательные подключения.
  3. По способу обеспечения циркуляции жидкости:
    • помповые - система использует принцип принудительного нагнетания охлаждающей жидкости к водоблокам. В качестве нагнетателя используются помпы. Они могут иметь собственный герметичный корпус либо погружаться в охлаждающую жидкость, находящуюся в отдельном резервуаре;
    • безпомповые - жидкость циркулирует за счёт испарения, при котором создаётся давление, движущее теплоноситель в заданном направлении. Охлаждаемый элемент, нагреваясь, превращает подводимую к нему жидкость в пар, который затем снова становится жидкостью в радиаторе. По характеристикам такие системы значительно уступают помповым СЖОК.

Виды СЖОК - галерея

При использовании последовательного подключения сложно непрерывно обеспечивать хладагентом все подключаемые узлы араллельная схема подключения СЖОК - простое подключение с возможностью легко просчитывать характеристики охлаждаемых узлов Системный блок с внутренней СЖОК занимает много места внутри корпуса компьютера и требует высокой квалификации при монтаже
При использовании внешней СЖОК внутреннее пространство системного блока остаётся свободным

Составляющие элементы, инструменты и материалы для сборки СЖОК

Подберём необходимый набор для жидкостного охлаждения центрального процессора компьютера. В состав СЖОК войдут:

  • водяной блок;
  • радиатор;
  • два вентилятора;
  • помпа;
  • шланги;
  • фитинги;
  • резервуар для жидкости;
  • сама жидкость (в контур можно залить дистиллированную воду или тосол).

Все составляющие системы жидкостного охлаждения можно приобрести в интернет-магазине по соответствующему запросу.

Некоторые узлы и детали, например, водяной блок, радиатор, фитинги, резервуар, можно изготовить самостоятельно. Однако вам, вероятно, придётся заказывать токарные и фрезерные работы. В результате может получиться так, что СЖОК обойдётся дороже, чем если бы вы её приобрели готовой.

Наиболее приемлемым и наименее затратным вариантом будет приобрести основные узлы и детали, после чего самостоятельно монтировать систему. В этом случае достаточно иметь базовый набор слесарного инструмента для выполнения всех необходимых работ.

Делаем жидкостную систему охлаждения ПК своими руками - видео

Изготовление, сборка и монтаж

Рассмотрим изготовление внешней помповой системы жидкостного охлаждения центрального процессора ПК.

  1. Начнём с водоблока. Самую простую модель этого узла можно приобрести в интернет-магазине. Идёт он сразу с фитингами и зажимами.
  2. Водоблок можно изготовить и самостоятельно. В этом случае понадобится медная болванка диаметром от 70 мм и длиной 5–7 см, а также возможность заказать токарные и фрезерные работы в технической мастерской. В результате получится самодельный водоблок, который по окончании всех манипуляций нужно будет покрыть автомобильным лаком для исключения окисления.
  3. Для крепления водоблока можно использовать отверстия на материнской плате в месте изначальной установки радиатора воздушного охлаждения с вентилятором. В отверстия вставляются металлические стойки, на которые крепятся вырезанные из фторопласта планки, прижимающие водоблок к процессору.
  4. Радиатор лучше всего приобрести готовый.

    Некоторые умельцы используют радиаторы от старых автомобилей.

  5. В зависимости от размеров, на радиатор с помощью резиновых прокладок и кабельных стяжек или же посредством саморезов крепятся один или два стандартных компьютерных вентилятора.
  6. В качестве шланга можно использовать обычный жидкостный уровень, сделанный из силиконовой трубки, обрезав его с обеих сторон.
  7. Без фитингов не обходится ни одна СЖОК, ведь именно через них шланги подключаются ко всем узлам системы.
  8. В качестве нагнетателя рекомендуется использовать небольшую аквариумную помпу, которую можно приобрести в зоомагазине. Крепится она в подготовленном резервуаре для охлаждающей жидкости с помощью присосок.
  9. В роли резервуара для жидкости, выполняющего функции расширительного бачка, можно использовать любой пищевой контейнер из пластмассы, имеющий крышку. Главное, чтобы туда помещалась помпа.
  10. Для возможности долива жидкости в крышку контейнера врезается горловина любой пластиковой бутылки с закруткой.
  11. Электропитание всех узлов СЖОК выводится на отдельный штекер для возможности подключения от компьютера.
  12. На заключительном этапе все узлы СЖОК закрепляются на подобранном по размеру листе оргстекла, подключаются и фиксируются зажимами все шланги, штекер электропитания соединяется с компьютером, система заполняется дистиллированной водой или тосолом. После запуска ПК охлаждающая жидкость сразу начинает подаваться к центральному процессору.

Водоблок на компьютер своими руками - видео

Водяное охлаждение превосходит по характеристикам изначально устанавливаемую на современных компьютерах воздушную систему. За счёт жидкостного теплоносителя, используемого вместо вентиляторов, сокращается шумовой фон. Компьютер работает намного тише. Сделать СЖОК можно своими руками, обеспечив при этом надёжную защиту основных элементов и узлов компьютера (процессор, видеокарта и др.) от перегрева.

Если вы купили мощный новый компьютер, то он будет потреблять достаточно много электроэнергии, а также громко шуметь, что является весьма неприятным и очень существенным недостатком. Достаточно громоздкие системные блоки (для циркуляции воздуха), с большими кулерами, в этом случае не самый лучший вариант, поэтому сегодня мы расскажем вам об альтернативном варианте – водяном охлаждении для компьютера (а конкретно о его видах, особенностях и, конечно же, преимуществах).

Зачем необходимо водяное охлаждение?!
Как мы уже сказали, обычные компьютерные вентиляторы создают много шума, а кроме того, даже, несмотря на их большую мощность, они не способны рационально отводить из системного блока выделяемое компонентами компьютера тепло, что само по себе повышает риск выхода из строя, какого-либо элемента от перегрева.

В этих условиях производители обратили своё внимание на системы жидкостного охлаждения компьютерных деталей. Проверка множества таких систем в целом показывает, что жидкостная система охлаждения компьютера имеет право на существование в силу целого ряда показателей, выгодно отличающих её от воздушной системы.

Преимущества и принципы работы водяного охлаждения

Водяному охлаждению не требуется большого объёма системного блока для того, чтобы обеспечивать лучшую циркуляцию воздуха в самом системном блоке. Кроме всего прочего, она гораздо меньше шумит, что, кстати, также является немаловажным фактором для людей, которые по тем или иным причинам проводят много времени за компьютером. Любая же воздушная система, пусть даже самая качественная, при всех своих преимуществах, во время своей работы непрерывно создаёт поток воздуха, который гуляет по всему системному блоку, в любом случае увеличивает шум в помещении, а для многих пользователей важен низкий уровень шума, так как постоянный гул очень надоедает и раздражает. Программное обеспечение самостоятельно регулирует давление потока жидкости в системе, в зависимости от интенсивности тепловыделения процессора и других компонентов компьютера. То есть система может автоматически увеличивать или уменьшать эффективность теплоотвода, что обеспечивает непрерывный и точный контроль температурного режима, как любого отдельного элемента (будь то процессор, видеокарта или винчестер), так и во всём пространстве системного блока. Таким образом, применение жидкостного охлаждения ликвидирует также и тот недостаток любой воздушной системы, когда детали компьютера охлаждаются преимущественно воздухом из системного блока, который непрерывно нагревается этими же деталями и не успевает своевременно выводиться за пределы блока. С жидкостью такие проблемы исключены. Такая система способна справляться со своими задачами гораздо эффективнее любого воздушного охлаждения.

Также, помимо высокого уровня шума, воздушное охлаждение компьютера приводит к большому скоплению пыли: как на самих вентиляторах кулеров, так и на остальных комплектующих. В свою очередь это очень негативно сказывается как на воздухе в помещении (когда из системного блока выходит поток воздуха с пылью), так и на быстродействии всех комплектующих, на которых оседает вся пыль.

Виды водяного охлаждения по месту охлаждения


  • Наибольшую важность в любой подобной системе представляет радиатор процессора . По сравнению с традиционными кулерами, процессорный радиатор с двумя подведёнными к нему трубками (одна на вход жидкости, другая на выход) выглядит очень компактно. Это особенно радует, потому что эффективность охлаждения такого радиатора явно превосходит любой кулер.

  • Графические чипы видеокарт охлаждаются так же, как и процессоры (параллельно с ними), только радиаторы для них поменьше.

  • Не меньшую эффективность имеет жидкостное охлаждение винчестера . Для этого разработаны очень тонкие водяные радиаторы, которые крепятся к верхней плоскости жёсткого диска и благодаря максимально большой площади контакта обеспечивают хороший теплоотвод, что невозможно при обычном воздушном обдуве.

Надёжность всей водяной системы больше всего зависит от помпы (качающего насоса): прекращение циркуляции жидкости моментально вызовет падение эффективности охлаждения практически до нуля.

Системы жидкостного охлаждения делятся на два типа: те, что с помпой, и те, что без неё – безпомповые системы..

1-ый тип: системы жидкостного охлаждения с помпой
Существуют два типа помп: имеющие собственный герметичный корпус, и просто погружаемые в резервуар с охлаждающей жидкостью. Те, что имеют свой герметичный корпус, безусловно, дороже, но и значительно надёжнее, чем погружаемые в жидкость. Вся жидкость, используемая в системе, охлаждается в радиаторе-теплообменнике, к которому крепится низкооборотный кулер, создающий поток воздуха, который и охлаждает текущую в изогнутых трубках радиатора жидкость. Кулер никогда не развивает большой скорости вращения и потому шум от всей системы намного меньше, чем от мощных кулеров, используемых в воздушном охлаждении.

2-ой тип: безпомповые системы
Как понятно из названия – никакого механического нагнетателя (т.е. помпы) в них нет. Циркуляция жидкости осуществляется с использованием принципа испарителя, который создаёт направленное давление, движущее охлаждающее вещество. Жидкость (с низкой температурой кипения) непрерывно превращается в пар, когда нагревается до определённой температуры, а пар – в жидкость, когда попадает в радиатор теплообменника-конденсатора. Только тепло выделяемое охлаждаемым элементом заставляет двигаться жидкость. К достоинствам этих систем относятся: компактность, простота и невысокая стоимость, поскольку отсутствует помпа; минимум движущихся механических частей – обеспечивает низкий уровень шума и низкую вероятность механических поломок. Теперь о недостатках данного типа водяного охлаждения компьютера. Эффективность и мощность таких систем - значительно ниже, чем у помповых; используется газовая фаза вещества, а это значит, что нужна высокая герметичность конструкции, потому как любая утечка приведёт к тому, что система сразу же потеряет давление и, как следствие, станет неработоспособной. Причём заметить и исправить это будет очень нелегко.

Стоит ли устанавливать водяное охлаждение на компьютер?

Достоинствами данного типа жидкостного охлаждения являются: высокая эффективность, небольшие размеры радиаторов компьютерных чипов, возможность параллельного охлаждения сразу нескольких устройств и невысокий уровень шума – во всяком случае, ниже, чем шум от мощного кулера любой воздушной системы. Собственно, всем этим и объясняется, что производители ноутбуков стали использовать жидкостное охлаждение одними из первых. Единственным их недостатком, пожалуй, является только сложность установки в системные блоки, которые изначально проектировались для воздушных систем. Это, разумеется, не делает установку подобной системы в ваш компьютер невозможной, просто она будет сопряжена с определёнными трудностями.

Вполне вероятно, что через некоторое время в компьютерной технике произойдёт переход от систем воздушного охлаждения к жидкостным системам, потому что кроме сложностей в установке подобных конструкций на сегодняшние корпуса системных блоков, каких-либо других принципиальных недостатков у них нет, а их преимущества перед воздушным охлаждением весьма и весьма значительны. С появлением на рынке подходящих корпусов для системных блоков популярность этих систем, скорее всего, будет неуклонно расти.

Таким образом, эксперты сайт ничего не имеют против данных систем охлаждения, а наоборот советуют именно им отдать предпочтение, если того требуют обстоятельства. Только при выборе той или иной системы не нужно экономить, дабы не попасть впросак. Дешёвые водяные системы охлаждения имеют низкое качество охлаждения и достаточно высокий уровень шума, именно поэтому, приняв решение установить водяное охлаждение, рассчитывайте на достаточно высокую сумму растрат.



Загрузка...