sonyps4.ru

Основы программирования микроконтроллеров. AVR-программирование

Людей, работающих с программной частью микроконтроллеров, редко причисляют к классическим разработчикам ПО. Всё дело в том, что помимо софтверных знаний, им требуются ещё кое-какие сведения об используемом железе. Многих программистов такие знания не касаются вовсе.

Плюс, разработчик приложений или сайтов всегда подсознательно стремится к триумфу. Создание уникального и популярного продукта является той отметкой, разделяющей карьеру на нормальную и успешную. А создавая программу для микроконтроллера, вы вряд ли будете думать об общественной оценке вашего вклада. Впрочем, давайте по порядку.

Возраст

Начнём с главного: когда уже (ещё) можно начать прокладывать свой путь в профессию? Ответ предсказуем: чем раньше, тем лучше. И изобилие специальных наборов для детей к этому располагает. Даже дело не в том, что с возрастом вам будет сложнее перестраиваться и обучаться этой дисциплине. Просто опыт, как и во многих других IT-профессиях, здесь играет решающее значение.

Но не всё так плохо. Всё же в России этот рынок не очень развит. Начав путь разработчика ПО для МК после 30, вы сможете сделать неплохую карьеру в какой-то одной сфере или конкретном месте деятельности. Если, конечно, не пытаться стать «многостаночником». Всегда бывают исключения, но многое зависит от вашей прошлой деятельности. Наверное, стоит принять во внимание, что даже 10 лет в этой профессии не впечатляют работодателя.

Знания

От пустых слов перейдём к реальным требованиям. «MustKnow» в программировании микроконтроллеров - язык C/C++. Да, мировые тенденции сейчас указывают на переход на более совершенные или хотя бы простые языки ( Arduino или D). Но это будущее довольно отдалённое, закладывать путь в него можно разве что сегодняшним школьникам младших классов.

Кроме того, будет очень полезным знание ассемблера. Это необходимо для пошагового отслеживания исполнения кода, чтобы избежать плавающих ошибок и неоправданных потерь в быстродействии.

В остальном довольно общая компьютерная наука: протоколы передачи, простейшее знание электроники и схемотехники (хотя бы принципы работы АЦП/ЦАП, работать с ключами, питанием и пр.), умение читать (и понимать) техническую документацию на английском языке. Но главное - не работать по принципу “научного тыка”, в противном случае ваши микроконтроллеры рискуют превратиться в “камни”.

Еще один совет: постигать все эти знания необходимо на практике. Начать можно с дешёвых, но эффективных готовых плат со всей необходимой обвязкой, вроде Arduino или Raspberry Pi, которые в будущем наверняка станут для вас хорошими помощниками. А уже потом, если возникнет желание, поиграть с периферией.

Литература

На прошлой неделе, подачи одного из пользователей GeekBrains, я всерьёз задумался над вопросом “Где можно пройти курсы по программированию микроконтроллеров?”, да и вообще о профильной литературе в целом (и это несмотря на профильное высшее образование и около 10 лет опыта работы). Дело не в том, что их не существует (есть и курсы , и книги), просто главный инструмент разработчика ПО для МК - техническая документация, поставляемая вместе с платформой.

Все универсальные книги могут описать отличия, преимущества и недостатки тех или иных микроконтроллеров, на что обратить внимание при написании кода, обучить “красоте” и основным принципам. Но огромный плюс и он же главный недостаток данной профессии - подробная индивидуальная инструкция по работе с каждым более-менее серьёзным контроллером.

Это означает, что абсолютно любой человек может взять, прочитать её и через несколько мгновений организовать стандартное мигание “светодиодами”. Но даже с 50 годами стажа вы не сможете сесть за незнакомый микроконтроллер и, не читая документацию, сделать с ним что-то полезное (придётся, как минимум взглянуть на расположение контактов и их назначение по умолчанию).

IDE

Как и у популярных направлений программирования, здесь также имеются собственные IDE. Каждая крупная компания выпускает собственную среду разработки для своих продуктов. Есть и универсальные решения. Стоит обратить внимание на Keil uVision - это такой универсальный и, пожалуй, наиболее популярный инструмент (хоть и не лучший) на все случаи жизни. Полный перечень можете найти .

Работа

Если вам действительно нравится идея программировать микроконтроллеры, создавая уникальные современные гаджеты, то найти вакансии себе по душе не составит труда. Люди данной профессии востребованы, причём как в стартапах, так и в крупных прогосударственных структурах, в том числе военных.

Финансово трудно придётся новичкам (до 1 года опыта): зарплата в районе 20 тыс. рублей в месяц для программиста МК. Это вполне реальная цифра в регионах. Зато если вы живёте в столице, у вас есть опыт работы с популярным видом МК (от 3 лет активной деятельности) и голова на плечах, то вполне можно рассчитывать и на 150 тыс. рублей в месяц. В целом, не сказать, что конкуренция за места у данных разработчиков высокая, но с течением времени она неизбежно растёт.

Опять же, для людей с опытом есть вариант поискать счастье за границей. Особенно если у вас уже есть опыт полноценной работы. Дело в том, что в России идея IoT пока не слишком развивается. Да и вообще автоматизация пока не затрагивает небольшие системы. А в США, Японии и других развитых странах хороший разработчик ПО для МК - на вес золота. Правда, придётся учитывать иной уровень конкуренции и серьёзные требования по производительности труда.

И кстати

В любом случае, прежде чем осознанно встать на эти рельсы, займитесь программированием МК в качестве хобби. Сделайте “умной” свою комнату или дом, повторите несколько экспериментов из , опубликуйте собственные достижения, посвятите этому делу мозги и душу. И если не возникнет ощущения “колхоза”, то... добро пожаловать в клуб!

Микроконтроллерами называют особый вид микросхем, используемый для управления различными электронными устройствами.

Это миниатюрные компьютеры, все составляющие которых (процессор, ОЗУ, ПЗУ) располагаются на одном кристалле. От микропроцессоров их отличает наличие таймеров, контроллеров, компараторов и других периферийных устройств. В настоящее время микроконтроллеры используются при производстве:

  • датчиков для автомобилей;
  • игрушек;
  • индикаторов напряжения, зарядных устройств;
  • пультов управления;
  • миниатюрных электронных приборов.

Управление осуществляется при помощи специальных программ.

Начинать осваивать программирование микроконтроллеров для начинающих рекомендуется с изучения архитектуры и разновидностей. Промышленность выпускает следующие виды МК:

  • встраиваемые;
  • 8-, 16- и 32-разрядные;
  • цифровые сигнальные процессоры.

Производителям микроконтроллеров приходится постоянно балансировать между габаритами, мощностью и ценой изделий. Поэтому до сих пор в ходу 8-разрядные модели. Они обладают довольно низкой производительностью, но во многих случаях данный факт является преимуществом, т.к. позволяет экономить энергоресурсы. Цифровые сигнальные процессоры способны обрабатывать в реальном времени большие потоки данных. Однако их стоимость намного выше.

Количество используемых кодов операций может быть неодинаковым. Поэтому применяются системы команд RISC и CISC. Первая считается сокращенной и выполняется за один такт генератора. Это позволяет упростить аппаратную реализацию ЦП, повысить производительность микросхемы. CISC - сложная система, способная значительно увеличить эффективность устройства.

Изучить программирование микроконтроллеров для начинающих невозможно без понимания алгоритмов. На ЦП микросхемы команды подаются в определенном порядке. Причем их структура должна восприниматься процессором однозначно. Поэтому сначала программист составляет последовательность выполнения команд. Заставить ЦП немедленно остановить программу можно при помощи вызова прерывания. Для этого используют внешние сигналы либо встроенные периферийные устройства.

Семейства микроконтроллеров

Чаще всего встречаются микроконтроллеры следующих семейств:

  • MSP430 (TI);
  • ARM (ARM Limited);
  • MCS 51 (INTEL);
  • STMB (STMicroelectronics);
  • PIC (Microchip);
  • AVR (Atmel);
  • RL78 (Renesas Electronics).

Одной из наиболее популярных в электронной промышленности является продукция компании Atmel, построенная на базе RISC-ядра. Первые микросхемы, разработанные в 1995 году, относятся к группе Classic. Изучать программирование микроконтроллеров AVR для начинающих желательно на более современных моделях:

  • Mega - семейство мощных микросхем с развитой архитектурой.
  • Tiny - недорогие изделия, имеющие восемь выводов.

Необходимо помнить, что совместимость систем команд сохраняется лишь при переносе программы с малопроизводительного МК на более мощный.

Изделия компании «Атмел» просты и понятны. Однако для использования всего функционала придется разработать программное обеспечение. Приступать к программированию микроконтроллеров AVR для начинающих рекомендуется с загрузки специализированной среды Atmel Studio. Актуальная версия предоставляется официальным сайтом производителя на бесплатной основе. Для разработки ПО в этой среде дополнительные программные компоненты не требуются.

Комплекс «Атмел Студио» включает огромное количество примеров готовых проектов. Это поможет новичку быстрее освоить базовые возможности и начать создавать собственные программы. В нем также имеются модули для компиляции и окончательной отладки кода. Параллельно с его освоением нужно изучать языки программирования. Без них разработать программное обеспечение невозможно.

Языки программирования

По своей структуре языки программирования микроконтроллеров мало отличаются от тех, что используются для персональных компьютеров. Среди них выделяют группы низкого и высокого уровня. Современные программисты в основном используют С/С++ и Ассемблер. Между приверженцами этих языков ведутся бесконечные споры о том, какой из них лучше.

Низкоуровневый Ассемблер в последнее время сдает позиции. Он использует прямые инструкции, обращенные непосредственно к чипу. Поэтому от программиста требуется безукоризненное знание системных команд процессора. Написание ПО на Ассемблере занимает значительное время. Главным преимуществом языка является высокая скорость исполнения готовой программы.

На самом деле, можно использовать практически любые языки программирования микроконтроллеров. Но популярнее всех С/С++. Это язык высокого уровня, позволяющий работать с максимальным комфортом. Более того, в разработке архитектуры AVR принимали участие создатели Си. Поэтому микросхемы производства «Атмел» адаптированы именно к этому языку.

С/С++ - это гармоничное сочетание низкоуровневых и высокоуровневых возможностей. Поэтому в код можно внедрить вставки на Ассемблере. Готовый программный продукт легко читается и модифицируется. Скорость разработки достаточно высокая. При этом доскональное изучение архитектуры МК и системы команд ЦП не требуется. Компиляторы Си снабжаются библиотеками внушительного размера, что облегчает работу программиста.

Нужно отметить, что выбор оптимального языка программирования зависит также от аппаратного обеспечения. При малом количестве оперативной памяти использовать высокоуровневый Си нецелесообразно. В данном случае больше подойдет Ассемблер. Он обеспечивает максимальное быстродействие за счет короткого кода программы. Универсальной среды программирования не существует, но в большинстве бесплатных и коммерческих приложений можно использовать как Ассемблер, так и С/С++.

Микроконтроллеры PIC

Первые микроконтроллеры PIC появились во второй половине прошлого века. Быстрые 8-разрядные микросхемы компании Microchip мгновенно завоевали популярность. Двухшинная гарвардская архитектура обеспечивает беспрецедентную скорость. Ее разрабатывали на основе набора регистров, для которого характерно разделение шин.

Выбирая язык программирования микроконтроллеров PIC, необходимо учитывать, что в основе микросхем семейства лежит уникальная конструкция RISC-процессора. Симметричная система команд позволяет произвольно выбирать метод адресации, выполнять операции в любом регистре. На данный момент компания «Микрочип» выпускает 5 разновидностей МК, которые совместимы по программному коду:

  1. PIC18CXXX (75 команд, встроенный аппаратный стек);
  2. PIC17CXXX (58 команд 16-разрядного формата);
  3. PIC16CXXX (35 команд, большой набор периферийных устройств);
  4. PIC16C5X (33 команды 12-разрядного формата, корпуса с 18–28 выводами);
  5. PIC12CXXX (версии с 35 и 33 командами, интегрированный генератор).

В большинстве случаев МК PIC имеют однократно программируемую память. Встречаются более дорогие модели с Flash или ультрафиолетовым стиранием. Ассортимент из 500 наименований позволяет подобрать изделие для любой задачи. Сейчас производитель концентрирует усилия на развитии 32-разрядных версий с увеличенным объемом памяти.

Языки программирования микроконтроллеров PIC - это Ассемблер и Си. Для кодирования подходят любые интегрированные среды разработки (IDE). Программировать с их помощью очень удобно. Они автоматически переводят текст программы в машинный код. Важной характеристикой IDE является возможность пошаговой симуляции работы готового ПО. Мы рекомендуем пользоваться средой разработки MPLAB. Ее созданием занималась компания Microchip.

Перед началом работы в MPLAB советуем каждый раз заводить отдельную папку. Это нужно, чтобы не запутаться в файлах проектов. Интерфейс программы интуитивно понятный, и трудностей с ним возникнуть не должно. Для отладки используются фирменные отладчики Pickit, ICD, REAL ICE, IC PROG. В них имеется возможность просмотра содержимого памяти, установки контрольных точек.

Эту статью (а точнее цикл статей…) я решил полностью посвятить микроконтроллерам фирмы Atmel. Конечно, тема эта избитая… НО! На собственном опыте знаю, что познать истину среди этого, извините, БАРДАКА, очень и очень сложно! Поэтому решил попытаться внести хотя бы какую-нибудь ясность в головы жаждущих познать этого страшного зверя, зовущегося «Микроконтроллер».

Итак, цель этой статьи в том, чтобы описать и по возможности показать весь процесс создания устройства на основе микроконтроллера с «нуля». То есть, от задумки (например, решили мы собрать новогоднюю мигалку, подобную описанной уважаемым alx32 в статье …) до воплощения в железе. Разумеется, минуя все промежуточные стадии: постановка задачи, выбор МК, подбор обвязки, формулировка алгоритма, написание программы, отладка, создание платы и, самое долгожданное – запуск!!!

Обновлено: добавлены файлы. Итак, задача : нам нужно создать устройство, способное зажигать в определенном порядке (пусть будет по очереди) , N-ное количество светодиодов (пускай будет 8 штук).
(это для начала……..)


Теперь можно браться за программирование. Писать можно на чем угодно, но начинающим советую отдать предпочтение языку C , т.к. программировать проще и нагляднее. Лично я пользуюсь компилятором CodeVision AVR (он есть в файловом архиве), дальнейшие листинги программ будут приводиться именно для этого компилятора.

Определимся с алгоритмом . Нам нужно по очереди через определенный промежуток времени активировать один из выходов МК.

Включать/выключать можно разными способами :
- присваивать значения каждому выводу отдельно;
- записывать значения сразу всех выводов.

Значения (последовательность) можно получить :
- набрав все команды вручную;
- из массива;
- математическим методом.

Временной интервал можно задать :
- функциями delay (задержка);
- через таймер.

Поэкспериментируем со всеми этими способами. Но сначала нужна заготовка…

Чтобы создать заготовку программы воспользуемся генератором кода, встроенным в CVAVR . Для этого запускаем программу, нажимаем File -> New , в открывшемся окне выбираем “Project” и жмем OK . На вопрос «Воспользоваться генератором кода?» отвечаем “Yes”.
Появилось окно генератора кода. В нем выбираем тип МК и его тактовую частоту, остальное оставляем как есть:


Далее переходим на вкладку “Ports” и там в “PortB” и выставляем следующее:


Так мы определили все выводы порта B как выходы, а нолики означают, что при включении питания на них будет устанавливаться логический "0 ".
Остальные функции нам пока не нужны.

Жмем “File -> Generate, Save and Exit” , выбираем куда сохранить файлы проекта и видим окно с созданным генератором кодом.

Теперь давайте введем в программу наш код .
Простейший вариант реализации (хотя и самы не красивый с точки зрения программирования) – записываем значения каждого вывода, а задержки делаем через функцию delay .

delay_ms(x ); - задержка на x миллисекунд

delay_us(x ); - задержка на x микросекунд

PORTB - порт, с которым мы работаем.

PORTB.x - обращение к выводу x порта B

Находим в конце текста такие строки


Это бесконечный цикл (т.е.выполняется всё время, пока включено питание) нашей программы. Всё, что перед ним – команды предварительной настройки микроконтроллера. Строки, начинающиеся с “//” – комментарии, их тоже полезно иногда читать.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Жмем кнопочку Make the project

(в панели инструментов).

Матерится?
И правильно! Компилятор не знает функции delay_ms() , поэтому надо указать ему файл, в котором эта функция описана.
Для этого в самом начале текста программы нужно вставить строку #include (тут точка_с_запятой не нужна! )
Примерно вот так:

Снова жмем волшебную кнопочку.
Проект создан .
Теперь в папке, в которую мы сохранили сам проект, появился файл название_проекта .hex – это и есть прошивка микроконтроллера!

Но подождите, не торопитесь хвататься за паяльник… Мы ведь учимся программировать, а не паять!

Именно поэтому предлагаю проверить нашу программу в виртуальном режиме, а именно – в таком замечательном и любимом мною продукте от Labcenter Electronics - Proteus VSM Там можно моделировать абсолютно любые схемы (даже примитивы Лапласа есть!). Взять ее можно в прикрепленном архиве, вместе с файлами проекта. Правда версия не совсем крякнутая, поэтому не работает сохранение. Что с этим делать расскажу в отдельной статье.

Итак, запускаем ISIS (среда разработки принципиальных схем). В этом окне нажимам кнопочку “P”.

В строке “Keywords” вводим “attiny2313” и справа получаем:


Выбирать особо не из чего, поэтому щелкаем дважды по этой одинокой строке и видим слева в основном окне:


Это значит, что элемент добавлен.

Теперь введите в поле “Keywords” слова “LED-RED” и “RES” . Добавьте резистор и светодиод в проект и закройте окно выбора элементов.

Пробуем собрать схему (вывод RESET обязательно подключите к +5V, иначе ничего не заработает! и в жизни это тоже желательно!)

Вот небольшая подсказка :

А для редактирования свойств элементов достаточно щелкнуть по ним дважды.

Собрали? Надеюсь, не покалечили при этом себя, близких и окружающие предметы.

Простите за издевательство, просто если разберешься сам – уже не забудешь, так что, постигайте, программа очень мощная и она стоит того, чтобы ее освоить!

Когда схема собрана, можно прошить наш виртуальный МК. Для этого щелкаем по нему дважды и видим окно.

Программирование микроконтроллеров

Введение

Раздел 2. Среды программирования. Схемы подключения микроконтроллера

Раздел 3. Практическая реализация программы на микроконтроллере

Список использованных источников

Введение

Актуальность темы. Микроконтроллеры используются во всех сферах жизнедеятельности человека, устройствах, которые окружают его. Простота подключения и большие функциональные возможности. С помощью программирования микроконтроллера можно решить многие практические задачи аппаратной техники.

Цель работы . На основе практического примера показать преимущественные характеристики использования микроконтроллеров, необходимости их внедрения в различные устройства.

Можно считать что микроконтроллер (МК) - это компьютер, разместившийся в одной микросхеме. Отсюда и его основные привлекательные качества: малые габариты; высокие производительность, надежность и способность быть адаптированным для выполнения самых различных задач.

Микроконтроллер помимо центрального процессора (ЦП) содержит память и многочисленные устройства ввода/вывода: аналого-цифровые преобразователи, последовательные и параллельные каналы передачи информации, таймеры реального времени, широтно-импульсные модуляторы (ШИМ), генераторы программируемых импульсов и т.д. Его основное назначение - использование в системах автоматического управления, встроенных в самые различные устройства: кредитные карточки, фотоаппараты, сотовые телефоны, музыкальные центры, телевизоры, видеомагнитофоны и видеокамеры, стиральные машины, микроволновые печи, системы охранной сигнализации, системы зажигания бензиновых двигателей, электроприводы локомотивов, ядерные реакторы и многое, многое другое. Встраиваемые системы управления стали настолько массовым явлением, что фактически сформировалась новая отрасль экономики, получившая название EmbeddedSystems (встраиваемые системы).

Достаточно широкое распространение имеют МК фирмы ATMEL, которые располагают большими функциональными возможностями.

Применение МК можно разделить на два этапа: первый - программирование, когда пользователь разрабатывает программу и прошивает ее непосредственно в кристалл, и второй - согласование спроектированных исполнительных устройств с запрограммируемым МК. Значительно облегчают отладку программы на первом этапе - симулятор, который наглядно моделирует работу микропроцессора. На втором этапе для отладки используется внутрисхемный эмулятор, который является сложным и дорогим устройством, зачастую недоступным рядовому пользователю.

В тоже время в литературе мало уделено внимания вопросам обучения программированию некоторых недорогих МК, в сочетании с реальными исполнительными устройствами.

Разработка макета программатора отличающегося простотой, наглядностью и низкой себестоимостью, становиться необходимой как для самого программирования кристаллов, так и для наглядного обучения широкого круга пользователей основам программирования МК.

Раздел 1. Назначение и область применения, их архитектура

Микроконтроллер - компьютер на одной микросхеме. Предназначен для управления различными электронными устройствами и осуществления взаимодействия между ними в соответствии с заложенной в микроконтроллер программой. В отличие от микропроцессоров, используемых в персональных компьютерах, микроконтроллеры содержат встроенные дополнительные устройства. Эти устройства выполняют свои задачи под управлением микропроцессорного ядра микроконтроллера.

К наиболее распространенным встроенным устройствам относятся устройства памяти и порты ввода/вывода (I/O), интерфейсы связи, таймеры, системные часы. Устройства памяти включают оперативную память (RAM), постоянные запоминающие устройства (ROM), перепрограммируемую ROM (EPROM), электрически перепрограммируемую ROM (EEPROM). Таймеры включают и часы реального времени, и таймеры прерываний. Средства I/O включают последовательные порты связи, параллельные порты (I/O линии), аналого-цифровые преобразователи (A/D), цифроаналоговые преобразователи (D/A), драйверы жидкокристаллического дисплея (LCD) или драйверы вакуумного флуоресцентного дисплея (VFD). Встроенные устройства обладают повышенной надежностью, поскольку они не требуют никаких внешних электрических цепей.

В отличие от микроконтроллера контроллером обычно называют плату, построенную на основе микроконтроллера, но достаточно часто при использовании понятия "микроконтроллер" применяют сокращенное название этого устройства, отбрасывая приставку "микро" для простоты. Также при упоминании микроконтроллеров можно встретить слова "чип" или "микрочип", "кристалл" (большинство микроконтроллеров изготавливают на едином кристалле кремния), сокращения МК или от английского microcontroller - MC.

микроконтроллер программа микросхема электронный

Микроконтроллеры можно встретить в огромном количестве современных промышленных и бытовых приборов: станках, автомобилях, телефонах, телевизорах, холодильниках, стиральных машинах. и даже кофеварках. Среди производителей микроконтроллеров можно назвать Intel, Motorola, Hitachi, Microchip, Atmel, Philips, Texas Instruments, Infineon Technologies (бывшая Siemens Semiconductor Group) и многих других. Для производства современных микросхем требуются сверхчистые помещения.

Основным классификационным признаком микроконтроллеров является разрядность данных, обрабатываемых арифметико-логическим устройством (АЛУ). По этому признаку они делятся на 4-, 8-, 16-, 32 - и 64-разрядные. Сегодня наибольшая доля мирового рынка микроконтроллеров принадлежит восьмиразрядным устройствам (около 50 % в стоимостном выражении). За ними следуют 16-разрядные и DSP-микроконтроллеры (DSP - Digital Signal Processor - цифровой сигнальный процессор), ориентированные на использование в системах обработки сигналов (каждая из групп занимает примерно по 20 % рынка). Внутри каждой группы микроконтроллеры делятся на CISC - и RISC-устройства. Наиболее многочисленной группой являются CISC-микроконтроллеры, но в последние годы среди новых чипов наметилась явная тенденция роста доли RISC-архитектуры.

Тактовая частота, или, более точно, скорость шины, определяет, сколько вычислений может быть выполнено за единицу времени. В основном производительность микроконтроллера и потребляемая им мощность увеличиваются с повышением тактовой частоты. Производительность микроконтроллера измеряют в MIPS (Million Instruсtions per Second - миллион инструкций в секунду).

Термин контроллер образовался от английского слова to control - управлять. Эти устройства могут основываться на различных принципах работы от механических или оптических устройств до электронных аналоговых или цифровых устройств. Механические устройства управления обладают низкой надежностью и высокой стоимостью по сравнению с электронными блоками управления, поэтому в дальнейшем мы такие устройства рассматривать не будем. Электронные аналоговые устройства требуют постоянной регулировки в процессе эксплуатации, что увеличивает стоимость их эксплуатации. Поэтому такие устройства к настоящему времени почти не используются. Наиболее распространенными на сегодняшний день схемами управления являются схемы, построенные на основе цифровых микросхем.

В зависимости от стоимости и габаритов устройства, которым требуется управлять, определяются и требования к контроллеру. Если объект управления занимает десятки метров по площади, как, например, автоматические телефонные станции, базовые станции сотовых систем связи или радиорелейные линии связи, то в качестве контроллеров можно использовать универсальные компьютеры. Управление при этом можно осуществлять через встроенные порты компьютера (LPT, COM, USB или Ethernet). В такие компьютеры при включении питания заносится управляющая программа, которая и превращает универсальный компьютер в контроллер.

Использование универсального компьютера в качестве контроллера позволяет в кратчайшие сроки производить разработку новых систем связи, легко их модернизировать (путём простой смены программы) а также использовать готовые массовые (а значит дешёвые) блоки.

Если же к контроллеру предъявляются особенные требования, такие, как работа в условиях тряски, расширенном диапазоне температур, воздействия агрессивных сред, то приходится использовать промышленные варианты универсальных компьютеров. Естественно, что эти компьютеры значительно дороже обычных универсальных компьютеров, но всё равно они позволяют экономить время разработки системы, за счёт того, что не нужно вести разработку аппаратуры контроллера.

Всё популярнее становится тема электронного конструирования. Предлагаем вашему вниманию статью, которая расскажет, микроконтроллеров для начинающих.

Какие микроконтроллеры существуют?

Прежде всего, необходимо обрисовать ситуацию с микроконтроллерами. Дело в том, что они выпускаются не одной фирмой, а сразу несколькими, поэтому существует довольно много различных микроконтроллеров, которые имеют разные параметры, разные особенности при использовании и различные возможности. Различаются они по скорости быстродействия, дополнительным интерфейсам и количеству выводов. Самыми популярными на всем пространстве бывшего СССР являются представители РІС и AVR. Программирование микроконтроллеров AVR и РІС не составляет труда, что и обеспечило их популярность.

Как микроконтроллеры программируются?

Программирование микроконтроллеров осуществляется, как правило, с помощью специальных приспособлений, которые называются программаторами. Программаторы могут быть или покупными или самодельными. Но при прошивке микроконтроллера с помощью самодельного программатора шанс того, что он превратится в «кирпич», довольно высокий. Есть ещё один вариант, который можно рассмотреть на примере платы «Ардуино». Плата работает на МК фирмы Atmel, и в ней осуществляется программирование микроконтроллеров AVR. В плате уже есть заранее прошитый бутлоадер и порт USB, которые позволяют безопасно прошить используемый микроконтроллер, не давая пользователю доступа к данным, что могут этот самый МК вывести из строя. Программирование микроконтроллеров для начинающих не так сложно, как может показаться, и при определённой сноровке и сообразительности избавит вас от необходимости ехать за новым механизмом.

Аппаратные различия разных микроконтроллеров

При выборе микроконтроллеров следует обратить внимание на некоторые аппаратные различия даже не разных компаний, а и в одном модельном ряду. Для начала следует обратить внимание на возможность перезаписи информации на микроконтроллер. Эта функция позволит вам долго экспериментировать с одним МК. Также обратите внимание на количество выводов с их предназначением. Не обделяйте вниманием и частоту работы кристалла, на котором работает схема: от неё зависит количество операций в секунду, которые может выполнить микроконтроллер. При осмотре этих характеристик, а также памяти МК сначала может показаться, что на микроконтроллерах ничего толкового не сделаешь, но это ошибочное мнение. Помните, что программирование микроконтроллеров для начинающих не требует самой лучшей техники вначале, но про запас вы можете взять и что-то более мощное.

Языки программирования микроконтроллеров

В качестве языков программирования микроконтроллеров используется два: С/С++ и ассемблер. Каждый из них имеет свои преимущества и недостатки. Так, если говорить про ассемблер, то он даёт возможность сделать всё очень тонко и качественно, особенно важно это, когда не хватает оперативной памяти или оперативных мощностей (что, впрочем, довольно редко происходит). Но его изучение и написание программ на нём требует довольно много усилий, пунктуальности и времени. Поэтому для разработок на основе микроконтроллеров часто используют языки программирования С и С++. Они являются более понятными, по своему виду и структуре они близки человеческой речи, хотя и не представляют из себя её в полноценном понимании. Также они имеют очень хорошо проработанный функционал, который может запросто взаимодействовать с аппаратной частью, представляя, что это всего лишь элемент программы. При всех своих явных преимуществах на С и С++ создают более объемные программы, нежели на ассемблере.

Также в отдельных случаях, когда критичным является используемое оперативное пространство, можно соединить эти языки. Почти все среды разработки для С и С++ имеют возможность установки в программу ассемблерных вставок. Поэтому в случае возникновения проблемы на критическом участке можно написать ассемблерную вставку и интегрировать её в прошивку для микроконтроллера, а саму прошивку, точнее, большую её часть, написать на С или С++. Программирование микроконтроллеров на СИ является более лёгким, поэтому многие выбирают именно эти языки. Но те, кто не боится трудностей и хочет понять особенность работы аппаратуры, могут попробовать свои силы и с ассемблером.

Напутствие

Если появилось желание поэкспериментировать с прекрасно. Можно только посоветовать запастись терпением и настойчивостью, и тогда любые цели, поставленные перед изобретателем, окажутся осуществимыми. Программирование микроконтроллеров для начинающих и для опытных людей выглядит по-разному: что для начинающих сложно, то для опытных - рутина. Главное - помнить, что всё, что не противоречит законам физики, является осуществимым и решаемым.



Загрузка...