sonyps4.ru

Оптоволоконные каналы. Оптоволоконная связь

Вычислительные сети предприятий в нашей стране развиваются все более быстрыми темпами. Поэтому обычно перед компанией со временем встают 2 основные проблемы: модернизация существующей сети в сторону увеличения мощности всех ее компонент (рабочих станций, активного и сетевого оборудования) и реорганизация обработки информации. Ситуация, когда на предприятии необходимо объединить в единую сеть несколько подразделений, как, например, склад, головной офис, удаленный офис, бухгалтерский отдел, конструкторское бюро и т.д. и т.п., зачастую приходит не сразу, а начинает решаться, когда разрозненная обработка информации становится экономически невыгодной и приводит к потере времени. Лишь тогда информационный отдел, служба или подобное подразделение начинают ломать голову как наиболее экономично, с наименьшими временными затратами, без потери качества, объединить в единую корпоративную сеть предприятия несколько локальных вычислительных сетей и удаленных центров обработки информации.

Кроме того, потребность в передаче данных с высокой скоростью и без потери качества выходит на первый план. Решение этой проблемы требует, помимо закупки активного сетевого оборудования, организацию линий связи. Для этого обычно используется кабельная проводка на основе медного или оптоволоконного кабеля. Однако, хорошо отработанные решения для организации ближней связи с использованием медных или волоконно-оптических линий не всегда удобны.

Прокладка кабеля часто влечет за собой значительные затруднения:

  • невозможность получить разрешение на прокладку кабеля, особенно в городских условиях;
  • нет возможности получить в аренду телефонные линии от оператора, либо плохое качество связи по арендованным линиям;
  • большие затраты средств и времени на прокладку новых коммуникаций, а также из-за высокой арендной платы за использование уже существующих коммуникаций;
  • использование старых коммуникаций, которые из-за своей высокой загруженности уже не могут справиться с новым дополнительным трафиком.

Из всего вышесказанного следует, что в ряде случаев использование беспроводных соединений может быть экономически выгодным.

Преимущества беспроводных сетей передачи данных:

  • возможная альтернатива использования арендованных линий;
  • экономичность. Например, для организации временных сетей при частых структурных перестройках в организации, связанных с изменением конфигурации кабельной сети;
  • объединение в сеть компьютеров там, где прокладка кабеля часто невозможна технически.

Если еще несколько лет назад первые беспроводные сетевые устройства только начинали появляться на рынке, то сейчас решения на базе беспроводного доступа предлагают все крупные системные интеграторы. Стоит оговориться, что речь идет о радиодоступе.

Большинство беспроводных устройств поддерживают конфигурацию Ethernet. С физической точки зрения, при организации беспроводной сети используются или схема точка — точка (point-to-point) или сети работают в режиме многоточечного доступа (point-to-multipoint). В первом случае связь обеспечивается между двумя удаленными друг от друга устройствами, во втором — в сеть объединяются несколько устройств.

Технологии и устройства, используемые при построении беспроводных сетей:

  • сотовая связь с коммутацией каналов;
  • пакетная радиосвязь;
  • использование космических спутников (спутниковая связь);
  • использование беспроводных мостов для соединения ЛВС;
  • с использованием радиоинтерфейса;
  • пейджинговая радиосвязь;
  • с использованием лазерного оборудования;
  • с использованием оптического оборудования и т.д.

Беспроводные оптические каналы связи

Для организации соединения отдельных ЛВС могут использоваться оптические линии, работающие в инфракрасном участке спектра. На отечественном рынке несколько компаний предлагают специальное оптическое оборудование.

Существуют решения по организации оптических каналов связи с использованием отечественного оборудования. Опыт применения БОКСов (беспроводных оптических каналов связи) показал их высокую надежность, возможность эксплуатации практически в любых погодных условиях. Использование БОКСов для организации корпоративной сети пивоваренного завода в Туле дал возможность снизить суммарную стоимость проекта на 70% (см. Сети и системы связи №9 стр.8).

В общем случае применение беспроводных оптических каналов связи целесообразно в следующих случаях:

  • создания основного и/или резервного канала связи;
  • объединения нескольких локальных вычислительных сетей;
  • для решения проблемы "последней мили";
  • аварийной связи, когда необходимо быстрое развертывание;
  • для связи типа "точка-точка" при максимальном удалении между "точками" до 1 км;
  • создание магистральных каналов;
  • для организации доступа к общим и ведомственным сетям передачи данных или для доступа в сеть Интернет.

Наиболее типично применение оптических каналов связи для создания беспроводных соединений между отдельными зданиями, разделенными преградами: дорогами, площадями, железнодорожной полосой, водной преградой, промышленной зоной и т.д.

Для кого может представлять интерес такие решения? Это могут быть предприятия:

  • расположенные в нескольких отдельно стоящих зданиях на расстоянии до 1 км друг от друга;
  • имеющие интенсивный трафик данных;
  • имеющие несколько локальных вычислительных сетей и удаленных терминалов;
  • предъявляющие повышенные требования к надежности функционирования всей сети;
  • решающие задачу распределенной обработки информации в единой корпоративной сети.

Оптическая передача данных

Рассмотрим коротко процесс передачи данных с использованием оптического канала. Через устройство сопряжения сетевой трафик из кабеля (витая пара или волоконная оптика) доставляется к светодиоду, работающим в инфракрасном диапазоне спектра. Сигнал передается узко направленным световым лучом в принимающий фотодиод на другом конце сети. Полученный световой сигнал демодулируется и преобразуется в коммуникационный протокол.

Следует иметь в виду, что для организации дуплексных конфигураций необходим комплект оборудования, состоящий из 2-х приемников и 2-х передатчиков БОКС-10МПД.

Беспроводные оптические каналы связи обладают рядом преимуществ:

  • сравнительно низкая стоимость оборудования;
  • высокая надежность передачи информации. Тестирование работы БОКСов при организации беспроводного объединения ЛВС в Туле показало, что надежность и качество передачи данных такое же как и при обычной передаче по кабелю;
  • Компактность и малый вес, что существенно облегчает как установку, так и демонтаж системы. Устройства могут легко крепиться к стенам зданий, столбам и т.д.;
  • Простота эксплуатации (все что требуется — это периодически (не часто) протирать линзы);
  • Минимальные сроки установки — быстрый ввод в эксплуатацию (2-3 часа);
  • скорость передачи информации до 10 Мбит/с
  • установка БОКСов не требует согласования в органах Госсвязьнадзора;
  • повышенная устойчивость к помехам;
  • работа в любых погодных условиях (снег, дождь и т.д.);
  • инфракрасное излучение безвредно для человека.
  • Возможность передачи большого количества данных;
  • Высокая скорость соединения
  • Нет необходимости занимать частоты;

Следует оговориться, что несмотря на малые сроки установки системы, нужен определенный навык. Поэтому лучше обратиться к специалистам, которые сумеют выполнить все требования, предъявляемые к монтажу, и будут нести ответственность за работу системы.

Спектр БОКСов достаточно широк и подходит для большого круга задач. В таблице приведен перечень устройств, предлагающихся на рынке России и их краткие характеристики.

Оборудование БОКС

Наименование Скорость Рабочая дистанция Возможная дистанция*
БОКС-100М 100 Mbps до 0,5 км до 1 км
БОКС-10МПД 20 Mbps до 1 км до 2 км
БОКС-10М 10 Mbps до 0,5 км до 1 км
БОКС-10МЛ 10 Mbps до 0,25 км до 0,5 км
БОКС-Е2 8 Mbps до 0,5 км до 1 км
БОКС-Е1 2 Mbps до 1 км до 3 км
БОКС-1024 1 Mbps до 1,5 км до 4 км
БОКС-512 512 Kbps до 1,8 км до 5 км
БОКС-256 256 Kbps до 2,3 км до 6,5 км
БОКС-128 128 Kbps до 2,6 км до 8 км
БОКС-64 64Kbps до 3 км до 10 км

Как видно из таблицы, рабочая дистанция зависит от конкретной модели. Все устройства обеспечивают непрерывное функционирование канала связи в условиях дождя, снега, тумана. Стоит заметить, что теоретическое (расчетное) расстояние превышает рабочее в 3 раза. Рассмотрим характеристики нескольких устройств.

Базовое изделие семейства — БОКС-10М, предназначено для создания канала передачи данных стандарта Ethernet. Устройство производит преобразование электрических сигналов стандарта IEEE 802.3 (Ethernet) в оптические инфракрасного диапазона (850 — 890 нм), передает их в атмосфере остронаправленным лучом, с последующим приемом на другой стороне и преобразованием оптического сигнала в электрический.

БОКС-10М состоит из двух одинаковых приемопередатчиков (оптических труб), устанавливаемых на обеих сторонах канала связи.

Каждый блок состоит из приемопередающего модуля, козырька, интерфейсного кабеля (длиной 5 метров), системы наведения, кронштейна, блока питания и блока доступа.

Приемопередающий модуль — это передатчик остронаправленного оптического излучения инфракрасного диапазона, состоящий из инфракрасного полупроводникового светодиода и приемника — высокочувствительного светодиода. Светодиоды работают на длине волны 0,87 мкм. Характеристики устройства представлены в таблице:

Технические характеристики

Общие
Скорость передачи информации 10 Мбит/с
Режим передачи Полудуплексный, по стандарту IEEE 802.3
Рабочая дистанция до 500 м
Режим работы непрерывный
менее 10 -9
Время наработки на отказ не менее 100 000 часов
Источник излучения Инфракрасный светодиод
Приемник
Сетевые
Интерфейс Ethernet 10Base-T
UTP 5cat — 100 Ом
Физические
Длина волны 0,87 мкм
Частота 344 828 ГГц
200 мВт
Расходимость луча не более 2 м на расстоянии 500 м
Электрические
220 В +10%, 50 Гц
12 В +10%, 50 Гц
не более 40 Вт
Атмосферные
Рабочий диапазон температур от -40 до +50 °С
84-106,7 кПа
505×142×250 мм
Масса одного устройства не более 8 кг
Исполнение

Беспроводной Оптический Канал Связи БОКС-10МПД

Принцип действия этой модели аналогичен БОКС-10М.

  • большая рабочая дистанция
  • разнесенный приемник и передатчик (независимые корпуса);
  • полный дуплекс

Технические характеристики

Общие
Скорость передачи информации 10 Мбит/с (20 Мбит/с)
Режим передачи Дуплексный, по стандарту IEEE 802.3
Рабочая дистанция до 1000 м
Режим работы непрерывный
Вероятность возникновения ошибки менее 10 -9
Время наработки на отказ не менее 100 000 часов
Источник излучения Инфракрасный светодиод
Приемник Высокочувствительный фотодиод
Сетевые
Интерфейс Ethernet 10Base-T
Импеданс интерфейсного кабеля UTP 5cat — 100 Ом
Физические
Длина волны 0,87 мкм
Частота 344 828 ГГц
Выходная мощность передатчика 400 мВт
Расходимость луча не более 4 м на расстоянии 1000 м
Электрические
Входное питание (на блок питания) 220 В +10%, 50 Гц
Выходное питание (от блока питания) 12 В +10%, 50 Гц
Потребляемая мощность при включенном термостате системы не более 100 Вт
Атмосферные
Рабочий диапазон температур от -40 до +40 °С
Отн. влажность окружающего воздуха до 100% (во всем диапазоне температур)
Рабочий диапазон атмосферного давления 84-106,7 кПа
Размеры и исполнение (каждого корпуса)
Размеры одного устройства (без кронштейна) 500×120×220 мм
Масса одного устройства не более 8 кг
Исполнение Всепогодное, с термостатом и системой предотвращения запотевания оптики

Беспроводной оптический канал связи БОКС — Е1

Принцип действия и состав этой модели аналогичен БОКС-10МПД. Существенные отличия — большая рабочая и максимальная дистанции, соответствует спецификации СCITT G.703.

БОКС-Е1 предназначен для подключения аппаратуры со стандартными цифровыми интерфейсами к каналам E1 (или T1), реализованным по рекомендации G.703. Эти каналы используются в цифровых системах передачи (например в ИКМ-30, наиболее распространенной в российских телефонных сетях).

Технические характеристики

Общие
Скорость передачи информации 2 Мбит/с
Режим передачи Синхронный, дуплексный
Рабочая дистанция 30-2000 м
Режим работы непрерывный
Вероятность возникновения ошибки менeе 10 -9
Время наработки на отказ не менее 100 000 часов
Источник излучения Инфракрасный диод
Приемник-детектор фотодиод
Сетевые
Интерфейс Е1 (ИКМ-30)
Линия витая пара 120 Ом
Разъем для подключения линии RJ-11
Физические
Длина волны 0,87 мкм
Частота 344 828 ГГц
Выходная мощность 400 мВт
Расходимость луча не более 4 м / 1 км
Электрические
Входное питание (основное) 220 В, 50 Гц
Входное питание (резервное) -48 В
Автоматическое переключение питания
Потребляемая мощность при включенном термостате системы не более 50 Вт
Атмосферные
Рабочий диапазон температур от -40 до +40 °С
Отн. влажность окружающего воздуха до 100% (во всем диапазоне температур)
Рабочий диапазон атмосферного давления 84-106,7 кПа
Размеры и исполнение
Размеры одного устройства (без кронштейна) 500×120×220 мм
Масса одного устройства не более 8 кг
Исполнение Всепогодное, с термостатом и системой предотвращения запотевания оптики

Монтаж

Приемопередатчики могут устанавливаться на поверхности крыш или стен. БОКС монтируется на металлической опоре, которая обеспечивает возможность регулировки угла наклона по горизонтали и по вертикали. В обоих плоскостях угол наклона не превышает 45 градусов, что вполне достаточно для точной наводки 2-х труб друг относительно друга.

Подключение примепередатчика осуществляется через специальный блок доступа. В качестве соединительных кабелей обычно используют витую пару категории 5 (UTP). С одной стороны блок доступа соединяется с компьютером или с сетевым устройством, если идет соединение с ЛВС. В качестве сетевого устройства используется либо маршрутизатор, либо коммутатор. Со стороны оптического канала блок доступа соединяется с приемо-передатчиком интерфейсным кабелем. В качестве интерфейсного кабеля используется обычная витая пара, снабженная специальными разъемами.

И блок доступа и блок питания приемопередатчика всегда устанавливаются внутри помещения и рядом с друг с другом. Оба крепятся на стене или в стойке, которая используется для оборудования ЛВС.

Для успешного монтажа необходимо выполнить ряд требований:

  • здания должны находится в пределах прямой видимости. На всем пути луч не должен встречать непрозрачных препятствий.
  • устройства должны располагаться на некотором возвышении над землей. Особенно это требование актуально для городских условий. Лучше, если никто не сможет задеть подобное устройство. Это может плохо кончиться как для пешехода, так и для БОКСа. Учитывая страсть наших граждан к свободно стоящей (висящей) аппаратуре, то будет лучше, если устройство будет находиться как можно выше над землей и в трудно доступном месте;
  • при установке системы следует избегать ориентации приемопередатчиков в направлении восток-запад. Такое, на первый взгляд, специфическое требование объясняется достаточно просто: солнечные лучи могут на несколько минут перекрыть излучение и передача может прекратиться;
  • на работу БОКСов может повлиять вибрация. Наличие рядом с устройством работающего генератора может привести к сдвигу трубы и разрыву соединения. Поэтому при выборе места крепления смотрите, чтобы вблизи не было моторов, компрессоров и т.д.

Типовые приложения

Точка-точка

Длина соединения "точка-точка" варьируется в зависимости от конкретной модели оборудования. При создании такого соединения следует всегда выбирать трассу таким образом, чтобы исключить появление в будущем непреодолимых препятствий, например рост деревьев. Установка приемопередатчиков может быть осуществлена как на крыше здания, так и на стене. Идеальная альтернатива любому кабельному решению по цене, скорости установки, ликвидности капиталовложений.

Точка доступа

Магистраль

Стандарт Ethernet (IEEE 802.3) определил, что между двумя узлами локальной сети может находиться не более 4 активных устройств: HUB-ов, репитеров. Однако это ограничение легко устраняется с помощью более интеллекутуальных устройств: коммутаторов, мостов, маршрутизаторов.

Наше оборудование (для локальных сетей) не относится к классу активных или пассивных устройств Ethernet, а является конвертером электрических сигналов в оптические. Поэтому при создании магистралей ограничение на 4 активных устройства не будет действовать, если в точке соединения двух отрезков магистрали для связи двух приемопередатчиков используется cross — over кабель. При соблюдении этого правила протяженность магистрали теоретически не ограничена.

Комбинация

На практике, наверное, этот способ самый распространенный. Он позволяет моделировать коммуникационную инфраструктуру в соответствии с решаемой задачей, целесообразностью, ценой и эффективностью. В умелом применении всех способов и технологий на практике состоит искусство системной интеграции.

Заключение

Так что же выбрать? Возможно, на этот вопрос поможет ответить таблица, приведенная ниже.

Ориентировочная стоимость Медный кабель Волоконно-оптический кабель Радиоканал Оптический канал Лазерный канал
$300-500 за 1 км до 5-6000 дол. за 1 км от 7 до 100 тыс. дол. за комплект 2000-4000 дол. за комплект 12-22 тыс. дол. за комплект
Время на подготовку и выполнение монтажа Подготовка работ и прокладка — до 1 месяца; установка HDSL-модемов — несколько часов Подготовка работ и прокладка 1-2 месяца Подготовка работ 2-3 месяца, установка — несколько часов Подготовка монтажа 2-3 дня, установка 2-3 часа Подготовка работ 1-2 недели, установка — несколько часов
Максимальная пропускная способность До 2 Мбит/с при использованием HDSL До 155 Мбит/с До 155 Мбит/с До 10 Мб/c (в перспективе 100 Мбит/с) До 155 Мбит/с
Максимальная дальность связи без повторителей До 20 км при использовании HDSL Не менее 50-70 км До 80 км (зависит от мощности сигнала) До 1 км (в перспективе 1,500) До 1,2 км

Практический опыт петербургской компании "Компьютерные системы Акрополис", которая в рамках долгосрочного проекта с ОАО "Пивоваренная компания Тульское пиво" применила БОКСы для объединения в единую корпоративную сеть вычислительных средств завода показал, что:

  • оборудование стабильно работает в условиях прямой видимости соединяемых объектов на расстояниях до 500м (модель БОКС-10М) и до 1000 м (модель БОКС-10МПД);
  • при этом обеспечивается надежная связь практически при любых погодных условиях;
  • достигаемое качество связи аналогично использованию обычного медного или оптоволоконного кабеля;
  • канал позволяет обмениваться данными на скоростях 10 Мб/с (комплект 10М), или 20 Мб/c (для 10МПД);
  • решение по установке ИК — оборудования позволило снизить общую стоимость проекта (включая стоимость оборудования и проделанных работ) на 60-70%.

В настоящее время в качестве оптических линий связи используют:

  • а) оптические линии с использованием волоконно-оптического кабеля - волоконно-оптические линии связи (ВОЛС);
  • б) оптические линии связи без использования волоконно-оптического кабеля.

Наилучшие показатели по скорости передачи данных, по помехозащищенности, по защищенности от несанкционированного доступа имеют волоконно-оптические линии связи.

Волоконно-оптические линии связи (ВОЛС)

Структурная схема волоконно-оптической линии связи приведена на рис. 7.11.

Рис. 7.11.

Электрический сигнал поступает на передатчик - трансивер, который преобразует электрический сигнал в световой импульс. Последний через оптический соединитель подается в оптический кабель. В месте приема оптический кабель с помощью оптического соединителя подключатся к приемнику - трансиверу, преобразующему пучок света в электрический сигнал.

В зависимости от назначения ВОЛС, ее протяженности, качества используемых комплектующих структурная схема может изменяться. При значительных расстояниях между пунктами передачи и приема вводится ретранслятор - усилитель сигналов. При малой длине оптического кабеля (если хватает строительной длины оптического кабеля) сварка кабеля не нужна. Под строительной длиной понимают длину цельного куска кабеля, поставляемого заводом-изготовигелем.

Волоконно-оптические линии связи имеют следующие достоинства:

  • 1. Высокую помехозащищенность от внешних электромагнитных помех и от межканальных взаимонаводок.
  • 2. Широкий диапазон рабочих частот позволяет по такой линии связи передавать информацию со скоростью 10 |2 бит/с = Тбит/с.
  • 3. Защищенность от несанкционированного доступа: излучения в окружающее пространство ВОЛС почти не дает, а изготовление отводов оптической энергии без разрушения кабеля практически невозможно. А всякие воздействия на волокно могут быть зарегистрированы с помощью мониторинга (непрерывного контроля) целостности линии.
  • 4. Возможность скрытой передачи информации.
  • 5. Потенциально низкую стоимость, обусловленную заменой дорогостоящих цветных металлов (медь) материалами с неограниченными сырьевыми ресурсами (двуокись кремния).
  • 6. Автоматически обеспечивается гальваническая развязка сегментов линии.

Однако в оптоволоконной технологии имеются и свои недостатки:

  • 1. Высокая стоимость аппаратуры.
  • 2. Требуется дорогое технологическое оборудование, как в процессе монтажа, так и в процессе эксплуатации. При обрыве оптического кабеля затраты на его восстановление значительно выше, чем на восстановление медного кабеля.
  • 3. Оптические кабели нестойки к воздействию радиации.

Основу ВОЛС составляют оптические кабели, изготавливаемые из

отдельных световодов - оптических волокон.

Оптическое волокно представляет собой тонкую двухслойную нить, состоящую из сердечника и оболочки с различными показателями преломления. Для защиты волокна от атмосферных и механических воздействий поверх светоотражающей оболочки накладывается защитное покрытие. Конструкция оптического волокна с защитным покрытием представлена на рис.7.12.

Рис. 7.12.

Используются 3 типа оптических волокон: полимерные оптические волокна (POF = Plastic Optical Fiber), кварц-полимерные оптические волокна (PCF = Polymer Cladded Fiber), кварцевые оптические волокна (GOF = Glass Optical Fiber).

Полимерные оптические волокна изготавливаются из полимерных материалов, имеющих высокие оптические свойства. Волоконно- оптические кабели из полимерного оптического волокна характеризуются хорошей гибкостью (при диаметре волокна 1,5 мм допустимый радиус изгиба волокон равен 8 мм) и обеспечивают пропускную способность до 2,5 Гбит/с, что существенно выше, чем у витой пары (max 1 Гбит/с). Дальность передачи данных - до 80 м.

POF используется в настоящее время достаточно широко. Его используют для систем декоративного, архитектурного и ландшафтного освещения, для подсветки бассейнов, для безопасного освещения взрывоопасных помещений. Еще одной областью применения можно считать использование POF для изготовления систем визуальной индикации информационных панелей бытовой, автомобильной, промышленной и медицинской электроники. ПОВ применяют для создания высокоскоростных недорогих, свободных от электромагнитных помех линий передачи данных на небольшие расстояния (системы автоматизации технологических процессов, передача сигналов от видеокамер, оптических датчиков; локальные вычислительные сети). Например, ПОВ-кабели используются в промышленном стандарте PROFIBUS. На рис.7.13 приведен внешний вид такого кабеля с установленным соединителем.

Кварц-полимерные оптические волокна изготавливаются с кварцевым сердечником и полимерной светоотражающей оболочкой и предназначены для систем внутри- и межобъектовой связи. Дальность передачи данных до 400 м, радиус многократных изгибов кабеля - не менее

75 мм. PCF-кабсли поставляются заранее разделанными с установленными соединителями. Внешний вид одного из таких кабелей приведен на рис. 7.13.


Рис. 7.13.

Кварцевые оптические волокна изготавливаются из высокочистого кварцевого стекла (сердечник и светоотражающая оболочка) и применяются гам, где большие объемы данных необходимо передавать на высоких скоростях и на большие расстояния - до нескольких километров (систем дальней, внутри- и межобъектовой связи: локальных компьютерных сетях LAN (Local Area Networks), сетях MAN (Metropolitan Area Networks), сетях WAN (Wide Area Networks)).

Передача оптической энергии по оптическому волокну обеспечивается с помощью эффекта полного внутреннего отражения. Кварцевое оптическое волокно представляет собой двухслойный цилиндрический световод (рис. 7.14).


Рис. 7.

в оптоволокне

Материал внутренней жилы имеет показатель преломления п и а материал внешнего слоя - п 2 , при этом п > п 2 , т. е. материал внутренней жилы оптически более плотный, чем материал оболочки. Для излучения, входящего в цилиндр под малыми углами по отношению к оси цилиндра, выполняется условие полного внутреннего отражения: при падении излучения на границу с оболочкой вся энергия излучения отражается внутрь жилы световода. То же самое происходит и при всех последующих отражениях; в результате излучение распространяется вдоль оси световода, не выходя через оболочку. Максимальный угол отклонения от оси, при котором еще имеется полное внутреннее отражение, определяется выражением

Величина А 0 называется числовой апертурой световода и учитывается при согласовании световода с излучателем. Излучение, падающее на торец под углами у >уо (внеапертурные лучи), при взаимодействии с оболочкой не только отражается, но и преломляется; часть оптической энергии уходит из световода. В конечном итоге после многократных встреч с границей жила-оболочка такое излучение полностью рассеивается из световода.

Оптоволокно характеризуется двумя важнейшими параметрами: дисперсией и затуханием.

Дисперсия, т. е. зависимость скорости распространения сигнала от длины волны излучения, - важнейший параметр оптического волокна. Поскольку при передаче информации светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке дисперсии пользуются термином «полоса пропускания» - величина, обратная величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км. Измеряется полоса пропускания в мегагерцах на километр (МГц км). Дисперсия накладывает ограничения на дальность передачи и верхнее значение частоты передаваемых сигналов.

Затухание определяется потерями на поглощение и рассеяние излучения в оптоволокне. Потери на поглощение зависят от чистоты материала, а потери на рассеяние - от неоднородности его показателей преломления. Зависит затухание и от длины волны излучения, вводимого в оптоволокно.

Количественно затухание определяется по формуле

где Р вх - мощность входного оптического сигнала; Р еих - мощность выходного оптического сигнала; / - длина световода.

Единицей измерении затухания служит децибелл на километр (дБ/км).

Величины затухания и дисперсии различаются для разных типов кварцевых оптических волокон.

В зависимости от диаметра и профиля показателя преломления в направлении от центра к периферии в поперечном сечении световода они делятся на многомодовые со ступенчатым профилем показателя преломления, одномодовые волокна, многомодовые волокна с градиентным изменением показателя преломления. На рис. 7.15 приведены пути распространения света в различных типах оптоволокна.


Рис. 7.15.

Волокно на (рис.7.15, а) называется волокном со ступенчатым профилем показателя преломления и многомодовым, поскольку для распространения луча света существует много возможных путей, или мод. Это множество мод приводит к дисперсии (уширению) импульса, поскольку каждая мода проходит в волокне различный путь, а поэтому разные моды имеют разную задержку передачи, проходя от одного конца волокна до другого. Результат этого явления - ограничение максимальной частоты, которую можно эффективно передавать при данной длине волокна. Увеличение или частоты, или длины волокна сверх предельных значений, по существу, приводит к слиянию следующих друг за другом импульсов, из-за чего их становится невозможно различить. Для типового многомодового волокна этот предел равен примерно 15 МГц км. Это означает, что видеосигнал с полосой, например, 5 МГц может быть передан на максимальное расстояние в 3 км (5 МГц? 3 км = 15 МГц км). Попытка передать сигнал набольшее расстояние приведет к прогрессирующей потере высоких частот. В многомодовом волокне диаметр световой жилы составляет 50; 62,5; 85; 140 мкм.

Одномодовые волокна (рис.7.15, Ь) весьма эффективно снижают дисперсию, и результирующая полоса - во много ГГц км - делает их идеальными для протяженных линий связи. По одномодовым световодам в идеальном случае распространяется только одна волна. Они обладают значительно меньшим коэффициентом затухания (в зависимости от длины волны в 2...4 и даже в 7... 10 раз) по сравнению с многомодовыми и наибольшей пропускной способностью, т. к. в них почти не искажается сигнал. Но для этого диаметр сердцевины световода должен быть соизмерим с длиной волны. Практически диаметр равен 8... 10 мкм. К сожалению, волокно столь малого диаметра требует применения мощного, прецизионно совмещенного, а поэтому сравнительно дорогостоящего излучателя на лазерном диоде, что снижает их привлекательность для многих применений.

В идеале требуется волокно с полосой пропускания того же порядка, что и одномодового волокна, но с диаметром, как у многомодового, чтобы было возможно применение недорогих передатчиков на светодиодах. До некоторой степени этим требованиям удовлетворяет многомодовое волокно с градиентным изменением показателя преломления (рис. 7.15, с). Оно напоминает многомодовое волокно со ступенчатым изменением показателя преломления, о котором говорилось выше, но показатель преломления его сердцевины неоднороден - он плавно изменяется от максимального значения в центре до меньших значений на периферии. Это приводит к двум следствиям. Первое - свет распространяется по слегка изгибающемуся пути, и второе, и более важное, различия в задержке распространения разных мод минимальны. Это связано с тем, что высокие моды, входящие в волокно под большим углом и проходящие больший путь, на самом деле начинают распространяться с большей скоростью по мерс того, как они удаляются от центра в зону, где показатель преломления снижается, и в основном движутся быстрее, чем моды низших порядков, остающиеся вблизи оси волокна, в области высокого показателя преломления. Увеличение скорости как раз компенсирует больший проходимый путь.

Градиентные многомодовые световоды предпочтительнее, т. к. в них, во-первых, распространяется меньше мод и, во-вторых, меньше различаются их углы падения и отражения, а следовательно, благоприятнее условия передачи.

Хотя многомодовые волокна с градиентным показателем преломления не являются идеальными, но тем не менее они демонстрируют весьма неплохие значения полосы. Поэтому в большинстве систем малой и средней протяженности выбор такого типа волокон оказывается предпочтительным.

Оптический сигнал затухает во всех волокнах со скоростью, зависящей от длины волны передатчика источника света. Существует три длины волны, на которых затухание оптического волокна обычно минимально, - 850, 1310 и 1550 нм. Они известны как окна прозрачности. Для многомодовых систем окно на длине волны в 850 нм - первое и наиболее часто используемое (наименьшая цена оптоволоконной линии связи). На этой длине волны градиентное многомодовое волокно хорошего качества показывает затухание порядка 3 дБ/км, что делает возможной реализацию связи на расстояниях свыше 3 км.

На длине волны 1310 нм то же самое волокно показывает еще меньшее затухание - 0,7 дБ/км, позволяя тем самым пропорционально увеличить дальность связи примерно до 12 км; 1310 нм - это также первое рабочее окно для одномодовых оптоволоконных систем, затухание при этом составляет около 0,4 дБ/км, что в сочетании с передатчиками на лазерных диодах позволяет создавать линии связи длиной свыше 50 км. Второе окно прозрачности - 1550 нм - используется для создания еще более длинных линий связи (затухание волокна - менее 0,24 дБ/км).

Значения затухания в различных окнах прозрачности в многомодовых и одномодовых световодах приведены в табл. 7.3.

Таблица 7.3

Значения затухания в многомодовых и одномодовых световодах

Для связи приемника и передатчика используется волоконно- оптический кабель (ВОК), в котором оптические волокна дополняются элементами, повышающими эластичность и прочность кабеля, защиту кабеля от внешних факторов. Различают кабели для внутренней прокладки, кабель для использования вне помещений (кабели, которые могут закапываться в грунт; кабели, которые прокладываются в специальных канализациях; кабели, которые подвешиваются на открытом пространстве), кабели для подводных протяженных линий связи.

Почти вес европейские производители наносят на оптоволоконный кабель маркировку, соответствующую системе стандарта DIN VDE 0888. По этому стандарту каждому типу кабеля ставится в соответствие последовательность букв и цифр, в которых заключены все характеристики волоконно-оптических кабелей. Отечественные производители используют свою классификацию и свою систему обозначений.

Временный выход из строя оптического кабеля или отсутствие возможности прокладки кабеля, необходимость высокой защищенности от электромагнитных помех и перехвата привело к созданию беска- бельных оптических линий связи с различной дальностью связи.

Оптические линии связи без использования волоконно-оптического кабеля разделяют на оптические линии с большой дальностью связи и локальные беспроводные оптические линии.

Идеология бескабельной оптики основана на том, что оптический канал заменяет кабель.

ВОЛС — это система, основывающаяся на передаче данных посредством оптического волокна.

Волоконно-оптическая линия связи способствует надежной передаче данных, обладает высокими показателями качества связи. Система способна работать вне зависимости от наличия электромагнитных помех, а также на больших расстояниях функционирует без усилителей.

В основе этого метода передачи информации лежит использование технологии волоконной оптики, когда свет является носителем данных.

Составляющие элементы ВОЛС

Принято разделять оборудование ВОЛС на активные и пассивные элементы.

Упрощенная схема действия всех компонентов заключается в нахождении на одном конце кабеля светодиода или лазерного диода, который передает сигнал.

Во время передачи данных инфракрасный диод создает импульс согласно с типом сигнала. Фотокодектор на другом конце волокна принимает и преобразует световой сигнал в электрический.

К активным компонентам системы относят:

  • мультиплексор — устройство, соединяющее несколько сигналов в единственный;
  • усилитель — позволяет увеличить мощность передаваемого сигнала;
  • светодиоды и лазерные диоды — источник света в кабеле;
  • фотодиод — приниматель сигнала на конечной части волокна, осуществляет преобразование полученного сигнала;
  • модулятор — устройство преобразования сигнала из электрического в оптический.

Пассивные элементы ВОЛС:

  • оптоволоконный кабель — среда, через которую передается сигнал;
  • оптическая муфта — соединяет несколько волокон;
  • оптический кросс — устройство на конце кабеля, подключающее его к активным элементам;
  • спайки — производят сращивание волокон;
  • разъемы — приспособления для отключения или подсоединения кабеля;
  • ответвители — устройства по распределению мощности оптики из нескольких волокон в единственный;
  • коммутаторы — оборудование для перераспределения оптических сигналов.

Строительство ВОЛС

Перед началом работ, связанных со строительством ВОЛС, необходимо провести ряд предварительных работ, то есть создать проект ВОЛС.

Задачами его является определение пропускных возможностей будущих линий связи; исследование среды, через которую будет пролегать система; расчет массы, объемов и общей стоимости всей ВОЛС; создание защитной системы для линии связи; обеспечение безопасности передаваемых данных.

Проектирование и строительство ВОЛС предусматривает установку оборудования, подготовку среды для проведения кабеля, производится закупка оборудования. Организовывается получение технических условий для монтажа линий связи.

После проведения вышеперечисленных этапов по проектированию и подготовки к работам, осуществляется монтаж оборудования: прокладка кабеля в грунте, канализации, коллекторах; установка модулей, крепление муфт, установка всех активных компонентов. После установки необходимого оборудования производятся мероприятия по созданию безопасных условий для кабеля.

Готовый участок линии связи тестируют по основным свойствам.

Виды измерений

Тестирование волоконно-оптической линии связи совершается путем проведения двух видов измерений. Первый вид оценивает затухание сигнала от одного конца кабеля до другого. С одной стороны подключается лазер, с другой фотодиод. Изменение тока данных между двумя компонентами свидетельствует о потерях в волокне. Прибор, с помощью которого происходит выявление затухания сигнала, называется оптический тестер.

Минус этого оборудования заключается в невозможности определения места повреждения, из-за которого происходят потери.

Второй вид измерений ВОЛС — это с помощью оптического рефлектометра. Прибор определяет месторасположение в кабеле дефектов, делает замеры потери сигнала в любой части волокна. Данные выводятся на экран в виде графиков, с помощью которых видны уровни сигнала и расстояния между разными точками всей системы.

Оптический бюджет

Оптический бюджет характеризует максимальное затухание в линии, которое возможно в линии связи. Функционирование возможно при не превышении величины бюджета. Все элементы системы разделяют на создающие в кабеле сигнал и на снижающие его, способствующие затуханию потока данных.

Элементами создающими сигнал являются трансиверы и усилители. Все остальные элементы и оборудование создают помехи и влияют на потерю сигнала.

Компании-производители систем указывают в документации расчет ВОЛС.

Произведение вычислений основывается на учете источников затухания в волокне, мультиплексоры, модули, участки соединения, наличие разветвлений. Для расчета оптического бюджета ВОЛС необходимо наличие данных о длине замеряемого участка волокна в км, количество соединение на оптических панелях, число сварочных скреплений.

Чтобы обеспечить надежность работы всей системы требуется брать во внимание возможность увеличения потерь сигнала за счет внешних факторов, независящих от самой линии, а также за счет старения оборудования.


Волоконно-оптические ли нии связи (ВОЛС) – система в основе которой лежит оптоволоконный кабель, предназначена для передачи информации в оптическом (световом) диапазоне. В соответствии с ГОСТом 26599-85 термин ВОЛС заменен на ВОЛП (волоко́нно-опти́ческая ли́ния переда́чи), но в повседневном практическом обиходе по прежнему применяется термин ВОЛС, поэтому в данной статье мы будем придерживаться именно его.

Линии связи ВОЛС (если они корректно проведены) по сравнению со всеми кабельными системами отличаются очень высокой надежностью, отличным качеством связи, широкой пропускной способностью, значительно большей протяженностью без усиления и практически 100% защищенностью от электромагнитных помех. В основе системы лежит технология волоконной оптики – в качестве носителя информации используется свет, тип передаваемой информации (аналоговый или цифровой) не имеет значения. В работе преимущественно используется инфракрасный свет, средой передачи служит стекловолокно.

Область применения ВОЛС

Оптоволоконный кабель применяется для обеспечения связи и передачи информации уже более 40 лет, но из за высокой стоимости широко использоваться стал сравнительно недавно. Развитие технологий позволило сделать производство экономичней и стоимость кабеля доступней, а его технические характеристики и преимущества перед другими материалами быстро окупают все понесенные расходы.

В настоящее время, когда на одном объекте используется сразу комплекс слаботочных систем (компьютерная сеть, СКУД, видеонаблюдение, охранная и пожарная сигнализации, охрана периметра, телевидение и др.), обойтись без применения ВОЛС не возможно. Только использование оптоволоконного кабеля делает возможным одновременное применение всех этих систем, обеспечивает корректную стабильную работу и выполнение их функций.

ВОЛС все чаще применяется как основополагающая система при разработке и монтаже , в особенности для многоэтажных зданий, зданий большой протяженности и при объединении группы объектов. Только Волоконно-оптические кабели могут обеспечить соответствующий объем и скорость передачи информации. На основе оптоволокна могут быть реализованы все три подсистемы , в подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль. Различают оптоволоконный кабель для внешней (outdoor cables) и внутренней (indoor cables) прокладки, а так же соединительные шнуры для коммуникаций горизонтальной разводки, оснащения отдельных рабочих мест, объединения зданий.

Не смотря на относительно высокую стоимость, применение оптоволокна становится все более оправдано и находит все более широкое применение.

Преимущества волоконно-оптических линий связи (ВОЛС ) перед традиционными «металлическими» средствами передачи:

  • Широкая полоса пропускания;
  • Незначительное ослабление сигнала, например применительно к сигналу 10МГц оно составит 1,5 дБ/км по сравнению с 30дБ/км для коаксиального кабеля RG6;
  • Исключена возможность возникновения «земляных петель», так как оптоволокно является диэлектриком и создает электрическую (гальваническую) изоляцию между передающим и принимающим концом линии;
  • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены электромагнитному воздействию
  • Не вызывает помех в соседних кабелях или в других оптоволоконных кабелях, так как носителем сигнала является свет и он полностью остается внутри оптоволоконного кабеля;
  • Стекловолокно абсолютно не чувствительно к внешним сигналам и электромагнитным помехам (ЭМП), не имеет значения рядом с каким блоком питания проходит кабель (110 В, 240 В, 10 000 В переменного тока) или совсем рядом от мегаватного передатчика. Удар молнии на расстоянии 1 см. от кабеля не даст ни каких наводок и не отразится на работе системы;
  • Информационная безопасность - информация по оптическому волокну передаётся «из точки в точку» и подслушать или изменить ее можно только путем физического вмешательства в линию передачи
  • Оптоволоконный кабель легче и миниатюрней – его удобней и проще укладывать чем электрический кабель такого же диаметра;
  • Сделать ответвление кабеля без повреждения качества сигнала не возможно. Любое вмешательство в систему сразу обнаруживается на принимающем конце линии, это особенно важно для систем обеспечения безопасности и видеонаблюдения;
  • Пожаро- и взрывобезопасность при изменении физических и химических параметров
  • Стоимость кабеля снижается с каждым днем, его качество и возможности начинают превалировать над затратами на построение слаботочных на базе ВОЛС

Идеальных и безупречных решений не существует, как и любая система, ВОЛС имеет свои недостатки:

  • Хрупкость стекловолокна – при сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Для устранения и минимизации этих рисков применяются усиливающие кабель конструкции и оплетки. При монтаже кабеля необходимо соблюдать рекомендации производителя (где, в частности, нормируется минимально допустимый радиус изгиба);
  • Сложность соединения в случае разрыва – требуется специальный инструмент и квалификация исполнителя;
  • Сложная технология изготовления, как самого волокна, так и компонентов ВОЛС;
  • Сложность преобразования сигнала (в интерфейсном оборудовании);
  • Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛС лучше, чем для других систем;
  • Замутнение волокна вследствие радиационного облучения (однако, существуют легированные волокна с высокой радиационной стойкостью).

Монтаж систем ВОЛС требует от исполнителя соответствующего уровня квалификации, так как концевая заделка кабеля производится специальными инструментами, с особой точностью и мастерством в отличии от других средств передачи. Настройки маршрутизации и переключения сигналов требуют специальной квалификации и мастерства, поэтому в этой области не стоит экономить и бояться переплатить профессионалам, устранение нарушений в работе системы и последствий не правильного монтажа кабеля обойдется дороже.

Принцип действия оптоволоконного кабеля.

Сама идея передачи информации при помощи света, не говоря уже о физическом принципе работы большинству обывателей не совсем понятно. Мы не будем глубоко вдаваться в эту тему, но постараемся объяснить основной механизм действия оптоволокна и обосновать такие высокие показатели его работы.

Концепция волоконной оптики опирается на фундаментальные законы отражения и преломления света. Благодаря своей конструкции стекловолокно может удерживать световые лучи внутри световода и не дает им «пройти сквозь стены» при передачи сигнала на многие километры. Кроме того не секрет, что скорость света выше.

Волоконная оптика основывается на эффекте преломления при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Например, представим себе абсолютно не подвижную гладь воды. Наблюдатель смотрит из под воды и меняет угол обзора. В определенный момент угол обзора становится таким, что наблюдатель не сможет видеть объекты, находящиеся над поверхностью воды. Этот угол называется углом полного отражения. При этом угле наблюдатель будет видеть только объекты, находящиеся под водой, будет казаться, что смотришь в зеркало.

Внутренняя жила кабеля ВОЛС имеет более высокий показатель преломления, чем оболочка и возникает эффект полного отражения. По этой причине луч света, проходя по внутренней жиле, не может выйти за ее пределы.

Существует несколько типов оптоволоконных кабелей:

  • Со ступенчатым профилем – типичный, самый дешевый вариант, распределение света идет «ступеньками» при этом происходит деформация входного импульса, вызванная различной длиной траекторий световых лучей
  • С плавным профилем «многомодовое» – лучи света распространяются с примерно равной скоростью «волнами», длина их путей уравновешена, это позволяет улучшить характеристики импульса;
  • Одномодовое стекловолокно – самый дорогой вариант, позволяет вытянуть лучи в прямую, характеристики передачи импульса становятся практически безупречными.

Оптоволоконный кабель до сих пор стоит дороже чем другие материалы, его монтаж и заделка сложнее, требуют квалифицированных исполнителей, но будущее передачи информации несомненно за развитием именно этих технологий и этот процесс необратим.

В состав ВОЛС входят активные и пассивные компоненты. На передающем конце оптоволоконного кабеля находится светодиод или лазерный диод, их излучение модулировано передающим сигналом. Применительно к видеонаблюдению это будет видеосигнал, для передачи цифровых сигналов логика сохраняется. При передаче инфракрасный диод модулирован по яркости и пульсирует в соответствии с вариациями сигнала. Для принятия и преобразования оптического сигнала в электрический, на принимающем конце, как правило находится фотодетектор.


К активным компонентам относятся мультиплексоры, регенераторы, усилители, лазеры, фотодиоды и модуляторы.

Мультиплексор – объединяет несколько сигналов в один, таким образом для одновременной передачи нескольких сигналов реального времени можно использовать один оптоволоконный кабель. Эти устройства незаменимы в системах с недостаточным или ограниченным числом кабелей.

Существует несколько типов мультиплексоров, они различаются по своим техническим характеристикам, функциям и области применения:

  • спектрального разделения (WDM) – самые простые и дешевые устройства, передает по одному кабелю оптические сигналы от одного или нескольких источников, работающих на различных длинах волн;
  • частотного-модулирования и частотного мультиплексирования (FM-FDM) – устройства достаточно невосприимчивые к шуму и искажениям, с хорошими характеристиками и схемами средней степени сложности, имеют 4,8 и 16 каналов, оптимальны для видеонаблюдения.
  • Амплитудной модуляции с частично подавленной боковой полосой (AVSB-FDM) – с качественной оптоэлектроникой позволяют передавать до 80 каналов, оптимальны для абонентского телевидения, но дороговаты для видеонаблюдения;
  • Импульсно-кодовой модуляции (PCM – FDM)– дорогостоящее устройство, полностью цифровое применяется для распространения цифрового видео и и видеонаблюдения;

На практике часто применяются комбинации этих методов. Регенератор - устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.

Усилитель -усиливает мощность сигнала до требуемого уровня напряжения тока, может быть оптическим и электрическим, осуществляет оптико-электронное и электронно-оптическое преобразование сигнала.

Светодиоды и Лазеры - источник монохромного когерентного оптического излучения (света для кабеля). Для систем с прямой модуляцией, одновременно выполняет функции модулятора, преобразующего электрический сигнал в оптический.

Фотоприёмник (Фотодиод) - устройство, принимающее сигнал на другом конце оптоволоконного кабеля и осуществляющее оптоэлектронное преобразование сигнала.

Модулятор - устройство, модулирующее оптическую волну, несущую информацию по закону электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.

К пассивным компонентам ВОЛС относятся:

Оптоволоконный кабель выполняет функции среды для передачи сигнала. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов). По конструкции может быть:


Оптическая муфта - устройство, используемое для соединения двух и более оптических кабелей.

Оптический кросс - устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.

Спайки – предназначены для постоянного или полупостоянного сращивания волокон;

Разъемы – для повторного присоединения или отключения кабеля;

Ответвители – устройства, распределяющием оптическую мощность нескольких волокон в одно;

Коммутаторы – устройства, перераспределяющие оптические сигналы под ручным или электронным контролем

Монтаж волоконно-оптических линий связи, его особенности и порядок.

Стекловолокно очень прочный, но хрупкий материал, хотя благодаря защитной оболочке, с ним можно обращаться практически как с электрическим. Однако при монтаже кабеля следует соблюдать требования производителей по:

  • «Максимальному растяжению» и «максимальному разрывному усилию», выраженному в ньютонах (около 1000 Н или 1кН). В оптическом кабеле основное напряжение приходится на силовую конструкцию (укрепленный пластик, сталь, кевлар или их комбинация). Каждый тип конструкции имеет свои индивидуальные показатели и степень защиты, если натяжение превышает предусмотренный уровень, то оптоволокно может быть повреждено.
  • «Минимальному радиусу изгиба» – делать изгибы более плавными, избегать резких сгибов.
  • «Механической прочности», она выражается в Н/м (ньютоны/метры) – защита кабеля от физических нагрузок (на него можно наступить или даже наехать транспортом. Следует быть предельно осторожными и особо обезопасить места пересечения и соединения, нагрузка сильно увеличивается из-за малой зоны контакта.

Оптический кабель обычно поставляется намотанным на деревянные барабаны с прочным пластиковым защитным слоем или деревянными планками по окружности. Внешние слои кабеля наиболее уязвимы, поэтому при монтаже необходимо помнить о весе барабана, беречь его от ударов, падений, предпринимать меры безопасности при складировании. Лучше всего хранить барабаны горизонтально, если же они все-таки лежат вертикально, то их края (ободы) должны соприкасаться.

Порядок и особенности монтажа оптоволоконного кабеля:

  1. До начала монтажа необходимо осмотреть барабаны с кабелем на предмет повреждений, вмятин, царапин. При любом подозрении кабель лучше сразу отложить в сторону для последующего детального изучения или отбраковки. Короткие куски (меньше 2 км.) на непрерывность волокна можно проверить на просвет любым фонариком. Волоконный кабель для инфракрасной передаче так же хорошо передает обычный свет.
  2. Далее изучить трассу на предмет потенциальных проблем (острые углы, забитые кабельные каналы и т.д.), при их наличии внести в маршрут изменения для минимизации рисков.
  3. Распределить кабель по маршруту таким образом, чтобы точки соединения и подключения усилителей находились в доступных, но защищенных от неблагоприятных факторов местах. Важно, чтобы в местах будущих соединений оставался достаточный запас кабеля. Открытые концы кабеля должны быть защищены водонепроницаемыми колпаками. Для минимизации напряжения на изгиб и повреждений от проезжающего транспорта используются трубы. На обоих концах кабельной линии оставляют часть кабеля, его длина зависит от планируемой конфигурации).
  4. При прокладке кабеля под землей его дополнительно защищают от повреждений в локальных точках нагрузки, таких как контакт с неоднородным материалом засыпки, неровностями траншеи. Для этого кабель в траншее укладывают на слой песка 50-150 см. и сверху засыпают таким же слоем песка 50-150 см. Дно траншеи должно быть ровным, без выступов, при закапывании следует удалять камни, которые могут повредить кабель. Следует отметить, что повреждения кабеля могут возникнуть как сразу, так и в процессе эксплуатации (уже после засыпки кабеля), например от постоянного давления, не убранный камень может постепенно продавить кабель. Работы по диагностике и поиску и устранению нарушений уже закопанного кабеля обойдутся намного дороже, чем аккуратность и соблюдение мер предосторожности при монтаже. Глубина траншеи зависит от типа почвы и ожидаемой нагрузки на поверхности. В твердой породе глубина составит 30 см., в мягкой или под дорогой 1 м. Рекомендуемая глубина составляет 40-60 см., при толщине песчаной подстилки от 10 до 30 см.
  5. Чаще всего применяется укладка кабеля в траншею или в лоток прямо с барабана. При монтаже очень длинных линий, барабан помещается на транспортное средство, по мере продвижения машины кабель укладывается на свое место, при этом не стоит торопиться, темп и порядок размотки барабана регулируется вручную.
  6. При укладке кабеля в лоток самое главное не превышать критический радиус изгиба и механической нагрузки. Кабель следует укладывать в одной плоскости, не создавать точек сосредоточенных нагрузок, избегать на трассе резких углов, давления и пересечения с другими кабелями и трассами, не изгибать кабель.
  7. Протяжка оптоволоконного кабеля через кабельные каналы аналогична протяжке обычного кабеля, но не стоит прилагать излишних физических усилий и нарушать спецификации производителя. При использовании скоби хомутов помните, что нагрузка должна ложиться не на внешнюю оболочку кабеля, а на силовую конструкцию. Для уменьшения трения можно использовать тальк или гранулы из полистирола, по поводу применения других смазок необходимо консультироваться с производителем.
  8. В случаях, если кабель уже имеет концевую заделку, при монтаже кабеля следует быть особенно внимательными, что бы не повредить разъемы, не загрязнить их и не подвергать чрезмерной нагрузке в зоне соединения.
  9. После укладки кабель в лотке закрепляется нейлоновыми стяжками, он не должен сползать или провисать. Если особенности поверхности не позволяют использовать специальные кабельные крепления, допустимо применение хомутов, но с особой осторожностью, чтобы не повредить кабель. Рекомендуется применение хомутов с пластиковым защитным слоем, для каждого кабеля следует использовать отдельный хомут и ни в коем случае не стягивать вместе несколько кабелей. Между конечными точками крепления кабеля лучше оставить небольшую слабину, а не класть кабель в натяг, иначе он будет плохо реагировать на колебания температуры и вибрации.
  10. Если при монтаже оптоволокно все-таки было повреждено, пометьте участок и оставьте достаточный запас кабеля для последующего сращивания.

В принципе, прокладка оптоволоконного кабеля не сильно отличается от монтажа обычного кабеля. Если соблюдать все указанные нами рекомендации, то проблем при монтаже и эксплуатации не возникнет и Ваша система будет работать долго, качественно и надежно.

Пример типового решения по прокладке линии ВОЛС

Задача – организовать систему ВОЛС между двумя отдельно стоящими зданиями производственного корпуса и административного здания. Расстояние между зданиями 500 м.

Смета на монтаж системы ВОЛС
№п/п Наименование оборудования, материалов, работ Ед. из-я Кол-во Цена за ед. Сумма, в руб.
I. Оборудование системы ВОЛС, в том числе: 25 783
1.1. Кросс оптический настенный (ШКОН) 8 портов шт. 2 2600 5200
1.2. Медиаконвертер 10/100-Base-T / 100Base-FX, Tx/Rx: 1310/1550нм шт. 2 2655 5310
1.3. Муфта оптическая проходная шт. 3 3420 10260
1.4. Ящик коммутационный 600х400 шт. 2 2507 5013
II. Кабельные трассы и материалы системы ВОЛС, в том числе: 25 000
2.1. Оптический кабель с внешним тросом 6кН, центральный модуль, 4 волокна, одномодовый G.652. м. 200 41 8200
2.2. Оптический кабель с внутренним несущим тросом, центральный модуль, 4 волокна, одномодовый G.652. м. 300 36 10800
2.3. Прочие расходные материалы (разъемы, саморезы, дюбеля, изоляционная лента, крепления и т.п.) компл. 1 6000 6000
III. ИТОГО СТОИМОСТЬ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ (п.I+п.II) 50 783
IV. Транспортно-заготовительные расходы, 10% *п.III 5078
V. Работы по монтажу и коммутации оборудования, в том числе: 111 160
5.1. Монтаж перетяжки ед. 4 8000 32000
5.2. Прокладка кабеля м. 500 75 37500
5.3. Монтаж и сварка разъемов ед. 32 880 28160
5.4. Монтаж коммутационного оборудования ед. 9 1500 13500
VI. ВСЕГО ПО СМЕТЕ (п.III+п.IV+п.V) 167 021

Пояснения и комментарии:

  1. Общая протяженность трассы 500 м., в том числе:
    • от забора до производственного корпуса и административного здания составляет по 100 м. (итого 200 м.);
    • вдоль забора между зданиями 300 м.
  2. Монтаж кабеля осуществляется открытым способом, в том числе:
    • от зданий до забора (200 м.) по воздуху (перетяжка) с применением специализированных для прокладки ВОЛС материалов;
    • между зданиями (300 м.) по забору из железобетонных плит, кабель закрепляется по середине полотна забора при помощи металлических клипс.
  3. Для организации ВОЛС используется специализированный самонесущий (встроенный трос) бронированный кабель.

Волоконно-оптическими называют линии, предназначенные для передачи информации в оптическом диапазоне. Согласно данным советского Информбюро, на конец 80-х темп роста применения волоконно-оптических линий составил 40%. Эксперты Союза предполагали полный отказ некоторых стран от медной жилы. Съезд постановил на 12-ю пятилетку 25% прирост объёма линий связи. Тринадцатая, также призванная развивать волоконную оптику, застала развал СССР, появились первые сотовые операторы. Кстати, прогноз экспертов относительно роста потребности в квалифицированных кадрах провалился…

Принцип действия

Каковы причины резкого роста популярности высокочастотных сигналов? Современные учебники упоминают снижение потребности в регенерации сигнала, стоимости, повышение ёмкости каналов. Советские инженеры вызнали, рассуждая иначе: медный кабель, броня, экран берут 50% мирового производства меди, 25% – свинца. Недостаточно известный факт стал главной причины оставления спонсорами Николы Теслы, проекта башни Ворденклифф (название дала фамилия мецената, пожертвовавшего землю). Известный сербский учёный возжелал передавать информацию, энергию беспроводным путём, напугав немало локальных хозяев медеплавильных заводов. 80 лет спустя картина изменилась кардинально: люди осознали необходимость сбережения цветных металлов.

Материалом изготовления волокна служит… стекло. Обычный силикат, сдобренный изрядной долей модифицирующих свойства полимеров. Советские учебники, помимо указанных причин популярности новой технологии, называют:

  1. Малое затухание сигналов, явившееся причиной снижения потребности в регенерации.
  2. Отсутствие искрения, следовательно, пожаробезопасность, нулевая взрывоопасность.
  3. Невозможность короткого замыкания, пониженная потребность в обслуживании.
  4. Нечувствительность к электромагнитным помехам.
  5. Низкий вес, сравнительно малые габариты.

Первоначально оптоволоконные линии должны были объединить крупные магистрали: меж городами, пригородами, АТС. Эксперты СССР назвали кабельную революцию сродни появлению твердотельной электроники. Развитие технологии позволило построить сети, лишённые токов утечки, перекрёстных помех. Участок длиной сотню км лишён активных методов регенерации сигнала. Бухта одномодового кабеля обычно составляет 12 км, многомодового – 4 км. Последнюю милю чаще покрывают медью. Провайдеры привыкли предназначать оконечные участки индивидуальным пользователям. Отсутствуют высокие скорости, приёмопередатчики дёшевы, возможность подвести одновременно питание устройству, простота использования линейных режимов.

Передатчик

Типичным формирователем луча выступают полупроводниковые светодиоды, включая твердотельные лазеры. Ширина спектра сигнала, излучаемого типичным p-n-переходом, составляет 30-60 нм. КПД первых твердотельных устройств едва достигал 1%. Основой связных светодиодов чаще выступает структура индий-галлий-мышьяк-фосфор. Излучая более низкую частоту (1,3 мкм), приборы обеспечивают значительное рассеивание спектра. Результирующая дисперсия сильно ограничивает битрейт (10-100 Мбит/с). Поэтому светодиоды пригодны для построения локальных сетевых ресурсов (дистанция 2-3 км).

Частотное деление с мультиплексированием осуществляется многочастотными диодами. Сегодня несовершенные полупроводниковые структуры активно вытесняются вертикальными излучающими лазерами, значительно улучшающими спектральные характеристики. повышающими скорость. Цена одного порядка. Технология вынужденного излучения приносит гораздо более высокие мощности (сотни мВт). Когерентное излучение обеспечивает КПД одномодовых линий 50%. Эффект хроматической дисперсии снижается, позволяя повысить битрейт.

Малое время рекомбинации зарядов позволяет легко модулировать излучение высокими частотами питающего тока. Помимо вертикальных применяют:

  1. Лазеры с обратной связью.
  2. Резонаторы Фабри-Перо.

Высокие битрейты дальних линий связи достигаются применением внешних модуляторов: электро-абсорбционные, интерферометры Маха – Цендера. Внешние системы устраняют необходимость применения линейной частотной модуляции напряжением питания. Обрезанный спектр дискретного сигнала передаётся дальше. Дополнительно разработаны другие методики кодирования несущей:

  • Квадратурная фазовая манипуляция.
  • Ортогональное мультиплексирование с частотным разделением.
  • Амплитудная квадратурная модуляция.

Процедуру осуществляют цифровые сигнальные процессоры. Старые методики компенсировали лишь линейную составляющую. Беренджер выразил модулятор рядами Вина, ЦАП и усилитель смоделировал усечёнными, времянезависимыми рядами Вольтерры. Кхана предлагает использовать полиномиальную модель передатчика вдобавок. Каждый раз коэффициенты рядов находят, используя архитектуру непрямого изучения. Дутель записал множество распространённых вариантов. Фазная перекрёстная корреляция и квадратурные поля имитируют несовершенство систем синхронизации. Аналогично компенсируются нелинейные эффекты.

Приёмники

Фотодетектор совершает обратное преобразование свет – электричество. Львиная доля твёрдотельных приёмников использует структуру индий-галлий-мышьяк. Иногда встречаются pin-фотодиоды, лавинные. Структуры металл-полупроводник-металл идеально подходят для встраивания регенераторов, коротковолновых мультиплексоров. Оптикоэлектрические конвертеры часто дополняют трансимпедансными усилителями, ограничителями, производящими цифровой сигнал. Затем практикуют восстановление синхроимпульсов с фазовой автоподстройкой частоты.

Передача света стеклом: история

Явление рефракции, делающее возможной тропосферную связь, нелюбимо учениками. Сложные формулы, неинтересные примеры убивают любовь студента к знаниям. Идею световода родили далёкие 1840-е годы: Дэниэл Колладон, Жак Бабинэ (Париж) пытались приукрасить собственные лекции заманчивыми, наглядными экспериментами. Преподаватели средневековой Европы плохо зарабатывали, поэтому изрядный приток студентов, несущих деньги, выглядел желанной перспективой. Лекторы заманивали публику любыми способами. Некий Джон Тиндал воспользовался идеей 12 лет спустя, гораздо позже выпустив книгу (1870), рассматривающую законы оптики:

  • Свет проходит границу раздела воздух-вода, наблюдается рефракция луча относительно перпендикуляра. Если угол касания луча к ортогональной линии превышает 48 градусов, фотоны перестают покидать жидкость. Энергия полностью отражается назад. Предел назовём лимитирующим углом среды. Водный равен 48 градусов 27 минут, у силикатного стекла – 38 градусов 41 минута, алмаза – 23 градуса 42 минуты.

Зарождение XIX столетия принесло линии Петербург – Варшава световой телеграф протяжённостью 1200 км. Регенерация операторами послания проводилась каждые 40 км. Сообщение шло несколько часов, мешали погода, видимость. Появление радиосвязи вытеснило старые методики. Первые оптические линии датированы концом XIX века. Новинка понравилась… медикам! Гнутое стеклянное волокно позволяло освещать любые полости человеческого тела. Историки предлагают следующую временную шкалу развития событий:


Идею Генри Сэнт-Рене продолжили поселенцы Нового света (1920-е), задумавшие улучшить телевидение. Кларенс Ханселл, Джон Логи Бэйрд стали пионерами. Десять лет спустя (1930) студент-медик Хайнрих Ламм доказал возможность передачи стеклянными направляющими изображения. Ищущий знаний задумал осмотреть внутренности тела. Качество изображения хромало, попытка получить Британский патент провалилась.

Рождение волокна

Независимо голландский учёный Абрахам ван Хил, британец Харольд Хопкинс, Нариндер Сингх Капани изобрели (1954) волокно. Заслуга первого в идее покрыть центральную жилу прозрачной оболочкой, имевшей низкий коэффициент преломления (близкий к воздуху). Защита от царапин поверхности сильно улучшила качество передачи (современники изобретателей видели главное препятствие использования волоконных линий в больших потерях). Британцы тоже внесли серьёзный вклад, собрав пучок волокон численностью 10.000 штук, передали изображение на дистанцию 75 см. Заметка «Гибкий фиброскоп, использующий статическое сканирование» украсила журнал Nature (1954).

Это интересно! Нариндер Сингх Капани ввёл термин фиброволокно заметкой в журнале Американская наука (1960).

1956 год принёс миру новый гибкий гастроскоп, авторы Базиль Хиршовиц, Вильбур Петерс, Лоуренс Кертисс (Университет Мичиган). Особенностью новики являлась стеклянная оболочка волокон. Элиас Снитцер (1961) обнародовал идею создания одномодового волокна. Столь тонкого, что внутри умещалось лишь одно пятнышко интерференционной картины. Идея помогла медикам осмотреть внутренности (живого) человека. Потери составили 1 дБ/м. Потребности коммуникаций простирались гораздо дальше. Требовалось достичь порога 10-20 дБ/км.

1964 год считают переломным: жизненно важную спецификацию опубликовал доктор Као, введя теоретические основы дальней связи. Документ активно использовал приведённую выше цифру. Учёный доказал: снизить потери поможет стекло высшей степени очистки. Германский физик (1965) Манфред Бёрнер (Телефункен Ресёрч Лабс, Ульм) представил первую работоспособную телекоммуникационную линию. NASA немедленно передало вниз лунные снимки, используя новинки (разработки были секретными). Несколько лет спустя (1970) трое работников Корнинг Глэс (см. начало топика) подали патент, реализующий технологический цикл выплавки оксида кремния. Три года бюро оценивало текст. Новая жила увеличила пропускную способность канала в 65000 раз относительно медного кабеля. Команда доктора Као немедля сделала попытку покрыть значительное расстояние.

Это интересно! 45 лет спустя (2009) Као вручили Нобелевскую премию по физике.

Военные компьютеры (1975) противовоздушной обороны США (секция NORAD, Шайенские горы) получили новые коммуникации. Оптический интернет появился очень давно, раньше персональных компьютеров! Двумя годами позже тестовые испытания телефонной линии длиной 1,5 мили (пригород Чикаго) успешно передали 672 голосовых канала. Стеклодувы трудились неустанно: начало 80-х привнесло появление волокна с затуханием 4 дБ/км. Оксид кремния заменили другим полупроводником – германием.

Скорость производства высококачественного кабеля технологической линией составила 2 м/с. Хими Томас Менса разработал технологию, повысившую двадцатикратно указанный лимит. Новинка, наконец, стала дешевле медного кабеля. Дальнейшее изложено выше: последовал всплеск внедрения новой технологии. Шаг расстановки репитеров составил 70-150 км. Волоконный усилитель, легированный ионами Эрбия, резко снизил стоимость возведения линий. Времена тринадцатой пятилетки принесли планете 25 миллионов километров волоконно-оптических сетей.

Новый толчок развитию дало изобретение фотонных кристаллов. Первые коммерческие модели принёс 2000 год. Периодичность структур позволила значительно повысить мощность, конструкция волокна гибко подстраивалась, следуя частоте. В 2012 году Телеграфная и телефонная компания Ниппона достигла скорости 1 петабит/с на дальности 50 км одним-единственным волокном.

Военная промышленность

Достоверно известна история шествия военной промышленности США, опубликованной в Монмаут Месседж. В 1958 году менеджер по кабельному хозяйству форта Монмаут (Сигнал Корпс Лабс армии Соединённых Штатов) рапортовал о вреде молний, осадков. Чиновник потревожил исследователя Сэма Ди Вита, попросив найти замену зеленеющей меди. Ответ содержал предложение попробовать стекло, фибер, световые сигналы. Однако инженеры дяди Сэма того времени оказались бессильны решить задачку.

Жарким сентябрём 1959 Ди Вита спросил лейтенанта второго ранга Ричарда Штурцебехера, известна ли тому формула стекла, способного передавать оптический сигнал. Ответ содержал сведения, касающиеся оксида кремния – пробы на базе Университета Альфреда. Измеряя коэффициент рефракции материалов микроскопом, Ричард нажил головную боль. 60-70% стеклянная пудра свободно пропускала лучезарный свет, раздражая глаза. Держа в уме необходимость получения чистейшего стекла, Штурцебехер изучал современные методики производства при помощи хлорида кремния IV. Ди Вита нашёл материал пригодным, решив предоставить правительству переговоры со стеклодувами компании Корнинг.

Чиновник отлично знал рабочих, однако решил предать дело огласке, дабы завод получил государственный контракт. Между 1961 и 1962 идея использования чистого оксида кремния была передана исследовательским лабораториям. Федеральные ассигнования составили порядка 1 млн. долларов (промежуток 1963-1970). Программа окончилась (1985) развитием многомиллиардной индустрии производства оптоволоконных кабелей, начавших стремительно замещать медные. Ди Вита остался работать, консультируя промышленность, прожив 97 лет (год смерти – 2010).

Разновидности кабелей

Кабель формируют:

  1. Ядро.
  2. Оболочка.
  3. Защитный кожух.

Волокно реализует полное отражение сигнала. Материалом первых двух компонентов традиционно выступает стекло. Иногда находят дешёвую замену – полимер. Оптические кабели объединяют сплавлением. Выравнивание ядра потребует сноровки. Мультимодовый кабель толщиной свыше 50 мкм паять проще. Две глобальные разновидности различаются количеством мод:

  • Мультимодовый снабжён толстым ядром (свыше 50 мкм).
  • Одномодовый значительно тоньше (менее 10 мкм).

Парадокс: кабель меньших размеров обеспечивает дальнюю связь. Стоимость четырёхжильного трансатлантического составляет 300 млн. долларов. Сердцевину покрывают светоустойчивым полимером. Журнал Новый учёный (2013) обнародовал опыты научной группы Университета Саутгемптона, покрывших дальность 310 метров… волноводом! Пассивный диэлектрический элемент показал скорость 77,3 Тбит/с. Стены полой трубки образованы фотонным кристаллом. Информационный поток двигался со скорость 99,7% световой.

Фотонно-кристаллический фибер

Новая разновидность кабелей образована набором трубок, конфигурация напоминает скруглённые пчелиные соты. Фотонные кристаллы, напоминают природный перламутр, образуя периодические конформации, отличающиеся коэффициентом преломления. Некоторые длины волн внутри таких трубок затухают. Кабель демонстрирует полосу пропускания, луч претерпевая брэгговскую рефракцию отражается. Благодаря наличию запрещённых зон когерентный сигнал двигается вдоль световода.



Загрузка...