sonyps4.ru

Основы радиотехники для начинающих. Начинающий радиолюбитель: школа, схемы, конструкции

Недавно ко мне, узнав что я радиолюбитель, на форуме нашего города, в ветке Радио обратились за помощью два человека. Оба по разным причинам, и оба разного возраста, уже взрослые, как выяснилось при встрече, одному было 45 лет, другому 27. Что доказывает, что начать изучение электроники, можно в любом возрасте. Объединяло их одно, оба были так или иначе знакомы с техникой, и хотели бы самостоятельно освоить радиодело, но не знали с чего начать. Мы продолжили общение в В_Контакте , на мой ответ, что в инете море информации на эту тему, занимайся - не хочу, я услышал от обоих примерно одинаковое, - что оба не знают с чего начать. Одним из первых вопросов было: что входит в необходимый минимум знаний радиолюбителя. Перечисление им необходимых умений, заняло довольно приличное время, и я решил написать на эту тему обзор. Думаю, он будет полезен таким же начинающим, как и мои знакомые, всем кто не может определиться, с чего начать свое обучение.

Сразу скажу, что при обучении, нужно равномерно сочетать теорию с практикой. Как бы ни хотелось, побыстрее начать паять и собирать конкретные устройства, нужно помнить о том, что без необходимой теоретической базы в голове, вы в лучшем случае, сможете безошибочно копировать чужие устройства. Тогда как если будете знать теорию, хотя бы в минимальном объеме, то сможете изменить схему, и подогнать её под свои потребности. Есть такая фраза, думаю известная каждому радиолюбителю: “Нет ничего практичнее хорошей теории”.

В первую очередь, необходимо научиться читать принципиальные схемы. Без умения читать схемы невозможно собрать даже самое простое электронное устройство. Также впоследствии, не лишним будет освоить и самостоятельное составление принципиальных схем, в специальной .

Пайка деталей

Необходимо уметь опознавать по внешнему виду, любую радиодеталь, и знать, как она обозначается на схеме. Разумеется, для того чтобы собрать, спаять любую схему, нужно иметь паяльник, желательно мощностью не выше 25 ватт, и уметь им хорошо пользоваться. Все полупроводниковые детали не любят перегрева, если вы паяете, к примеру, транзистор на плату, и не удалось припаять вывод за 5 - 7 секунд, прервитесь на 10 секунд, или припаяйте в это время другую деталь, иначе высока вероятность сжечь радиодеталь от перегрева.

Также важно паять аккуратно, особенно расположенные близко выводы радиодеталей, и не навесить “соплей”, случайных замыканий. Всегда если есть сомнение, прозвоните мультиметром в режиме звуковой прозвонки подозрительное место.

Не менее важно, удалять остатки флюса с платы, особенно если вы паяете цифровую схему, либо флюсом содержащим активные добавки. Смывать нужно специальной жидкостью, либо 97 % этиловым спиртом.

Начинающие часто собирают схемы навесным монтажом, прямо на выводах деталей. Я согласен, если выводы надежно скручены между собой, а после еще и пропаяны, такое устройство прослужит долго. Но таким способом собирать устройства, содержащие больше 5 - 8 деталей, уже не стоит. В таком случае, нужно собирать устройство на печатной плате. Собранное на плате устройство, отличается повышенной надежностью, схему соединений можно легко отследить по дорожкам, и при необходимости вызвонить мультиметром все соединения.

Минусом печатного монтажа, является трудность изменения схемы готового устройства. Поэтому перед разводкой и травлением печатной платы, всегда, сначала нужно собирать устройство на макетной плате. Делать устройства на печатных платах, можно разными способами, здесь главное соблюдать одно важное правило: дорожки медной фольги на текстолите, не должны иметь контакта с другими дорожками, там, где это не предусмотрено по схеме.

Вообще есть разные способы сделать печатную плату, например, разъединив участки фольги - дорожки, бороздкой, прорезаемой резаком в фольге, сделанным из ножовочного полотна. Либо нанеся защитный рисунок защищающий фольгу под ним, (будущие дорожки) от стравливания с помощью перманентного маркера.

Либо с помощью технологии ЛУТ (лазерно - утюжной технологии), где дорожки от стравливания защищаются припекшимся тонером. В любом случае, каким-бы способом мы не делали печатную плату, нам необходимо, сперва её развести в программе трассировщике. Для начинающих рекомендую , это ручной трассировщик с большими возможностями.

Также при самостоятельной разводке печатных плат, либо если распечатали готовую плату, необходимо умение работать с документацией на радиодеталь, с так называемыми Даташитами (Datasheet ), страничками в PDF формате. В интернете есть Даташиты практически на все импортные радиодетали, исключение составляют некоторые Китайские.

На отечественные радиодетали, можно найти информацию в отсканированных справочниках, специализированных сайтах, размещающих страницы с характеристиками радиодеталей, и информационных страничках различных интернет магазинов типа Чип и Дип . Обязательно умение определять цоколевку радиодетали, также встречается название распиновка, потому что очень многие, даже двух выводные детали имеют полярность. Также необходимы практические навыки работы с мультиметром.

Мультиметр, это универсальный прибор, с помощью только его одного, можно провести диагностику, определить выводы детали, их работоспособность, наличие или отсутствие замыкания на плате. Думаю не лишним, будет напомнить, особенно молодым начинающим радиолюбителям, и о соблюдении мер электробезопасности, при отладке работы устройства.

После сборки устройства, необходимо оформить его в красивый корпус, чтобы не стыдно было показать друзьям, а это значит, необходимы навыки слесарного, если корпус из металла или пластмассы, либо столярного дела, если корпус из дерева. Рано или поздно, любой радиолюбитель приходит к тому, что ему приходится заниматься мелким ремонтом техники, сначала своей, а потом с приобретением опыта, и по знакомым. А это означает, что необходимо умение проводить диагностику неисправности, определение причины поломки, и её последующее устранение.

Часто даже опытным радиолюбителям, без наличия инструментов, трудно выпаять многовыводные детали из платы. Хорошо если детали идут под замену, тогда откусываем выводы у самого корпуса, и выпаиваем ножки по одной. Хуже и труднее, когда эта деталь нужна для сборки какого-либо другого устройства, или производится ремонт, и деталь, возможно, потребуется после впаять назад, например, при поиске короткого замыкания на плате. В таком случае нужны инструменты для демонтажа, и умение ими пользоваться, это оплетка и оловоотсос.

Использование паяльного фена не упоминаю, ввиду частого отсутствия у начинающих доступа к нему.

Вывод

Все перечисленное, это только часть того необходимого минимума, что должен знать начинающий радиолюбитель при конструировании устройств, но имея эти навыки, вы уже сможете собрать, с приобретением небольшого опыта, практически любое устройство. Специально для сайта - AKV .

Обсудить статью С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ

Когда в цепи необходимо подавить переменные токи определенного частотного спектра, но при этом эффективно пропустить токи с частотами, находящимися выше или ниже этого спектра, может пригодиться пассивный LC-фильтр на реактивных элементах - фильтр нижних частот ФНЧ (если необходимо эффективно пропустить колебания с частотой ниже заданной) или фильтр верхних частот ФВЧ (при необходимости эффективно пропустить колебания с частотой выше заданной). Принцип построения данных фильтров основывается на свойствах индуктивностей и емкостей...

В одной из предыдущих статей мы рассмотрели общий принцип работы активных корректоров коэффициента мощности (ККМ или PFC). Однако ни одна схема корректора не заработает без контроллера, задача которого - правильно организовать управление полевым транзистором в общей схеме. В качестве яркого примера универсального PFC-контроллера для реализации ККМ можно привести популярную микросхему L6561, которая выпускается в SO-8 и DIP-8 корпусах, и предназначается для построения сетевых блоков коррекции коэффициента мощности номиналом до 400 Вт...

Коэффициент мощности и фактор наличия гармоник сетевой частоты являются важными показателями качества электроэнергии, особенно для электронного оборудования, которое этой электроэнергией питается. Для поставщика переменного тока желательно, чтобы коэффициент мощности потребителей был приближен к единице, а для электронных приборов важно чтобы гармонических искажений было бы как можно меньше. В таких условиях и электронные компоненты устройств проживут дольше, и нагрузке будет более комфортно работать. В реальности же имеет место проблема, которая состоит в том...

В данной статье будет приведен порядок расчета и подбора компонентов, необходимых при проектировании силовой части понижающего импульсного преобразователя постоянного тока без гальванической развязки, топологии buck-converter. Преобразователи данной топологии хорошо подходят для понижения постоянного напряжения в пределах 50 вольт по входу и при мощностях нагрузки не более 100 Вт. Все что касается выбора контроллера и схемы драйвера, а также типа полевого транзистора, оставим за рамками данной статьи, однако подробно разберем схему и особенности рабочих режимов...

Варистором называется полупроводниковый компонент, способный нелинейно изменять свое активное сопротивление в зависимости от величины приложенного к нему напряжения. По сути это - резистор с такой вольт-амперной характеристикой, линейный участок которой ограничен узким диапазоном, к которому приходит сопротивление варистора при приложении к нему напряжения выше определенного порогового. В этот момент сопротивление элемента скачкообразно изменяется на несколько порядков - уменьшается от изначальных десятков МОм до единиц Ом...

Оптрон - оптоэлектронный прибор, главными функциональными частями которого выступают источник света и фотоприемник, гальванически не связанные друг с другом, но расположенные внутри общего герметичного корпуса. Принцип действия оптрона базируется на том, что подаваемый на него электрический сигнал вызывает свечение на передающей стороне, и уже в форме света сигнал принимается фотоприемником, инициируя электрический сигнал на приемной стороне. То есть сигнал передается и принимается посредством оптической связи...

Одной из популярнейших топологий импульсных преобразователей напряжения является двухтактный преобразователь или push-pull (в дословном переводе - тяни-толкай). В отличие от однотактного обратноходового преобразователя (flyback), энергия в сердечнике пуш-пула не запасается, потому что в данном случае это - сердечник трансформатора, а не сердечник дросселя, он служит здесь проводником для переменного магнитного потока, создаваемого по очереди двумя половинами первичной обмотки. Это именно импульсный трансформатор с фиксированным...

Подборка простых и интересных схем для начинающих радиолюбителей. Основной акцент предлагаемых конструкций сделан именно на простоту и понимание работы основ электроники. Кроме того рассмотрены различные методы по проверки основных радиоэлектронных компонентов таких как диоды, транзисторы и оптопары, рассмотрена и работа последних.

В этой статье в простой и удобной форме вы овладеете навыками использования мультиметра. Узнаете о способах проверки основных радиокомпонентов из которых будем собирать наши первые электронные самоделки. Вы узнаете как прозвонить мультиметром собранную схему, проверить на работоспособность диод, транзистор и конденсатор.

В это статье начинающие радиолюбители смогут познакомится с принятым в мировой радиолюбительской практике условно-графическим обозначением различиных типов радиодеталей в принципиальных схемах

Простые схемы начинающих Ардуинщиков

Цикл статей и обучающих схем с радиолюбительскими экспериментами на плате Arduino для начинающих. Ардуино - радиолюбительская игрушка-конструктор, из которой без паяльника, травления печатных плат и тому подобного любой начинающий в электронике может собрать полноценное работающее устройство, подходящее для профессионального прототипирования так и для любительских опытов при изучении электроники. А кроме того Arduino полезная электронная штучка в умном домашнем хозяйстве.

Как устроен и работает полупроводниковый прибор называемый транзистором, почему он так часто встречается в радиаппаратуре и почему без него почти никогда нельзя обойтись.

Индикатор намагниченности - Обычный школьный компас чутко реагирует на магнитное поле. Достаточно, скажем, пронести перед его стрелкой намагниченный конец отвертки и стрелка отклонится. Но, к сожалению, после этого стрелка будет некоторое время по инерции раскачиваться. Поэтому пользоваться таким простейшим прибором определения намагниченности предметов неудобно. Необходимость же в таком измерительном устройстве возникает нередко. Собранный из нескольких деталей индикатор оказывается совершенно неинерционным и сравнительно чувствительным, чтобы, к примеру, определить намагниченность лезвия бритвы или часовой отвертки. Кроме того, подобный прибор пригодится в школе во время демонстрации явления индукции и самоиндукции
Индикатор переменного электромагнитного поля Вокруг проводника с током образуется магнитное поле. Если включить, скажем, настольную лампу, то такое поле будет вокруг проводов, подводящих к лампе сетевое напряжение. Причем поле будет переменным, изменяющимся с частотой сети 50 Гц. Правда, напряженность поля невелика, и обнаружить его можно лишь чувствительным индикатором
Искатель скрытой проводки . Переменное электромагнитное поле можно обнаружить с помощью электронных устройств, познакомимся с более чувствительным индикатором, способным уловить слабое поле сетевых проводов, по которым течет переменный ток. Речь пойдет об искателе скрытой проводки в вашей квартире. Такой индикатор предупредит о повреждении сетевых проводов при сверлении отверстий в стене
Индикатор потребляемой мощности «Показания» предыдущих индикаторов зависят от напряженности магнитного. либо электрического (как в последнем индикаторе) поля, создаваемого протекающим по проводам током. Чем больше ток, тем сильнее поле. А ведь ток - не что иное, как характеристика мощности, потребляемой нагрузкой от сети переменного тока. Поэтому нетрудно догадаться, что индикатор, к примеру с индуктивным датчиком, можно приспособить в схемах контроля и измерения потребляемой мощности. Кроме того, такая схема индикатора, установленная вблизи входной двери, будет сигнализировать перед уходом из квартиры об оставленных включенными приборах. Лучшее место установки датчика - у ввода проводов в квартиру, вблизи разветвительной коробки. Потому здесь протекает общий ток всех потребителей, включенных в любую розетку квартиры. Правда, переменное напряжение на выводах катушки датчика будет небольшим, и понадобится усилитель

Световой сигнализатор телефонных звонков Если в комнате громко работает телевизор телефонный звонок можно и не услышать. Вот здесь и нужен световой сигнализатор, который включит схему индикатора, как только будет телефонный звонок.

Основой схемы автомата-сигнализатора служит датчик, реагирующий на телефонные звонки, выполненный на катушке индуктивности. Она расположена рядом с телефонным аппаратом, поэтому ее витки находятся в магнитном поле электромагнита звонка вызова. Сигнал вызова индуцирует в катушке датчика переменную ЭДС.

«Бесшумный» звук схема начинающих Иногда хочется послушать радиоприемник, посмотреть телевизор, не мешая окружающим? Конечно, включить в дополнительные гнезда наушники - скажете вы. Все верно, однако подобная система связи неудобна - соединительный провод наушников не позволяет удаляться на значительное расстояние, а тем более ходить по комнате. Всего этого можно избежать, если воспользоваться «беспроводной» схемой связи, состоящей из передатчика и приемника.

Электронная «мина» Воспользовавшись принципом индуктивной связи, можно собрать своими руками интересную схему используемую в организации соревнований по поиску «мин»- замаскированных в земле или в помещении миниатюрных передатчиков, работающих на звуковой частоте.

Каждая такая «мина» представляет собой схему мультивибратора, работающего на частоте примерно 1000 Гц. В эмиттерную цепь транзистора схемы мультивибратора включен усилитель мощности с катушкой индуктивности в качестве нагрузки. Вокруг нее образуется электромагнитное поле звуковой частоты

    Прерывистая сирена Начнем с самой простой конструкции, имитирующей звук сирены. Встречаются сирены однотональные, издающие звук одной тональности, прерывистые, когда звук плавно нарастает и спадает, а затем прерывается либо становится однотональным, и двухтональные, в которых тональность звука периодически изменяется скачком.

    Схема прерывистой электронной сирены собрана на транзисторах VT 1 и VT 2 по схеме несимметричного мультивибратора. Простота схемы генератора объясняется использованием транзисторов разной структуры, что позволило обойтись без многих деталей, необходимых в схеме постройки мультивибратора на транзисторах одинаковой структуры.

    Двухтональная сирена. Взглянув на схему этого имитатора, нетрудно заметить уже знакомый узел - генератор, собранный на транзисторах VT 3 и VT 4. По такой схеме был собран предыдущий имитатор. Только в данном случае мультивибратор работает не в ждущем, а в обычном режиме. Для этого на базу первого транзистора (VT 3) подано напряжение смещения с делителя R 6 R 7. Заметьте, что транзисторы VT 3 и VT 4 поменялись местами по сравнению с предыдущей схемой из-за изменения полярности напряжения питания.

    Двигатель внутреннего сгорания. Так можно сказать про следующий имитатор послушав его звучание. И действительно, издаваемые динамической головкой звуки напоминают выхлопы, характерные во время работы двигателя автомобиля, трактора или тепловоза.

    Под звуки капели Кап... кап... кап... - доносятся звуки с улицы, когда идет дождь, весной падают с крыши капли тающего снега. Эти звуки на многих людей действуют успокаивающе, а по отзывам некоторых, даже помогают засыпать. Ну что ж, возможно, вам понадобится такой имитатор. На постройку схемы уйдет лишь с десяток деталей

    Имитатор звука подскакивающего шарика Хотите послушать, подскакивающий стальной шарик от шарикоподшипника на стальной и чугунной плите? Тогда соберите имитатор по этой схеме начинающих электронщиков.

    Морской прибой... в комнате Подключив небольшую приставку к усилителю радиоприемника, магнитофона или телевизора, вы сможете получить звуки, напоминающие шум морского прибоя. Схема такой приставки-имитатора состоит из нескольких узлов, но главный из них - генератор шума

    Костер... без пламени Почти в каждом пионерском лагере устраивают пионерский костер. Правда, не всегда удается собрать столько дров, чтобы пламя было высоким, а костер громко потрескивал.

    А если дров поблизости вообще нет? Или вы хотите соорудить незабываемый пионерский костер в школе? В этом случае поможет предлагаемый электронный имитатор, создающий характерный звук потрескивания горящего костра. Останется лишь изобразить«пламя» из красных лоскутов ткани, развеваемых скрытым на полу вентилятором.

    Как поет канарейка? Эта схема начинающего радиолюбителя сравнительно простого имитатора звуков канарейки. Это уже известная вам схема мультивибратор, но несимметричный ее вариант (сравните емкости конденсаторов С1 и СЗ частотозадающих цепей - 50 мкФ и 0,005 мкФ!). Кроме того, между базами транзисторов установлена цепочка связи из конденсатора С2 и резистора R3. Элементы мультивибратора подобраны так, что он генерирует сигналы, которые, поступая на головной телефон BF 1, преобразуются им в звуковые колебания, похожие на трели канарейки

    Трели соловья На разные голоса Использовав часть предыдущей конструкции, можно собрать новый имитатор - трелей соловья. В нем всего один транзистор, на котором выполнен блокинг-генератор с двумя цепями положительной обратной связи. Одна из них, состоящая из дросселя и конденсатора, определяет тональность звука, а вторая, составленная из резисторов и конденсатора, - период повторения трелей.

    Как стрекочет сверчок? Имитатор стрекота сверчка отличная схема начинающего электронщика состоит из мультивибратора и RC -генератора. Схема мультивибратора собрана на транзисторах. Отрицательные импульсы мультивибратора (когда закрывается один из транзисторов) поступают через диод VD1 на конденсатор С4, являющийся «аккумулятором» напряжения смещения транзистора генератора.

    Кто сказал «мяу»? Этот звук донесся из небольшой шкатулки, внутри которой разместился электронный имитатор. Схема его немного напоминает схему предыдущего имитатора, не считая усилительной части - здесь применена аналоговая интегральная микросхема.

    Звуколокатор Эта простая игрушка - всего лишь демонстрация «работы» звука. Названа она так потому, как и настоящий локатор излучает сигнал, а затем принимает его уже отраженным от каких-либо препятствий. Как только до какого-нибудь препятствия останется определенное расстояние, принятый звуковой сигнал возрастет до уровня, при котором сработает автоматика и выключит электродвигатель

    Автомат «Тише» Шум мешает любым занятиям - это ясно каждому. Но порою мы слишком поздно спохватываемся, когда в классе или другом помещении, где идет работа, уже давно громкость нашего разговора или спора превышает допустимую. Надо бы говорить тише, а мы увлеклись и не замечаем, что мешаем окружающим.

    Если же установить в помещении автомат, следящий за громкостью звука, то при достижении определенного, заранее заданного, уровня громкости автомат сработает и зажжет настенное табло «Тише» либо подаст звуковой сигнал.

    «Дрессированная змея» Акустический автомат, реагирующий на звуковой сигнал, может срабатывать не только при определенной громкости звука, но и при соответствующей частоте. Таким избирательным свойством обладает предлагаемая ниже схема игрушки.

    Одно, 2-х, 3-х, и 4-х канальный акустический выключатель А теперь поговорим об схемах автоматов, которые по звуковым сигналам способны включать и отключать нагрузку. Скажем, при одном сравнительно громком сигнале (хлопок в ладоши) автомат включает нагрузку в сеть, при другом выключает. Перерывы между хлопками могут быть сколь угодно большими, и все это время нагрузка будет либо включена, либо выключена. Подобный автомат и получил название акустический выключатель.

    Если автомат управляет только одной нагрузкой, его можно считать одноканальным, например схема одноканального акустического выключателя

Схема простого электромузыкального инструмента . Любой генератор звуковой частоты вырабатывает электрические колебания, которые, будучи поданными на усилитель ЗЧ, преобразуются его динамической головкой в звук. Тональность последнего зависит от частоты колебаний генератора. Когда в схеме генератора использован набор резисторов разных сопротивлений и их включают в частотозадающую схему обратной связи, получится простой электромузыкальный инструмент, на котором можно исполнять несложные мелодии.

Схема Терменвокс для начинающих Это первый инструмент, положивший начало новому направлению в радиоэлектронике - электронной музыке (сокращенно электромузыке). Разработал его в 1921 г. молодой петроградский физик Лев Термен. По имени изобретателя и был назван необычный электромузыкальный инструмент. Необычен же он тем, что не имеет клавиатуры, струн или труб, с помощью которых получают звуки нужной тональности. Игра на терменвоксе напоминает выступление фокусника-иллюзиониста - самые разнообразные мелодии звучат из динамической головки при едва заметных манипуляциях одной и двумя руками вблизи металлического прутка-антенны, торчащего на корпусе инструмента.

Электронный барабан схема начинающего электронщика Барабан - один из популярных, но в то же время громоздких музыкальных инструментов. Уменьшить его габариты и сделать более удобным в транспортировке - желание едва ли не каждого ансамбля. Если воспользоваться услугами электроники и собрать приставку к мощному усилителю (а он сегодня - неотъемлемая часть аппаратуры ансамбля), можно получить имитацию звучания барабана.

Если с помощью микрофона, усилителя и осциллографа «просмотреть» звук барабана, то удастся обнаружить следующее. Сигнал на экране осциллографа промелькнет в виде всплеска, напоминающего падающую каплю воды. Правда, падать она будет справа налево. Это значит, что левая часть «капли» имеет крутой фронт, обусловленный ударом по барабану, а затем следует затухающий спад - он определяется резонансными свойствами барабана. Внутри же «капля» заполнена колебаниями почти синусоидальной формы частотой 100...400 Гц - это зависит от размеров и конструктивных особенностей данного инструмента.

Приставки к электрогитаре Популярность электрогитары сегодня во многом объясняется возможностью подключать к ней электронные приставки, позволяющие получать самые разнообразные звуковые эффекты. Среди музыкантов-электрогитаристов можно услышать незнакомые для непосвященных слова «вау», «бустер», «дистошн», «тремоло» и другие. Все это - названия эффектов, получаемых во время исполнения мелодий на электрогитаре.

О некоторых приставках с подобным эффектом и пойдет рассказ. Все они рассчитаны на работу как с промышленными звукоснимателями, устанавливаемыми на обычную гитару, так и с самодельными, изготовленными по описаниям в популярной радиолюбительской литературе.

«Бустер»-приставка. Если ударить медиатором по одной из струн гитары и посмотреть на осциллографе форму электрических колебаний, снимаемых с выводов звукоснимателя, то она напомнит импульс с заполнением. Фронт «импульса» более крутой по сравнению со спадом, а «заполнение» - не что иное, как почти синусоидальные колебания, промодулированные по амплитуде. Это значит, что громкость звука при ударе по струне нарастает быстрее, чем спадает. Время нарастания звука музыканты называют атакой.

Динамика исполнения на гитаре возрастет, если ускорить атаку, т. е. увеличить скорость нарастания звука. Получающийся при этом эффект звучания получил название «бустер». Схема приставки для получения такого эффекта рассмотрена в этой статье. Она рассчитана на работу с бас-гитарой, которой обычно отводится важная роль в вокально-инструментальных ансамблях. Выполняя ритмический рисунок музыкальной композиции, бас-гитара нередко становится и солирующим инструментом.

    Цветомузыкальная приставка-индикатор Если встроить схему такой приставки в радиоприемник, то в такт с музыкой будет освещаться разноцветными огнями шкала настройки либо вспыхивать три цветовых сигнала на лицевой панели - приставка станет цветовым индикатором настройки. Как и в подавляющем большинстве цветомузыкальных приставок и установок, в предлагаемом устройстве применено частотное разделение сигналов звуковой частоты, воспроизводимых радиоприемником, по трем каналам.

    Приставка с малогабаритными лампами Предлагаемая схема приставки более серьезная конструкция, способная управлять разноцветным освещением небольшого экрана. Сигнал на вход приставки по-прежнему поступает с выводов динамической головки усилителя звуковой частоты радиоприемника или другого радиоустройства. Переменным резистором R1 устанавливают общую яркость экрана, особенно по каналу высших частот, собранному на транзисторе VT1. Яркость же свечения ламп других каналов можно устанавливать «своими» переменными резисторами - R2 и R3.

    Приставка с автомобильными лампами Многие из вас после изготовления простой цветомузыкальной приставки захотят сделать конструкцию, обладающую большей яркостью свечения ламп, достаточной освещения экрана внушительных размеров. Задача выполнимая, если воспользоваться автомобильными лампами мощностью 4...6 Вт. С такими лампами работает схема с автомобильнми лампами

    Приставка на тринисторах Увеличение числа ламп накаливания требует применения в выходных каскадах схемы транзисторов, рассчитанных на допустимую мощность в несколько десятков и даже сотен ватт. В широкую продажу подобные транзисторы не поступают, поэтому на помощь приходят тринисторы. В каждом канале достаточно использовать один тринистор - он обеспечит работу лампы (или ламп) накаливания мощностью от сотни до тысячи ватт! Маломощные нагрузки совершенно безопасны для тринистора, а для управления мощными его укрепляют на радиаторе, позволяющем отвести от корпуса тринистора излишнее тепло.

    Четырехканальная цветомузыкальная приставка Эту схему начинающего можно считать более совершенной (но и более сложной) по сравнению с предыдущей. Т.к она содержит не три, а четыре цветовых канала и в каждом канале установлены мощные осветители. Кроме того, вместо пассивных фильтров используются активные, обладающие большей избирательностью и возможностью изменять полосу пропускания (а это нужно в случае более четкого разделения сигналов по частоте).

Подборка несложных схем юных электронщиков от популярного журнала моделист-конструктор из старых выпусков.

Предыдущая часть
Сегодня мы будем делать наше первое устройство - простейший детекторный приёмник Оганова.
Это одна из первых схем, и позволяет просто слушать радио. Маяк, Радио России и ещё несколько других. Да выбор невелик, но во первых эта схема очень простая, а во вторых работает без батареек, то есть получает питание от самой радиостанции.

Делать будем без печатной платы. Вот схема.

Давайте разбираться.

Это катушка индуктивности. Для неё нам понадобится медная проволока толщиной 0.1 - 1 мм.

Это конденсатор. Грубо говоря он подобен аккумулятору, только мгновенного действия. А если серьёзно, то конденсатор это устройство для накопления заряда и энергии электрического поля. Для тех кто ничего не понял: представьте коробку, в которую вы сыпите песок (электричество). Сыпите, сыпите, коробка уже полна, и песок высыпается наружу. А когда вы перестаёте сыпать, то коробка высыпает всё своё содержимое наружу (конденсатор разряжается). Как то так.
В нашей схеме нужны будут нужны конденсаторы с ёмкостью 1000-2000 пФ - C2 и 200-500 пФ - C1. Фарады - это единицы измерения ёмкости конденсатора, или сколько та абстрактная коробка может в себя вместить песка.

Диод. Это полупроводниковый прибор, пропускающий ток (поток электронов только в одну сторону). Представте себе охранника, который работает по принципу " Всех пускать, никого не выпускать! " Или с точностью наоборот, в зависимости от того как нам его поставить. Нам подойдёт любой, кроме светодиода (который как понятно светится).

Это динамик - говорилка. Его мы можем выковырнуть из старого советского телефона, или купить. Нам нужен высокоомный - примерно 60 ом.
upload.wikimedia.org/wikipedia/commons/thumb/9/91/Earth_Ground.svg/200px-Earth_Ground.svg.png
Это заземление. Подключим его к батарее отопления.
А последний элемент - антену сделаем из длиннющего куска проволоки - метра 3.

Как делать катушку? Катушка состоит из двух частей, по 25 витков каждая. Как сделать катушку? Берем что-нибудь круглое диаметром около 10 см (например, банка из под кофе), обклеиваем в несколько слоёв бумагой. Первый слой прилепляем к банке скотчем, второй неплотно накручивается на первый. В этом случае катушку после намотки легко будет снять. Теперь аккуратно наматываем медную проволоку – виток к витку. Между двумя частями катушки оставляем 5 сантиметров проволоки, а также не забываем оставить примерно столько же проволоки на входе и выходе. После того как вы намотали катушку, ее следует обмотать изолентой или скотчем в два слоя вдоль витков. А после снятия с банки – обмотать ещё и поперёк.
Соединим всё с помощью пайки. Как паять? Легко.
Осторожно, жало паяльника очень горячее, если обожжётесь поднесите руку под холодную воду. Ожог скоро заживёт.
Вот сама схема пайки:

Спасибо за внимание!

Начиная изучать основы радиодела, необходимо представлять, к какой цели вы идете. Основных вариантов два: самостоятельное создание разнообразной электронной аппаратуры и общение в эфире с другими радиолюбителями по коротковолновой связи.

Организация рабочего места

С изучение радиодела? С организации рабочего места. Необходим стол, покрытый каким-либо практичным материалом. Это может быть кусок оргстекла, ДВП или даже обычного линолеума. Рядом должны присутствовать несколько , с левой стороны необходимо установить настольную лампу.

Также вам необходимы хотя бы простейшие измерительные приборы, без них создавать радиоэлектронную аппаратуру невозможно. Как минимум, вам необходим ампервольтомметр, в обиходе обычно именуемый тестером, мультиметром. Например, неплохим вариантом является цифровой мультиметр DT9205, позволяющий измерять напряжение, силу тока, сопротивление и емкость. Также очень желательно иметь осциллограф, это один из самых полезных приборов.

Разумеется, необходим паяльник, а лучше два – один примерно на 60 Вт, второй – на 25 Вт. Также понадобится припой и флюс.

Первые опыты

Помните, что важно не просто собрать какую-то схему, а понимать, как она работает. Поэтому необходимо с самых первых конструкций разбираться в логике работы схем. Упустив этот момент, вы не сможете впоследствии собирать и налаживать сложные конструкции.

Начать лучше с создания детекторных приемников. Они состоят всего из нескольких деталей, но позволяют ощутить весь вкус радиодела – когда в наушниках созданного вашими радиоприемника вдруг появляется звук, это подлинное счастье. Не забудьте сделать наружную антенну и надежное заземление, без них детекторный приемник работать не будет. Дальше вы сможете добавить к нему усилительные каскады , что позволит вывести звук на громкоговорители.

Собрав несколько конструкций на дискретных элементах, переходите к микросхемам. На них можно собирать намного более сложные схемы, поэтому необходимо научиться с ними работать. Для настройки сложных схем понадобится осциллограф – с его помощью очень удобно контролировать наличие сигнала и его форму на выводах микросхем.

Дальнейший путь зависит от ваших предпочтений. Можно собирать различную аппаратуру, создавать собственные оригинальные конструкции. Или собрать коротковолновый приемник и сделать первые шаги на пути к общению по радиосвязи с радиолюбителями-коротковолновиками со всего мира.

Радиолюбитель-коротковолновик

Вероятно, вам приходилось видеть на крышах некоторых домов большие сложные антенны. Такая антенна говорит о том, что в доме живет радиолюбитель, общающийся со коллегами по радиосвязи.

Первые шаги на этом направлении состоят в сборке или приобретении коротковолнового приемника, работающего в любительском диапазоне. Такой приемник позволит вам прослушивать разговоры радиолюбителей, вы многое узнаете о том, как происходит общение в эфире.

Следующий этап – получение собственного радиолюбительского позывного. Получив его, вы уже сами сможете общаться на частотах любительского радиодиапазона. Для этого вам понадобится самодельный или покупной трансивер – устройство, способное работать как на прием, так и на передачу.

Какой бы вариант вы не выбрали, необходимы серьезные познания в радиоделе. Поэтому необходимо особенно тщательно изучать основы, это позволит заложить прочный фундамент для дальнейшей работы.



Загрузка...