sonyps4.ru

Описание технологии Fast Ethernet. Проводная локальная сеть (LAN)

Ответы на экзаменационные вопросы интернет-курсов ИНТУИТ (INTUIT): 267. Основы локальных сетей

    В каких топологиях применяется метод управления CSMA/CD?

    В какой сети, использующей метод доступа CSMA/CD, при прочих равных условиях будет меньше коллизий?

    В каком случае методы модуляции перечислены правильно в порядке увеличения устойчивости к помехам?

    В каком случае перечисленные технологии правильно расставлены в порядке увеличения максимально достижимой скорости передачи?

    В чем основное отличие метода управления FDDI от метода управления Token-Ring?

    В чем основное преимущество сети FDDI перед остальными стандартными сетями?

    В чем отличие концентратора класса I от концентратора класса II?

    В чем состоит главный недостаток топологии кольцо?

    В чем состоит главный отличительный признак локальной сети?

    В чем состоит основное назначение локальной сети?

    В чем состоит основное преимущество использования выделенного сервера в сети?

    В чем состоит основное преимущество кабеля на основе витой пары UTP?

    В чем состоит основное преимущество сети Arcnet перед Ethernet?

    В чем состоит основной недостаток манчестерского кода?

    В чем состоит основной недостаток маркерного метода управления?

    В чем состоит основной недостаток оптоволоконного кабеля?

    В чем состоит принципиальное отличие детерминированных методов доступа от случайных?

    В чем состоят основные преимущества сертифицированных структурированных кабельных систем (СКС) по сравнению с кабельными системами, созданными "своими" силами?

    До какой частоты определены рабочие характеристики кабельных линий, поддерживающих приложения Класса D, согласно стандартам СКС?

    К какому уровню модели OSI относится формирование сетевых пакетов установленного вида?

    Кабель UTP какого типа обеспечивает максимальное затухание сигнала на заданной частоте?

    Как в модели 2 учитывается задержка сетевых адаптеров и концентраторов?

    Как в модели 2 учитывается затухание сигналов в кабелях?

    Как в сети Fast Ethernet учитывается сокращение межпакетного интервала (IPG)?

    Как изменится максимально возможная скорость передачи данных в дискретном канале при увеличении разрядности данных в 4 раза?

    Как изменяется задержка следующей передачи пакета после коллизии в методе доступа CSMA/CD?

    Как надо заземлять коаксиальный кабель?

    Как правильно расположить по уровню возрастания цен активное сетевое оборудование для указанных типов локальных сетей?

    Как распределяются функции витых пар в сегменте 100BASE-T4?

    Какая максимальная длина сети может быть реализована на сегментах 10BASE2 без использования репитеров?

    Какая максимальная номинальная скорость обеспечивается в линии типа ADSL?

    Какая международная организация является разработчиком стандарта СКС?

    Какая ошибка не регистрируется и не исправляется репитерными концентраторами?

    Какая сеть обеспечивает совместимость с сетью Ethernet на уровне формата пакета?

    Какая скорость передачи больше?

    Какая функция не выполняется сетевым адаптером?

    Какие величины необходимо рассчитывать при использовании модели 2 оценки топологии Ethernet?

    Какие из активных сетевых устройств преобладают количественно в составе сети предприятия?

    Какие из перечисленных ниже мер не относятся к комплексу мероприятий по защите информации?

    Какие из перечисленных технологий являются принципиально несимметричными (скорость передачи информации от пользователя к провайдеру и обратно разная)?

    Какие из современных технологий, перечисленных ниже, используются для передачи информации по аналоговым телефонным линиям?

    Какие методы модуляции используются в высокоскоростных модемах?

    Какие методы управления гарантируют величину времени доступа?

    Какие ошибки при организации кабельной системы влияют в первую очередь на скорость передачи информации?

    Какие подсистемы в соответствии со стандартами включает СКС?

    Какие разъемы используются для подключения кабелей в сети 10BASE-T?

    Какие сегменты Fast Ethernet используют одинаковую систему кодировки?

    Какие сетевые устройства не производят никакой обработки информации?

    Какие стандарты предполагают использование разных модемов у пользователя и провайдера?

    Какие устройства пропускают через себя не все пакеты?

    Какие факторы в первую очередь ограничивают скорость передачи по беспроводным (радио-) линиям?

    Какие характеристики кабелей имеют наибольшее значение для защиты передаваемой по нему информации от влияния внешнего электромагнитного излучения и снижения излучения самого кабеля?

    Какие цифровые элементы включает кодер и декодер циклического кода?

    Каков главный недостаток локальных сетей?

    Каков главный недостаток сегмента 10BASE-T?

    Каков основной недостаток несимметричных методов шифрования?

    Каков размер MAC-адреса абонентов в сети Ethernet?

    Какова длина ключа в стандартном методе шифрования ГОСТ28147-89?

    Какова длина пакета сети Ethernet/Fast Ethernet без преамбулы?

    Какова длина сигнала ПРОБКА, используемого в методе доступа CSMA/CD для увеличения вероятности обнаружения коллизий?

    Какова должна быть величина согласующего сопротивления по отношению к волновому сопротивлению кабеля?

    Какова максимально допустимая величина сокращения межпакетного интервала в Ethernet?

    Какова основная цель настройки параметров сетевых ОС?

    Какова типичная величина волнового сопротивления для коаксиального кабеля?

    Каково главное достоинство централизованных методов управления?

    Каково главное преимущество сети Wi-Fi перед сетью Ethernet/Fast Ethernet?

    Каково минимально допустимое расстояние между компьютерами в сегменте 10BASE2?

    Каково назначение концентратора в сети 100VG-AnyLAN?

    Каково основное преимущество WLAN?

    Каково основное преимущество сети Token-Ring по сравнению с Ethernet/Fast Ethernet?

    Каковы возможные режимы обмена в сети 10Gigabit Ethernet?

    Каковы основные достоинства сети Fast Ethernet?

    Каковы основные достоинства топологии шина?

    Каковы особенности одноранговой сети?

    Какое из приведенных определений показателя использования сети правильное?

    Какое из устройств, используемых для поиска неисправностей в работающей сети, является наиболее сложным в использовании?

    Какое максимальное количество сегментов может содержать путь между абонентами в сети Ethernet по правилам модели 1?

    Какое максимальное относительное число ошибок в принятых данных допускает стандарт ITU-T?

    Какое сетевое устройство анализирует содержимое поля данных пакета?

    Какое сетевое устройство не способно поддерживать обмен между сегментами с разными скоростями?

    Какое сетевое устройство обеспечивает минимальную задержку ретрансляции пакетов?

    Какой из "классических" методов шифрования приводит в общем случае к изменению состава алфавита в зашифрованном сообщении?

    Какой из видов аналоговой модуляции больше других подвержен действию помех и шумов?

    Какой из перечисленных кодов не является самосинхронизирующимся?

    Какой интерфейс компьютера больше других подходит для сети Fast Ethernet?

    Какой код используется в сегменте 100BASE-T4?

    Какой код требует минимальной полосы пропускания при заданной скорости передачи информации?

    Какой код является самосинхронизирующимся?

    Какой метод доступа используется в беспроводных сетях WLAN?

    Какой метод нельзя применять для преодоления ограничений на размер сети (зоны конфликта) Ethernet?

    Какой основной недостаток сети FDDI по сравнению с другими стандартными сетями?

    Какой параметр сетевого адаптера не влияет на интегральную скорость обмена информацией по сети?

    Какой параметр сетевого сервера важен менее других?

    Какой протокол не обеспечивает гарантированной доставки пакетов?

    Какой сегмент Ethernet/Fast Ethernet обеспечивает наибольшее расстояние между компьютерами сети?

    Какой спецификацией IEEE определяется локальная сеть Ethernet?

    Какой стандарт соответствует сети Ethernet на толстом коаксиальном кабеле?

    Какой стандартный сегмент обеспечивает максимальную длину на электрическом кабеле?

    Какой тип сегмента не распознается механизмом автосогласования (Auto-Negotiation)?

    Какой тип среды передачи не требует применения гальванической развязки?

    Какой тип среды передачи обеспечивает максимальную помехозащищенность и секретность передачи информации?

    Какой тип среды передачи обеспечивает максимальную скорость передачи информации?

    Какой тип телефонной линии предпочтителен для связи локальной сети с глобальной?

    Какой фактор меньше других влияет на производительность сети?

    Какую информацию содержит поле управления в пакете Ethernet/Fast Ethernet?

    Какую функцию выполняет кодер в составе модема?

    Какую функцию выполняет концентратор сети Token-Ring?

    Какую функцию выполняет эквалайзер в составе модема?

    Какую функцию не выполняет активный монитор сети Token-Ring?

    Когда необходимо использовать перекрестный кабель в сети 10BASE-T?

    Кто определяет физический адрес (MAC-адрес) абонентов сети Ethernet?

    Может ли скорость в символах в секунду (cps) быть получена из скорости в бит/с делением на 8?

    На каком уровне модели OSI производится проверка правильности передачи пакета?

    На каком уровне модели OSI работает коммутатор?

    На каком уровне модели OSI работают маршрутизаторы?

    Относится ли резервное копирование файлов к одному из методов защиты информации?

    Почему "классические" методы шифрования (подстановка, перестановка и гаммирование) не обеспечивают полной криптографической защиты информации?

    Применение каких устройств позволяет снять любые ограничения на размер сети?

    Протоколы какой сетевой системы точно соответствуют уровням модели OSI?

    Разъемы какого типа не используются в сегменте 10BASE-FL?

    Сколько концентраторов может присутствовать в сети (зоне конфликта) Fast Ethernet по правилам модели 1?

    Функции каких уровней модели OSI выполняет драйвер сетевого адаптера?

    Чего позволяет добиться выделенный сервер в сети?

    Чем в первую очередь определяется выбор топологии локальной сети?

    Чем отличается метод управления обменом в сети Arcnet от метода управления обменом в сети Token-Ring?

    Чем отличается сегмент 100BASE-TX от сегмента 10BASE-T кроме скорости передачи?

    Чему равен практический предел максимальной скорости передачи в обычной аналоговой телефонной линии?

    Чему равно максимально допустимое окно коллизий в сетях Ethernet / Fast Ethernet?

    Что не входит в задачу системного администратора сети?

    Что не является достоинством коаксиального кабеля?

    Что обеспечивает механизм автосогласования (Auto-Negotiation)?

    Что общего между сетью Ethernet и сетью Gigabit Ethernet?

    Что определяют уровни модели OSI?

    Что подразумевает операция статистического сжатия данных, автоматически выполняемая при модемной связи?

    Что предполагает метод дейтаграмм?

    Что происходит в сети Ethernet/Fast Ethernet, если количество передаваемых байт данных слишком мало?

    Что считается недостатком сетевых операционных систем NetWare?

    Что такое (или кто такой) системный администратор сети?

    Что такое voice - модем?

    Что такое анализатор протоколов?

    Что такое драйвер сетевого адаптера?

    Что такое инкапсуляция пакетов?

    Что такое клиент компьютерной сети?

    Что такое метод управления обменом в сети?

    Что такое минимальное кодовое расстояние?

    Что такое номер сети, входящий в IP-адрес?

    Что такое путь максимальной длины в сети Ethernet/Fast Ethernet?

    Что такое сервер компьютерной сети?

    Что такое топология пассивная звезда?

    Что является недостатком сети на основе сервера?

    Что является преимуществом 100BASE-FX по сравнению с 100BASE-TX?

    Что является преимуществом сегмента 10BASE2?

    Что является преимуществом сети Token-Ring перед сетями Ethernet и Arcnet?

Актуальная информация по учебным программам ИНТУИТ расположена по адресу: /.

Повышение квалификации

(программ: 450 )

Профессиональная переподготовка

(программ: 14 )

Лицензия на образовательную деятельность и приложение

Developer Project предлагает поддержку при сдаче экзаменов учебных курсов Интернет-университета информационных технологий INTUIT (ИНТУИТ). Мы ответили на экзаменационные вопросы 380 курсов INTUIT (ИНТУИТ) , всего 110 300 вопросов, 154 221 ответов (некоторые вопросы курсов INTUIT имеют несколько правильных ответов). Текущий каталог ответов на экзаменационные вопросы курсов ИНТУИТ опубликован на сайте объединения Developer Project по адресу: /

Подтверждения правильности ответов можно найти в разделе «ГАЛЕРЕЯ» , верхнее меню, там опубликованы результаты сдачи экзаменов по 100 курсам (удостоверения, сертификаты и приложения с оценками).

Более 21 000 вопросов по 70 курсам и ответы на них, опубликованы на сайте / , и доступны зарегистрированным пользователям. По остальным экзаменационным вопросам курсов ИНТУИТ мы оказываем платные услуги (см. вкладку верхнего меню «ЗАКАЗАТЬ УСЛУГУ» . Условия поддержки и помощи при сдаче экзаменов по учебным программам ИНТУИТ опубликованы по адресу: /

Примечани я:

- ошибки в текстах вопросов являются оригинальными (ошибки ИНТУИТ) и не исправляются нами по следующей причине - ответы легче подбирать на вопросы со специфическими ошибками в текстах;

- часть вопросов могла не войти в настоящий перечень, т.к. они представлены в графической форме. В перечне возможны неточности формулировок вопросов, что связано с дефектами распознавания графики, а так же коррекцией со стороны разработчиков курсов. ответов / М. ... курс английского языка: 1 курс ...

Fast Ethernet

Fast Ethernet - спецификация IEЕЕ 802.3 u официально принятая 26 октября 1995 года определяет стандарт протокола канального уровня для сетей работающих при использовании как медного, так и волоконно-оптического кабеля со скоростью 100Мб/с. Новая спецификация является наследницей стандарта Ethernet IEЕЕ 802.3, используя такой же формат кадра, механизм доступа к среде CSMA/CD и топологию звезда. Эволюция коснулась нескольких элементов конфигурации средств физического уровня, что позволило увеличить пропускную способность, включая типы применяемого кабеля, длину сегментов и количество концентраторов.

Структура Fast Ethernet

Чтобы лучше понять работу и разобраться во взаимодействии элементов Fast Ethernet обратимся к рисунку 1.

Рисунок 1. Система Fast Ethernet

Подуровень управления логической связью (LLC)

В спецификации IEEE 802.3 u функции канального уровня разбиты на два подуровня: управления логической связью (LLC) и уровня доступа к среде (MAC), который будет рассмотрен ниже. LLC, функции которого определены стандартом IEEE 802.2, фактически обеспечивает взаимосвязь с протоколами более высокого уровня, (например, с IP или IPX), предоставляя различные коммуникационные услуги:

  • Сервис без установления соединения и подтверждений приема. Простой сервис, который не обеспечивает управления потоком данных или контроля ошибок, а также не гарантирует правильную доставку данных.
  • Сервис с установлением соединения. Абсолютно надежный сервис, который гарантирует правильную доставку данных за счет установления соединения с системой-приемником до начала передачи данных и использования механизмов контроля ошибок и управления потоком данных.
  • Сервис без установления соединения с подтверждениями приема. Средний по сложности сервис, который использует сообщения подтверждения приема для обеспечения гарантированной доставки, но не устанавливает соединения до передачи данных.

На передающей системе данные, переданные вниз от протокола Сетевого уровня, вначале инкапсулируются подуровнем LLC. Стандарт называет их Protocol Data Unit (PDU, протокольный блок данных). Когда PDU передается вниз подуровню MAC, где снова обрамляется заголовком и постинформацией, с этого момента технически его можно назвать кадром. Для пакета Ethernet это означает, что кадр 802.3 помимо данных Сетевого уровня содержит трехбайтовый заголовок LLC. Таким образом, максимально допустимая длина данных в каждом пакете уменьшается с 1500 до 1497 байтов.

Заголовок LLC состоит из трех полей:

В некоторых случаях кадры LLC играют незначительную роль в процессе сетевого обмена данными. Например, в сети, использующей TCP/IP наряду с другими протоколами, единственная функция LLC может заключаться в предоставлении возможности кадрам 802.3 содержать заголовок SNAP, подобно Ethertype указывающий протокол Сетевого уровня, которому должен быть передан кадр. В этом случае все PDU LLC задействуют ненумерованный информационный формат. Однако другие высокоуровневые протоколы требуют от LLC более расширенного сервиса. Например, сессии NetBIOS и несколько протоколов NetWare используют сервисы LLC с установлением соединения более широко.

Заголовок SNAP

Принимающей системе необходимо определить, какой из протоколов Сетевого уровня должен получить входящие данные. В пакетах 802.3 в рамках PDU LLC применяется еще один протокол, называемый Sub - Network Access Protocol (SNAP, протокол доступа к подсетям).

Заголовок SNAP имеет длину 5 байт и располагается непосредственно после заголовка LLC в поле данных кадра 802.3, как показано на рисунке. Заголовок содержит два поля.

Код организации. Идентификатор организации или производителя - это 3-байтовое поле, которое принимает такое же значение, как первые 3 байта МАС-адреса отправителя в заголовке 802.3.

Локальный код. Локальный код - это поле длиной 2 байта, которое функционально эквивалентно полю Ethertype в заголовке Ethernet II.

Подуровень согласования

Как было сказано ранее Fast Ethernet это эволюционировавший стандарт. MAC рассчитанный на интерфейс AUI, необходимо преобразовать для интерфейса MII, используемого в Fast Ethernet, для чего и предназначен этот подуровень.

Управление доступом к среде ( MAC)

Каждый узел в сети Fast Ethernet имеет контроллер доступа к среде (Media Access Controller - MAC). MAC имеет ключевое значение в Fast Ethernet и имеет три назначения:

Самым важным из трех назначений MAC является первое. Для любой сетевой технологии, которая использует общую среду, правила доступа к среде, определяющие, когда узел может передавать, являются ее основной характеристикой. Разработкой правил доступа к среде занимаются несколько комитетов IЕЕЕ. Комитет 802.3, часто именуемый комитетом Ethernet, определяет стандарты на ЛВС, в которых используются правила под названием CSMA/ CD (Carrier Sense Multiple Access with Collision Detection - множественный доступ с контролем несущей и обнаружением конфликтов).

CSMS/ CD являются правилами доступа к среде как для Ethernet, так и для Fast Ethernet. Именно в этой области две технологии полностью совпадают.

Поскольку все узлы в Fast Ethernet совместно используют одну и ту же среду, передавать они могут лишь тогда, когда наступает их очередь. Определяют эту очередь правила CSMA/ CD.

CSMA/ CD

Контроллер MAC Fast Ethernet, прежде чем приступить к передаче, прослушивает несущую. Несущая существует лишь тогда, когда другой узел ведет передачу. Уровень PHY определяет наличие несущей и генерирует сообщение для MAC. Наличие несущей говорит о том, что среда занята и слушающий узел (или узлы) должны уступить передающему.

MAC, имеющий кадр для передачи, прежде чем передать его, должен подождать некоторый минимальный промежуток времени после окончания предыдущего кадра. Это время называется межпакетной щелью (IPG, interpacket gap) и продолжается 0,96 микросекунды, то есть десятую часть от времени передачи пакета обычной Ethernet со скоростью 10 Мбит/с (IPG - единственный интервал времени, всегда определяемый в микросекундах, а не во времени бита) рисунок 2.


Рисунок 2. Межпакетная щель

После окончания пакета 1 все узлы ЛВС обязаны подождать в течение времени IPG, прежде чем смогут передавать. Временной интервал между пакетами 1 и 2, 2 и 3 на рис. 2 - это время IPG. После завершения передачи пакета 3 ни один узел не имел материала для обработки, поэтому временной интервал между пакетами 3 и 4 длиннее, чем IPG.

Все узлы сети должны соблюдать эти правила. Даже если на узле имеется много кадров для передачи и данный узел является единственным передающим, то после пересылки каждого пакета он должен выждать в течение, по крайней мере, времени IPG.

Именно в этом заключается часть CSMA правил доступа к среде Fast Ethernet. Короче говоря, многие узлы имеют доступ к среде и используют несущую для контроля ее занятости.

В ранних экспериментальных сетях применялись именно эти правила, и такие сети работали очень хорошо. Тем не менее, использование лишь CSMA привело к возникновению проблемы. Часто два узла, имея пакет для передачи и прождав время IPG, начинали передавать одновременно, что приводило к искажению данных с обеих сторон. Такая ситуация называется коллизией (collision) или конфликтом.

Для преодоления этого препятствия ранние протоколы использовали достаточно простой механизм. Пакеты делились на две категории: команды и реакции. Каждая команда, переданная узлом, требовала реакции. Если в течение некоторого времени (называемого периодом тайм-аута) после передачи команды реакция на нее не была получена, то исходная команда подавалась вновь. Это могло происходить по нескольку раз (предельное количество тайм-аутов), прежде чем передающий узел фиксировал ошибку.

Эта схема могла прекрасно работать, но лишь до определенного момента. Возникновение конфликтов приводило к резкому снижению производительности (измеряемой обычно в байтах в секунду), потому что узлы часто простаивали в ожидании ответов на команды, никогда не достигающие пункта назначения. Перегрузка сети, увеличение количества узлов напрямую связаны с ростом числа конфликтов и, следовательно, со снижением производительности сети.

Проектировщики ранних сетей быстро нашли решение этой проблемы: каждый узел должен устанавливать факт потери переданного пакета путем обнаружения конфликта (а не ожидать реакции, которая никогда не последует). Это означает, что потерянные в связи с конфликтом пакеты должны быть немедленно переданы вновь до окончания времени тайм-аута. Если узел передал последний бит пакета без возникновения конфликта, значит, пакет передан успешно.

Метод контроля несущей хорошо сочетать с функцией обнаружения коллизий. Коллизии все еще продолжают происходить, но на производительности сети это не отражается, так как узлы быстро избавляются от них. Группа DIX, разработав правила доступа к среде CSMA/CD для Ethernet, оформила их в виде простого алгоритма - рисунок 3.


Рисунок 3. Алгоритм работы CSMA/CD

Устройство физического уровня ( PHY)

Поскольку Fast Ethernet может использовать различный тип кабеля, то для каждой среды требуется уникальное предварительное преобразование сигнала. Преобразование также требуется для эффективной передачи данных: сделать передаваемый код устойчивым к помехам, возможным потерям, либо искажениям отдельных его элементов (бодов), для обеспечения эффективной синхронизации тактовых генераторов на передающей или приемной стороне.

Подуровень кодирования ( PCS)

Кодирует/декодирует данные поступающие от/к уровня MAC с использованием алгоритмов или .

Подуровни физического присоединения и зависимости от физической среды ( PMА и PMD)

Подуровни РМА и PMD осуществляют связь между подуровнем PSC и интерфейсом MDI, обеспечивая формирование в соответствии с методом физического кодирования: или .

Подуровень автопереговоров (AUTONEG)

Подуровень автопереговоров позволяет двум взаимодействующим портам автоматически выбирать наиболее эффективный режим работы: дуплексный или полудуплексный 10 или 100 Мб/с. Физический уровень

Стандарт Fast Ethernet определяет три типа среды передачи сигналов Ethernet со скоростью 100 Мбит/с.

  • 100Base-TX - две витые пары проводов. Передача осуществляется в соответствии со стандартом передачи данных в витой физической среде, разработанным ANSI (American National Standards Institute - Американский национальный институт стандартов). Витой кабель для передачи данных может быть экранированным, либо неэкранированным. Использует алгоритм кодирования данных 4В/5В и метод физического кодирования MLT-3.
  • 100Base-FX - две жилы, волоконно-оптического кабеля. Передача также осуществляется в соответствии со стандартом передачи данных в волоконно-оптической среде, которой разработан ANSI. Использует алгоритм кодирования данных 4В/5В и метод физического кодирования NRZI.

Спецификации 100Base-TX и 100Base-FX известны также как 100Base-X

  • 100Base-T4 - это особая спецификация, разработанная комитетом IEEE 802.3u . Согласно этой спецификации, передача данных осуществляется по четырем витым парам телефонного кабеля, который называют кабелем UTP категории 3. Использует алгоритм кодирования данных 8В/6Т и метод физического кодирования NRZI.

Дополнительно стандарт Fast Ethernet включает рекомендации по использованию кабеля экранированной витой пары категории 1, который является стандартным кабелем, традиционно использующимся в сетях Token Ring. Организация поддержки и рекомендации по использованию кабеля STP в сети Fast Ethernet предоставляют способ перехода на Fast Ethernet для покупателей, имеющих кабельную разводку STP.

Спецификация Fast Ethernet включает также механизм автосогласования, позволяющий порту узла автоматически настраиваться на скорость передачи данных - 10 или 100 Мбит/с. Этот механизм основан на обмене рядом пакетов с портом концентратора или переключателя.

Среда 100Base-TX

В качестве среды передачи 100Base-TX применяются две витые пары, причем одна пара используется для передачи данных, а вторая - для их приема. Поскольку спецификация ANSI TP - PMD содержит описания как экранированных, так и неэкранированных витых пар, то спецификация 100Base-TX включает поддержку как неэкранированных, так и экранированных витых пар типа 1 и 7.

Разъем MDI (Medium Dependent Interface)

Интерфейс канала 100Base-TX, зависящий от среды, может быть одного из двух типов. Для кабеля на неэкранированных витых парах в качестве разъема MDI следует использовать восьмиконтактный разъем RJ 45 категории 5. Этот же разъем применяется и в сети 10Base-T, что обеспечивает обратную совместимость с существующими кабельными разводками категории 5. Для экранированных витых пар в качестве разъема MDI необходимо использовать разъем STP IBM типа 1, который является экранированным разъемом DB9. Такой разъем обычно применяется в сетях Token Ring.

Кабель UTP категории 5(e)

В интерфейсе среды UTP 100Base-TX применяются две пары проводов. Для минимизации перекрестных наводок и возможного искажения сигнала оставшиеся четыре провода не должны использоваться с целью передачи каких-либо сигналов. Сигналы передачи и приема для каждой пары являются поляризованными, причем один провод передает положительный (+), а второй - отрицательный (-) сигнал. Цветовая маркировка проводов кабеля и номера контактов разъема для сети 100Base-TX приведены в табл. 1. Хотя уровень PHY 100Base-TX разрабатывался после принятия стандарта ANSI TP-PMD, однако номера контактов разъема RJ 45 были изменены для согласования со схемой разводки, уже использующейся в стандарте 10Base-T. В стандарте ANSI TP-PMD контакты 7 и 9 применяются для приема данных, в то время как в стандартах 100Base-TX и 10Base-T для этого предназначены контакты 3 и 6. Такая разводка обеспечивает возможность использования адаптеров 100Base-TX вместо адаптеров 10 Base - T и их подключения к тем же кабелям категории 5 без изменений разводки. В разъеме RJ 45 используемые пары проводов подключаются к контактам 1, 2 и 3, 6. Для правильного подключения проводов следует руководствоваться их цветовой маркировкой.

Таблица 1. Назначение контактов разъема MDI кабеля UTP 100Base-TX

Узлы взаимодействуют друг с другом путем обмена кадрами (frames). В Fast Ethernet кадр является базовой единицей обмена по сети - любая информация, передаваемая между узлами, помещается в поле данных одного или нескольких кадров. Пересылка кадров от одного узла к другому возможна лишь при наличии способа однозначной идентификации всех узлов сети. Поэтому каждый узел в ЛВС имеет адрес, который называется его МАС-адресом. Этот адрес уникален: никакие два узла локальной сети не могут иметь один и тот же МАС-адрес. Более того, ни в одной из технологий ЛВС (за исключением ARCNet) никакие два узла в мире не могут иметь одинаковый МАС-адрес. Любой кадр содержит, по крайней мере, три основные порции информации: адрес получателя, адрес отправителя и данные. Некоторые кадры имеют и другие поля, но обязательными являются лишь три перечисленные. На рисунке 4 отражена структура кадра Fast Ethernet.

Рисунок 4. Структура кадра Fast Ethernet

  • адрес получателя - указывается адрес узла, получающего данные;
  • адрес отправителя - указывается адрес узла, пославшего данные;
  • длина/Тип (L/T - Length/Type) - содержится информация о типе передаваемых данных;
  • контрольная сумма кадра (PCS - Frame Check Sequence) - предназначена для проверки корректности полученного принимающим узлом кадра.

Минимальный объем кадра составляет 64 октета, или 512 битов (термины октет и байт - синонимы). Максимальный объем кадра равен 1518 октетам, или 12144 битам.

Адресация кадров

Каждый узел в сети Fast Ethernet имеет уникальный номер, который называется МАС-адресом (MAC address) или адресом узла. Этот номер состоит из 48 битов (6 байтов), присваивается сетевому интерфейсу во время изготовления устройства и программируется в процессе инициализации. Поэтому сетевые интерфейсы всех ЛВС, за исключением ARCNet, которая использует 8-битовые адреса, присваиваемые сетевым администратором, имеют встроенный уникальный МАС-адрес, отличающийся от всех остальных МАС-адресов на Земле и присваиваемый производителем по согласованию с IEEE.

Чтобы облегчить процесс управления сетевыми интерфейсами, IEEE было предложено разделить 48-битовое поле адреса на четыре части, как показано на рисунке 5. Первые два бита адреса (биты 0 и 1) являются флажками типа адреса. Значение флажков определяет способ интерпретации адресной части (биты 2 - 47).


Рисунок 5. Формат МАС-адреса

Бит I/G называется флажком индивидуального/группового адреса и показывает, каким (индивидуальным или групповым) является адрес. Индивидуальный адрес присваивается только одному интерфейсу (или узлу) в сети. Адреса, у которых бит I/G установлен в 0 - это МАС-адреса или адреса узла. Если бит I/O установлен в 1, то адрес относится к групповым и обычно называется многопунктовым адресом (multicast address) или функциональным адресом (functional address). Групповой адрес может быть присвоен одному или нескольким сетевым интерфейсам ЛВС. Кадры, посланные по групповому адресу, получают или копируют все обладающие им сетевые интерфейсы ЛВС. Многопунктовые адреса позволяют послать кадр подмножеству узлов локальной сети. Если бит I/O установлен в 1, то биты от 46 до 0 трактуются как многопунктовый адрес, а не как поля U/ L, OUI и OUA обычного адреса. Бит U/L называется флажком универсального/местного управления и определяет, как был присвоен адрес сетевому интерфейсу. Если оба бита, I/O и U/ L, установлены в 0, то адрес является уникальным 48-битовым идентификатором, описанным ранее.

OUI (organizationally unique identifier - организационно уникальный идентификатор). IEEE присваивает один или несколько OUI каждому производителю сетевых адаптеров и интерфейсов. Каждый производитель отвечает за правильность присвоения OUA (organizationally unique address - организационно уникальный адрес), который должно иметь любое созданное им устройство.

При установке бита U/L адрес является локально управляемым. Это означает, что он задается не производителем сетевого интерфейса. Любая организация может создать свой МАС-адрес сетевого интерфейса путем установки бита U/ L в 1, а битов со 2-го по 47-й в какое-нибудь выбранное значение. Сетевой интерфейс, получив кадр, первым делом декодирует адрес получателя. При установлении в адресе бита I/O уровень MAC получит этот кадр лишь в том случае, если адрес получателя находится в списке, который хранится на узле. Этот прием позволяет одному узлу отправить кадр многим узлам.

Существует специальный многопунктовый адрес, называемый широковещательным адресом. В 48-битовом широковещательном IEEE-адресе все биты установлены в 1. Если кадр передается с широковещательным адресом получателя, то все узлы сети получат и обработают его.

Поле Длина/Тип

Поле L/T (Length/Type - Длина/Тип) применяется в двух различных целях:

  • для определения длины поля данных кадра, исключая любое дополнение пробелами;
  • для обозначения типа данных в поле данных.

Значение поля L/T, находящееся в интервале между 0 и 1500, является длиной поля данных кадра; более высокое значение указывает на тип протокола.

Вообще поле L/T является историческим осадком стандартизации Ethernet в IEEE, породившим ряд проблем с совместимостью оборудования выпущенного до 1983. Сейчас Ethernet и Fast Ethernet никогда не использует поля L/T. Указанное поле служит лишь для согласования с программным обеспечением, обрабатывающим кадры (то есть с протоколами). Но единственным подлинно стандартным предназначением поля L/T является использование его в качестве поля длины - в спецификации 802.3 даже не упоминается о возможном его применении как поля типа данных. Стандарт гласит: "Кадры со значением поля длины, превышающим определенное в пункте 4.4.2, могут быть проигнорированы, отброшены или использованы частным образом. Использование данных кадров выходит за пределы этого стандарта".

Подводя итог сказанному, заметим, что поле L/T является первичным механизмом, по которому определяется тип кадра. Кадры Fast Ethernet и Ethernet, в которых значением поля L/T задается длина (значение L/T 802.3, кадры, в которых значением этого же поля устанавливается тип данных (значение L/T > 1500), называются кадрами Ethernet - II или DIX .

Поле данных

В поле данных содержится информация, которую один узел пересылает другому. В отличие от других полей, хранящих весьма специфические сведения, поле данных может содержать почти любую информацию, лишь бы ее объем составлял не менее 46 и не более 1500 байтов. Как форматируется и интерпретируется содержимое поля данных, определяют протоколы.

Если необходимо переслать данные длиной менее 46 байтов, уровень LLC добавляет в их конец байты с неизвестным значением, называемые незначащими данными (pad data). В результате длина поля становится равной 46 байтам.

Если кадр имеет тип 802.3, то в поле L/T указывается значение объема действительных данных. Например, если пересылается 12-байтовое сообщение, то поле L/T хранит значение 12, а в поле данных находятся и 34 добавочных незначащих байта. Добавление незначащих байтов инициирует уровень LLC Fast Ethernet, и обычно реализуется аппаратно.

Средства уровня MAC не задают содержимое поля L/T - это делает программное обеспечение. Установка значения этого поля почти всегда производится драйвером сетевого интерфейса.

Контрольная сумма кадра

Контрольная сумма кадра (PCS - Frame Check Sequence) позволяет убедиться в том, что полученные кадры не повреждены. При формировании передаваемого кадра на уровне MAC используется специальная математическая формула CRC (Cyclic Redundancy Check - циклический избыточный код), предназначенная для вычисления 32-разрядного значения. Полученное значение помещается в поле FCS кадра. На вход элемента уровня MAC, вычисляющего CRC, подаются значения всех байтов кадра. Поле FCS является первичным и наиболее важным механизмом обнаружения и исправления ошибок в Fast Ethernet. Начиная с первого байта адреса получателя и заканчивая последним байтом поля данных.

Значения полей DSAP и SSAP

Значения DSAP/SSAP

Описание

Indiv LLC Sublayer Mgt

Group LLC Sublayer Mgt

SNA Path Control

Reserved (DOD IP)

ISO CLNS IS 8473

Алгоритм кодирования 8В6Т преобразует восьмибитовый октет данных (8B) в шестибитовый тернарный символ (6T). Кодовые группы 6Т предназначены для передачи параллельно по трем витым парам кабеля, поэтому эффективная скорость передачи данных по каждой витой паре составляет одну треть от 100 Мбит/с, то есть 33,33 Мбит/с. Скорость передачи тернарных символов по каждой витой паре составляет 6/8 от 33,3 Мбит/с, что соответствует тактовой частоте 25 МГц. Именно с такой частотой работает таймер интерфейса МП. В отличие от бинарных сигналов, которые имеют два уровня, тернарные сигналы, передаваемые по каждой паре, могут иметь три уровня.

Таблица кодировки символов

Линейный код

Символ

MLT-3 Multi Level Transmission - 3 (многоуровневая передача) - немного схож с кодом NRZ, но в отличии от последнего имеет три уровня сигнала.

Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче “нуля” сигнал не меняется.

Этот код, так же как и NRZ нуждается в предварительном кодировании.

Составлено по материалам:

  1. Лаем Куин, Ричард Рассел "Fast Ethernet";
  2. К. Заклер "Компьютерные сети";
  3. В.Г. и Н.А. Олифер "Компьютерные сети";
Ethernet , состоящей из сегментов различных типов, возникает много вопросов, связанных прежде всего с максимально допустимым размером (диаметром) сети и максимально возможным числом различных элементов. Сеть будет работоспособной только в том случае, если задержка распространения сигнала в ней не превысит предельной величины. Это определяется выбранным методом управления обменом CSMA/CD , основанном на обнаружении и разрешении коллизий.

Прежде всего, следует отметить, что для получения сложных конфигураций Ethernet из отдельных сегментов применяются промежуточные устройства двух основных типов:

  • Репитерные концентраторы (хабы) представляют собой набор репитеров и никак логически не разделяют сегменты, подключенные к ним;
  • Коммутаторы передают информацию между сегментами, но не передают конфликты с сегмента на сегмент.

При использовании более сложных коммутаторов конфликты в отдельных сегментах решаются на месте, в самих сегментах, но не распространяются по сети, как в случае применения более простых репитерных концентраторов. Это имеет принципиальное значение для выбора топологии сети Ethernet , так как используемый в ней метод доступа CSMA/CD предполагает наличие конфликтов и их разрешение, причем общая длина сети как раз и определяется размером зоны конфликта , области коллизии ( collision domain ). Таким образом, применение репитерного концентратора не разделяет зону конфликта , в то время как каждый коммутирующий концентратор делит зону конфликта на части. В случае применения коммутатора оценивать работоспособность надо для каждого сегмента сети отдельно, а при использовании репитерных концентраторов – для сети в целом.

На практике репитерные концентраторы применяются гораздо чаще, так как они и проще и дешевле. Поэтому в дальнейшем речь пойдет именно о них.

При выборе и оценке конфигурации Ethernet используются две основные модели .

Правила модели 1

Первая модель формулирует набор правил, которые необходимо соблюдать проектировщику сети при соединении отдельных компьютеров и сегментов:

  1. Репитер или концентратор, подключенный к сегменту, снижает на единицу максимально допустимое число абонентов, подключаемых к сегменту.
  2. Полный путь между двумя любыми абонентами должен включать в себя не более пяти сегментов, четырех концентраторов ( репитеров ) и двух трансиверов ( MAU ).
  3. Если путь между абонентами состоит из пяти сегментов и четырех концентраторов ( репитеров ), то количество сегментов, к которым подключены абоненты, не должно превышать трех, а остальные сегменты должны просто связывать между собой концентраторы ( репитеры ). Это уже упоминавшееся "правило 5-4-3".
  4. Если путь между абонентами состоит из четырех сегментов и трех концентраторов ( репитеров ), то должны выполняться следующие условия:
    • максимальная длина оптоволоконного кабеля сегмента 10BASE-FL , соединяющего между собой концентраторы ( репитеры ), не должна превышать 1000 метров;
    • максимальная длина оптоволоконного кабеля сегмента 10BASE-FL , соединяющего концентраторы ( репитеры ) с компьютерами, не должна превышать 400 метров;
    • ко всем сегментам могут подключаться компьютеры.

При выполнении перечисленных правил можно быть уверенным, что сеть будет работоспособной. Никаких дополнительных расчетов в данном случае не требуется. Считается, что соблюдение данных правил гарантирует допустимую величину задержки сигнала в сети.

Наибольшее распространение среди стандартных сетей получила сеть Ethernet. Она появилась в 1972 году, а в 1985 году стала международным стандартом. Ее приняли крупнейшие международные организации по стандартам: комитет 802 IEEE (Institute of Electrical and Electronic Engineers) и ECMA (European Computer Manufacturers Association).

Стандарт получил название IEEE 802.3 (по-английски читается как "eight oh two dot three"). Он определяет множественный доступ к моноканалу типа шина с обнаружением конфликтов и контролем передачи, то есть с уже упоминавшимся методом доступа CSMA/CD.

Основные характеристики первоначального стандарта IEEE 802.3:

· топология – шина;

· среда передачи – коаксиальный кабель;

· скорость передачи – 10 Мбит/с;

· максимальная длина сети – 5 км;

· максимальное количество абонентов – до 1024;

· длина сегмента сети – до 500 м;

· количество абонентов на одном сегменте – до 100;

· метод доступа – CSMA/CD;

· передача узкополосная, то есть без модуляции (моноканал).

Строго говоря, между стандартами IEEE 802.3 и Ethernet существуют незначительные отличия, но о них обычно предпочитают не вспоминать.

Сеть Ethernet сейчас наиболее популярна в мире (более 90% рынка), предположительно таковой она и останется в ближайшие годы. Этому в немалой степени способствовало то, что с самого начала характеристики, параметры, протоколы сети были открыты, в результате чего огромное число производителей во всем мире стали выпускать аппаратуру Ethernet, полностью совместимую между собой.

В классической сети Ethernet применялся 50-омный коаксиальный кабель двух видов (толстый и тонкий). Однако в последнее время (с начала 90-х годов) наибольшее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары. Определен также стандарт для применения в сети оптоволоконного кабеля. Для учета этих изменений в изначальный стандарт IEEE 802.3 были сделаны соответствующие добавления. В 1995 году появился дополнительный стандарт на более быструю версию Ethernet, работающую на скорости 100 Мбит/с (так называемый Fast Ethernet, стандарт IEEE 802.3u), использующую в качестве среды передачи витую пару или оптоволоконный кабель. В 1997 году появилась и версия на скорость 1000 Мбит/с (Gigabit Ethernet, стандарт IEEE 802.3z).



Помимо стандартной топологии шина все шире применяются топологии типа пассивная звезда и пассивное дерево. При этом предполагается использование репитеров и репитерных концентраторов, соединяющих между собой различные части (сегменты) сети. В результате может сформироваться древовидная структура на сегментах разных типов (рис.7.1).

В качестве сегмента (части сети) может выступать классическая шина или единичный абонент. Для шинных сегментов используется коаксиальный кабель, а для лучей пассивной звезды (для присоединения к концентратору одиночных компьютеров) – витая пара и оптоволоконный кабель. Главное требование к полученной в результате топологии – чтобы в ней не было замкнутых путей (петель). Фактически получается, что все абоненты соединены в физическую шину, так как сигнал от каждого из них распространяется сразу во все стороны и не возвращается назад (как в кольце).

Максимальная длина кабеля сети в целом (максимальный путь сигнала) теоретически может достигать 6,5 километров, но практически не превышает 3,5 километров.

Рис. 7.1. Классическая топология сети Ethernet.

В сети Fast Ethernet не предусмотрена физическая топология шина, используется только пассивная звезда или пассивное дерево. К тому же в Fast Ethernet гораздо более жесткие требования к предельной длине сети. Ведь при увеличении в 10 раз скорости передачи и сохранении формата пакета его минимальная длина становится в десять раз короче. Таким образом в 10 раз уменьшается допустимая величина двойного времени прохождения сигнала по сети (5,12 мкс против 51,2 мкс в Ethernet).

Для передачи информации в сети Ethernet применяется стандартный манчестерский код.

Доступ к сети Ethernet осуществляется по случайному методу CSMA/CD, обеспечивающему равноправие абонентов. В сети используются пакеты переменной длины.

Для сети Ethernet, работающей на скорости 10 Мбит/с, стандарт определяет четыре основных типа сегментов сети, ориентированных на различные среды передачи информации:

· 10BASE5 (толстый коаксиальный кабель);

· 10BASE2 (тонкий коаксиальный кабель);

· 10BASE-T (витая пара);

· 10BASE-FL (оптоволоконный кабель).

Наименование сегмента включает в себя три элемента: цифра "10" означает скорость передачи 10 Мбит/с, слово BASE – передачу в основной полосе частот (то есть без модуляции высокочастотного сигнала), а последний элемент – допустимую длину сегмента: "5" – 500 метров, "2" – 200 метров (точнее, 185 метров) или тип линии связи: "Т" – витая пара (от английского "twisted-pair"), "F" – оптоволоконный кабель (от английского "fiber optic").

Точно так же для сети Ethernet, работающей на скорости 100 Мбит/с (Fast Ethernet) стандарт определяет три типа сегментов, отличающихся типами среды передачи:

· 100BASE-T4 (счетверенная витая пара);

· 100BASE-TX (сдвоенная витая пара);

· 100BASE-FX (оптоволоконный кабель).

Здесь цифра "100" означает скорость передачи 100 Мбит/с, буква "Т" – витую пару, буква "F" – оптоволоконный кабель. Типы 100BASE-TX и 100BASE-FX иногда объединяют под именем 100BASE-X, а 100BASE-T4 и 100BASE-TX – под именем 100BASE-T.


Сеть Token-Ring

Сеть Token-Ring (маркерное кольцо) была предложена компанией IBM в 1985 году (первый вариант появился в 1980 году). Она предназначалась для объединения в сеть всех типов компьютеров, выпускаемых IBM. Уже тот факт, что ее поддерживает компания IBM, крупнейший производитель компьютерной техники, говорит о том, что ей необходимо уделить особое внимание. Но не менее важно и то, что Token-Ring является в настоящее время международным стандартом IEEE 802.5 (хотя между Token-Ring и IEEE 802.5 есть незначительные отличия). Это ставит данную сеть на один уровень по статусу с Ethernet.

Разрабатывалась Token-Ring как надежная альтернатива Ethernet. И хотя сейчас Ethernet вытесняет все остальные сети, Token-Ring нельзя считать безнадежно устаревшей. Более 10 миллионов компьютеров по всему миру объединены этой сетью.

Сеть Token-Ring имеет топологию кольцо, хотя внешне она больше напоминает звезду. Это связано с тем, что отдельные абоненты (компьютеры) присоединяются к сети не напрямую, а через специальные концентраторы или многостанционные устройства доступа (MSAU или MAU – Multistation Access Unit). Физически сеть образует звездно-кольцевую топологию (рис.7.3). В действительности же абоненты объединяются все-таки в кольцо, то есть каждый из них передает информацию одному соседнему абоненту, а принимает информацию от другого.

Рис. 7.3. Звездно-кольцевая топология сети Token-Ring.

В качестве среды передачи в сети IBM Token-Ring сначала применялась витая пара, как неэкранированная (UTP), так и экранированная (STP), но затем появились варианты аппаратуры для коаксиального кабеля, а также для оптоволоконного кабеля в стандарте FDDI.

Основные технические характеристики классического варианта сети Token-Ring:

· максимальное количество концентраторов типа IBM 8228 MAU – 12;

· максимальное количество абонентов в сети – 96;

· максимальная длина кабеля между абонентом и концентратором – 45 метров;

· максимальная длина кабеля между концентраторами – 45 метров;

· максимальная длина кабеля, соединяющего все концентраторы – 120 метров;

· скорость передачи данных – 4 Мбит/с и 16 Мбит/с.

Все приведенные характеристики относятся к случаю использования неэкранированной витой пары. Если применяется другая среда передачи, характеристики сети могут отличаться. Например, при использовании экранированной витой пары (STP) количество абонентов может быть увеличено до 260 (вместо 96), длина кабеля – до 100 метров (вместо 45), количество концентраторов – до 33, а полная длина кольца, соединяющего концентраторы – до 200 метров. Оптоволоконный кабель позволяет увеличивать длину кабеля до двух километров.

Для передачи информации в Token-Ring применяется бифазный код (точнее, его вариант с обязательным переходом в центре битового интервала). Как и в любой звездообразной топологии, никаких дополнительных мер по электрическому согласованию и внешнему заземлению не требуется. Согласование выполняется аппаратурой сетевых адаптеров и концентраторов.

Для присоединения кабелей в Token-Ring используются разъемы RJ-45 (для неэкранированной витой пары), а также MIC и DB9P. Провода в кабеле соединяют одноименные контакты разъемов (то есть используются так называемые "прямые" кабели).

Сеть Token-Ring в классическом варианте уступает сети Ethernet как по допустимому размеру, так и по максимальному количеству абонентов. Что касается скорости передачи, то в настоящее время имеются версии Token-Ring на скорость 100 Мбит/с (High Speed Token-Ring, HSTR) и на 1000 Мбит/с (Gigabit Token-Ring). Компании, поддерживающие Token-Ring (среди которых IBM, Olicom, Madge), не намерены отказываться от своей сети, рассматривая ее как достойного конкурента Ethernet.

По сравнению с аппаратурой Ethernet аппаратура Token-Ring заметно дороже, так как используется более сложный метод управления обменом, поэтому сеть Token-Ring не получила столь широкого распространения.

Однако в отличие от Ethernet сеть Token-Ring значительно лучше держит высокий уровень нагрузки (более 30-40%) и обеспечивает гарантированное время доступа. Это необходимо, например, в сетях производственного назначения, в которых задержка реакции на внешнее событие может привести к серьезным авариям.

В сети Token-Ring используется классический маркерный метод доступа, то есть по кольцу постоянно циркулирует маркер, к которому абоненты могут присоединять свои пакеты данных (см. рис. 4.15). Отсюда следует такое важное достоинство данной сети, как отсутствие конфликтов, но есть и недостатки, в частности необходимость контроля целостности маркера и зависимость функционирования сети от каждого абонента (в случае неисправности абонент обязательно должен быть исключен из кольца).

Предельное время передачи пакета в Token-Ring 10 мс. При максимальном количестве абонентов 260 полный цикл работы кольца составит 260 x 10 мс = 2,6 с. За это время все 260 абонентов смогут передать свои пакеты (если, конечно, им есть чего передавать). За это же время свободный маркер обязательно дойдет до каждого абонента. Этот же интервал является верхним пределом времени доступа Token-Ring.


Сеть Arcnet

Сеть Arcnet (или ARCnet от английского Attached Resource Computer Net, компьютерная сеть соединенных ресурсов) – это одна из старейших сетей. Она была разработана компанией Datapoint Corporation еще в 1977 году. Международные стандарты на эту сеть отсутствуют, хотя именно она считается родоначальницей метода маркерного доступа. Несмотря на отсутствие стандартов, сеть Arcnet до недавнего времени (в 1980 – 1990 г.г.) пользовалась популярностью, даже серьезно конкурировала с Ethernet. Большое количество компаний производили аппаратуру для сети этого типа. Но сейчас производство аппаратуры Arcnet практически прекращено.

Среди основных достоинств сети Arcnet по сравнению с Ethernet можно назвать ограниченную величину времени доступа, высокую надежность связи, простоту диагностики, а также сравнительно низкую стоимость адаптеров. К наиболее существенным недостаткам сети относятся низкая скорость передачи информации (2,5 Мбит/с), система адресации и формат пакета.

Для передачи информации в сети Arcnet используется довольно редкий код, в котором логической единице соответствует два импульса в течение битового интервала, а логическому нулю – один импульс. Очевидно, что это самосинхронизирующийся код, который требует еще большей пропускной способности кабеля, чем даже манчестерский.

В качестве среды передачи в сети используется коаксиальный кабель с волновым сопротивлением 93 Ом, к примеру, марки RG-62A/U. Варианты с витой парой (экранированной и неэкранированной) не получили широкого распространения. Были предложены и варианты на оптоволоконном кабеле, но и они также не спасли Arcnet.

В качестве топологии сеть Arcnet использует классическую шину (Arcnet-BUS), а также пассивную звезду (Arcnet-STAR). В звезде применяются концентраторы (хабы). Возможно объединение с помощью концентраторов шинных и звездных сегментов в древовидную топологию (как и в Ethernet). Главное ограничение – в топологии не должно быть замкнутых путей (петель). Еще одно ограничение: количество сегментов, соединенных последовательной цепочкой с помощью концентраторов, не должно превышать трех.

Таким образом, топология сети Arcnet имеет следующий вид (рис.7.15).

Рис. 7.15. Топология сети Arcnet типа шина (B – адаптеры для работы в шине, S – адаптеры для работы в звезде).

Основные технические характеристики сети Arcnet следующие.

· Среда передачи – коаксиальный кабель, витая пара.

· Максимальная длина сети – 6 километров.

· Максимальная длина кабеля от абонента до пассивного концентратора – 30 метров.

· Максимальная длина кабеля от абонента до активного концентратора – 600 метров.

· Максимальная длина кабеля между активным и пассивным концентраторами – 30 метров.

· Максимальная длина кабеля между активными концентраторами – 600 метров.

· Максимальное количество абонентов в сети – 255.

· Максимальное количество абонентов на шинном сегменте – 8.

· Минимальное расстояние между абонентами в шине – 1 метр.

· Максимальная длина шинного сегмента – 300 метров.

· Скорость передачи данных – 2,5 Мбит/с.

При создании сложных топологий необходимо следить за тем, чтобы задержка распространения сигналов в сети между абонентами не превышала 30 мкс. Максимальное затухание сигнала в кабеле на частоте 5 МГц не должно превышать 11 дБ.

В сети Arcnet используется маркерный метод доступа (метод передачи права), но он несколько отличается от аналогичного в сети Token-Ring. Ближе всего этот метод к тому, который предусмотрен в стандарте IEEE 802.4.

Так же, как и в случае Token-Ring, конфликты в Arcnet полностью исключены. Как и любая маркерная сеть, Arcnet хорошо держит нагрузку и гарантирует величину времени доступа к сети (в отличие от Ethernet). Полное время обхода маркером всех абонентов составляет 840 мс. Соответственно, этот же интервал определяет верхний предел времени доступа к сети.

Маркер формируется специальным абонентом – контроллером сети. Им является абонент с минимальным (нулевым) адресом.


Сеть FDDI

Сеть FDDI (от английского Fiber Distributed Data Interface, оптоволоконный распределенный интерфейс данных) – это одна из новейших разработок стандартов локальных сетей. Стандарт FDDI был предложен Американским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5). Затем был принят стандарт ISO 9314, соответствующий спецификациям ANSI. Уровень стандартизации сети достаточно высок.

В отличие от других стандартных локальных сетей, стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение наиболее перспективного оптоволоконного кабеля. Поэтому в данном случае разработчики не были стеснены рамками старых стандартов, ориентировавшихся на низкие скорости и электрический кабель.

Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи, которая в случае оптоволоконного кабеля достигается гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок). Все это определило популярность сети FDDI, хотя она распространена еще не так широко, как Ethernet и Token-Ring.

За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Несущественные отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI – это кольцо, наиболее подходящая топология для оптоволоконного кабеля. В сети применяется два разнонаправленных оптоволоконных кабеля, один из которых обычно находится в резерве, однако такое решение позволяет использовать и полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).

Основные технические характеристики сети FDDI.

· Максимальное количество абонентов сети – 1000.

· Максимальная протяженность кольца сети – 20 километров.

· Максимальное расстояние между абонентами сети – 2 километра.

· Среда передачи – многомодовый оптоволоконный кабель (возможно применение электрической витой пары).

· Метод доступа – маркерный.

· Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Стандарт FDDI имеет значительные преимущества по сравнению со всеми рассмотренными ранее сетями. Например, сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки.

Ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров.

Имеется также реализация FDDI на электрическом кабеле (CDDI – Copper Distributed Data Interface или TPDDI – Twisted Pair Distributed Data Interface). При этом используется кабель категории 5 с разъемами RJ-45. Максимальное расстояние между абонентами в этом случае должно быть не более 100 метров. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед конкурентами, как изначальная оптоволоконная FDDI. Электрические версии FDDI стандартизованы гораздо хуже оптоволоконных, поэтому совместимость оборудования разных производителей не гарантируется.

Для передачи данных в FDDI применяется код 4В/5В, специально разработанный для этого стандарта.

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

· Абоненты (станции) класса А (абоненты двойного подключения, DAS – Dual-Attachment Stations) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.

· Абоненты (станции) класса В (абоненты одинарного подключения, SAS – Single-Attachment Stations) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы (Wiring Concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары) концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC – Dual-Attachment Concentrator) и одинарного подключения (SAC – Single-Attachment Concentrator).

Пример конфигурации сети FDDI представлен на рис. 8.1. Принцип объединения устройств сети иллюстрируется на рис.8.2.

Рис. 8.1. Пример конфигурации сети FDDI.

В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется так называемая множественная передача маркера. Если в случае сети Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета (подобно тому, как это делается при методе ETR в сети Token-Ring).

В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка нескольких сот и даже тысяч долларов). Основная область применения FDDI сейчас – это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена. Предполагается, что сеть Fast Ethernet может потеснить FDDI, однако преимущества оптоволоконного кабеля, маркерного метода управления и рекордный допустимый размер сети ставят в настоящее время FDDI вне конкуренции. А в тех случаях, когда стоимость аппаратуры имеет решающее значение, можно на некритичных участках применять версию FDDI на основе витой пары (TPDDI). К тому же стоимость аппаратуры FDDI может сильно уменьшиться с ростом объема ее выпуска.


Сеть 100VG-AnyLAN

Сеть 100VG-AnyLAN – это одна из последних разработок высокоскоростных локальных сетей, недавно появившаяся на рынке. Она соответствует международному стандарту IEEE 802.12, так что уровень ее стандартизации достаточно высокий.

Главными достоинствами ее являются большая скорость обмена, сравнительно невысокая стоимость аппаратуры (примерно вдвое дороже оборудования наиболее популярной сети Ethernet 10BASE-T), централизованный метод управления обменом без конфликтов, а также совместимость на уровне форматов пакетов с сетями Ethernet и Token-Ring.

В названии сети 100VG-AnyLAN цифра 100 соответствует скорости 100 Мбит/с, буквы VG обозначают дешевую неэкранированную витую пару категории 3 (Voice Grade), а AnyLAN (любая сеть) обозначает то, что сеть совместима с двумя самыми распространенными сетями.

Основные технические характеристики сети 100VG-AnyLAN:

· Скорость передачи – 100 Мбит/с.

· Топология – звезда с возможностью наращивания (дерево). Количество уровней каскадирования концентраторов (хабов) – до 5.

· Метод доступа – централизованный, бесконфликтный (Demand Priority – с запросом приоритета).

· Среда передачи – счетверенная неэкранированная витая пара (кабели UTP категории 3, 4 или 5), сдвоенная витая пара (кабель UTP категории 5), сдвоенная экранированная витая пара (STP), а также оптоволоконный кабель. Сейчас в основном распространена счетверенная витая пара.

· Максимальная длина кабеля между концентратором и абонентом и между концентраторами – 100 метров (для UTP кабеля категории 3), 200 метров (для UTP кабеля категории 5 и экранированного кабеля), 2 километра (для оптоволоконного кабеля). Максимально возможный размер сети – 2 километра (определяется допустимыми задержками).

· Максимальное количество абонентов – 1024, рекомендуемое – до 250.

Таким образом, параметры сети 100VG-AnyLAN довольно близки к параметрам сети Fast Ethernet. Однако главное преимущество Fast Ethernet – это полная совместимость с наиболее распространенной сетью Ethernet (в случае 100VG-AnyLAN для этого требуется мост). В то же время, централизованное управление 100VG-AnyLAN, исключающее конфликты и гарантирующее предельную величину времени доступа (чего не предусмотрено в сети Ethernet), также нельзя сбрасывать со счетов.

Пример структуры сети 100VG-AnyLAN показан на рис. 8.8.

Сеть 100VG-AnyLAN состоит из центрального (основного, корневого) концентратора уровня 1, к которому могут подключаться как отдельные абоненты, так и концентраторы уровня 2, к которым в свою очередь подключаются абоненты и концентраторы уровня 3 и т.д. При этом сеть может иметь не более пяти таких уровней (в первоначальном варианте было не более трех). Максимальный размер сети может составлять 1000 метров для неэкранированной витой пары.

Рис. 8.8. Структура сети 100VG-AnyLAN.

В отличие от неинтеллектуальных концентраторов других сетей (например, Ethernet, Token-Ring, FDDI), концентраторы сети 100VG-AnyLAN – это интеллектуальные контроллеры, которые управляют доступом к сети. Для этого они непрерывно контролируют запросы, поступающие на все порты. Концентраторы принимают приходящие пакеты и отправляют их только тем абонентам, которым они адресованы. Однако никакой обработки информации они не производят, то есть в данном случае получается все-таки не активная, но и не пассивная звезда. Полноценными абонентами концентраторы назвать нельзя.

Каждый из концентраторов может быть настроен на работу с форматами пакетов Ethernet или Token-Ring. При этом концентраторы всей сети должны работать с пакетами только какого-нибудь одного формата. Для связи с сетями Ethernet и Token-Ring необходимы мосты, но мосты довольно простые.

Концентраторы имеют один порт верхнего уровня (для присоединения его к концентратору более высокого уровня) и несколько портов нижнего уровня (для присоединения абонентов). В качестве абонента может выступать компьютер (рабочая станция), сервер, мост, маршрутизатор, коммутатор. К порту нижнего уровня может также присоединяться другой концентратор.

Каждый порт концентратора может быть установлен в один из двух возможных режимов работы:

· Нормальный режим предполагает пересылку абоненту, присоединенному к порту, только пакетов, адресованных лично ему.

· Мониторный режим предполагает пересылку абоненту, присоединенному к порту, всех пакетов, приходящих на концентратор. Этот режим позволяет одному из абонентов контролировать работу всей сети в целом (выполнять функцию мониторинга).

Метод доступа к сети 100VG-AnyLAN типичен для сетей с топологией звезда.

При использовании счетверенной витой пары передача по каждой из четырех витых пар производится со скоростью 30 Мбит/с. Суммарная скорость передачи составляет 120 Мбит/с. Однако полезная информация вследствие использования кода 5В/6В передается всего лишь со скоростью 100 Мбит/с. Таким образом, пропускная способность кабеля должна быть не менее 15 МГц. Этому требованию удовлетворяет кабель с витыми парами категории 3 (полоса пропускания – 16 МГц).

Таким образом, сеть 100VG-AnyLAN представляет собой доступное решение для увеличения скорости передачи до 100 Мбит/с. Однако не обладает полной совместимостью ни с одной из стандартных сетей, поэтому ее дальнейшая судьба проблематична. К тому же, в отличие от сети FDDI, она не имеет никаких рекордных параметров. Скорее всего, 100VG-AnyLAN несмотря на поддержку солидных фирм и высокий уровень стандартизации останется всего лишь примером интересных технических решений.

Если говорить о наиболее распространенной 100-мегабитной сети Fast Ethernet, то 100VG-AnyLAN обеспечивает вдвое большую длину кабеля UTP категории 5 (до 200 метров), а также бесконфликтный метод управления обменом.

    Простота установки.

    Хорошо известная и наиболее распространенная сетевая технология.

    Невысокая стоимость сетевых карт.

    Возможность реализации с использованием различных типов кабеля и схем прокладки кабельной системы.

Недостатки сети Ethernet

    Снижение реальной скорости передачи данных в сильно загруженной сети, вплоть до ее полной остановки, из-за конфликтов в среде передачи данных.

    Трудности поиска неисправностей: при обрыве кабеля отказывает весь сегмент ЛВС, и локализовать неисправный узел или участок сети достаточно сложно.

    Краткая характеристика Fast Ethernet.

Fast Ethernet (Быстрый Ethernet) - высокоскоростная технология, предложенная фирмой 3Com для реализации сети Ethernet со скоростью передачи данных 100 Мбит/с, сохранившая в максимальной степени особенности 10-мегабитного Ethernet (Ethernet-10) и реализованная в виде стандарта 802.3u (точнее дополнения к стандарту 802.3 в виде глав с 21 по 30). Метод доступа - такой же, как в Ethernet-10 - CSMA/CD уровня МАС, что позволяет использовать прежнее программное обеспечение и средства управления сетями Ethernet.

Все отличия Fast Ethernet от Ethernet-10 сосредоточены на физическом уровне. Используются 3 варианта кабельных систем:

    многомодовый ВОК (используется 2 волокна);

Структура сети - иерархическая древовидная, построенная на концентраторах (как 10Base-T и 10Base-F), поскольку не используется коаксиальный кабель.

Диаметр сети Fast Ethernet сокращен до 200 метров, что объясняется уменьшением времени передачи кадра минимальной длины в 10 раз за счет увеличения скорости передачи в 10 раз по сравнению с Ethernet-10. Тем не менее, возможно построение крупных сетей на основе технологии Fast Ethernet, благодаря широкому распространению недорогих высокоскоростных технологий, а также бурному развитию ЛВС на основе коммутаторов. При использовании коммутаторов протокол Fast Ethernet может работать в полнодуплексном режиме, в котором нет ограничений на общую длину сети, а остаются только ограничения на длину физических сегментов, соединяющих соседние устройства (адаптер - коммутатор или коммутатор - коммутатор).

Стандарт IEEE 802.3u определяет 3 спецификации физического уровня Fast Ethernet, несовместимых друг с другом:

    100Base-ТX - передача данных по двум неэкранированным парам категории 5 (2 пары UTP категории 5 или STP Type 1);

    100Base-Т4 - передача данных по четырем неэкранированным парам категорий 3, 4, 5 (4 пары UTP категории 3, 4 или 5);

    100Base-FX - передача данных по двум волокнам многомодового ВОК.

    Чему равно время передачи кадра минимальной (максимальной) длины (вместе с преамбулой) в битовых интервалах для сети Ethernet 10Мбит/с?

? 84 / 1538

    Что такое PDV (PVV)?

PDV - время, за которое сигнал коллизии успевает распространиться от самого дальнего узла сети – время двойного оборота (Path Delay Value)

PVV - сокращение межкадрового интервала (Path Variability Value)

    Чему равно ограничение на PDV (PVV)?

PDV- не более575 битовых интервала

PVV- при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала

    Сколько битовых интервалов составляет достаточный запас надежности для PDV? 4

    Когда необходимо рассчитывать максимальное количество повторителей и максимальную длину сети? Почему нельзя просто применить правила «5-4-3» или «4-х хабов»?

Когда разные типы сред передачи

    Перечислите основные условия корректной работы сети Ethernet, состоящей из сегментов различной физической природы.

  • кол-во станций не больше 1024

    длины всех ответвлений не больше стандарта

    PDVне больше 575

    PVV- при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала

Что понимают под базой сегмента при расчете PDV?

Задержки, вносимые повторителями

  1. Где в худшем случае происходит столкновение кадров: в правом, левом или промежуточном сегменте?

В правом – принимающем

    В каком случае необходимо выполнять расчет PDV дважды? Почему?

Если различная длина сегментов на удаленных краях сети, т.к. они имеют разные величины базовой задержки.

    Краткая характеристика ЛВС Token Ring.

Token Ring (маркерное кольцо) - сетевая технология, в которой станции могут передавать данные только тогда, когда они владеют маркером, непрерывно циркулирующим по кольцу.

    Максимальное число станций в одном кольце - 256.

    Максимальное расстояние между станциями зависит от типа передающей среды (линии связи) и составляет:

    До 8 колец (MSAU) могут быть соединены мостами.

    Максимальная протяженность сети зависит от конфигурации.

    Назначение сетевой технологии Token Ring.

Сеть Token Ring предложена фирмой IBM в 1985 году (первый вариант появился в 1980 году). Назначением Token Ring было объединение в сеть всех типов ЭВМ, выпускаемых фирмой (от ПК до больших ЭВМ).

    Каким международным стандартом определена сетевая технология Token Ring?

Token Ring является в настоящее время международным стандартом IEEE 802.5.

    Какая пропускная способность обеспечивается в ЛВС Token Ring?

Существует два варианта этой технологии, обеспечивающие скорость передачи данных 4 и 16 Мбит/с соответственно.

    Что представляет собой устройство множественного доступа MSAU?

Концентратор MSAU представляет собой автономный блок с 8-ю разъемами для подключения компьютеров с помощью адаптерных кабелей и двумя крайними разъемами для подключения к другим концентраторам с помощью магистральных кабелей.

Несколько MSAU могут конструктивно объединяться в группу (кластер/cluster), внутри которого абоненты соединены в кольцо, что позволяет увеличить количество абонентов, подключенных к одному центру.

Каждый адаптер соединяется с MSAU с помощью двух разнонаправленных линий связи.

    Нарисовать структуру и описать функционирование ЛВС Token Ring на основе одного (нескольких) MSAU.

Одного – см. выше

Несколько – (продеолжение)…Такими же двумя разнонаправленными линиями связи, входящими в магистральный кабель, могут быть связаны MSAU в кольцо (рис.3.3), в отличие от однонаправленного магистрального кабеля, как это показано на рис.3.2.

Каждый узел ЛВС принимает кадр от соседнего узла, восстанавливает уровни сигналов до номинальных и передает кадр следующему узлу.

Передаваемый кадр может содержать данные или являться маркером, представляющим собой специальный служебный 3-х байтовый кадр. Узел, владеющий маркером, имеет право на передачу данных.

Когда РС необходимо передать кадр, ее адаптер дожидается поступления маркера, а затем преобразует его в кадр, содержащий данные, сформированные по протоколу соответствующего уровня, и передает его в сеть. Пакет передается по сети от адаптера к адаптеру, пока не достигнет адресата, который установит в нем определенные биты для подтверждения того, что кадр получен адресатом, и ретранслирует его далее в сеть. Пакет продолжает движение по сети до возвращения в узел-отправитель, в котором проверяется правильность передачи. Если кадр был передан адресату без ошибок, узел передает маркер следующему узлу. Таким образом, в ЛВС с передачей маркера невозможны столкновения кадров.

    В чем отличие физической топологии ЛВС Token Ring от логической?

Физическая топология Token Ring может быть реализована двумя способами:

1) "звезда" (рис.3.1);

Логическая топология во всех способах - "кольцо". Пакет передается от узла к узлу по кольцу до тех пор, пока он не вернется в узел, где он был порожден.

    Нарисовать возможные варианты структуры ЛВС Token Ring.

1) "звезда" (рис.3.1);

2) "расширенное кольцо" (рис.3.2).

    Краткое описание функциональной организации ЛВС Token Ring. См. №93

    Понятие и функции активного монитора в ЛВС Token Ring.

При инициализации ЛВС Token Ring одна из рабочих станций назначается в качестве активного монитора , на который возлагаются дополнительные контрольные функции в кольце:

    временной контроль в логическом кольце с целью выявления ситуаций, связанных с потерей маркера;

    формирование нового маркера после обнаружения потери маркера;

    формирование диагностических кадров при определенных обстоятельствах.

При выходе активного монитора из строя, назначается новый активный монитор из множества других РС.

    Какой режим (способ) передачи маркера используется в ЛВС Token Ring со скоростью 16 Мбит/с?

Для увеличения производительности сети в Token Ring со скоростью 16 Мбит/с используется так называемый режим ранней передачи маркера (Early Token Release - ETR), при котором РС передает маркер следующей РС сразу после передачи своего кадра. При этом у следующей РС появляется возможность передавать свои кадры, не ожидая завершения передачи исходной РС.

    Перечислить типы кадров, используемых в ЛВС Token Ring.

маркер; кадр данных; последовательность завершения.

    Нарисовать и пояснить формат маркера (кадра данных, последовательности завершения) ЛВС Token Ring.

Формат маркера

КО - конечный ограничитель - [ J | K | 1 | J | K | 1 | ПК | ОО ]

Формат кадра данных

СПК - стартовая последовательность кадра

НО - начальный ограничитель - [ J|K| 0 |J|K| 0 | 0 | 0 ]

УД - управление доступом - [ P|P|P|T|M|R|R|R]

УК - управление кадром

АН - адрес назначения

АИ - адрес источника

Данные - поле данных

КС - контрольная сумма

ПКК - признак конца кадра

КО - конечный ограничитель

СК - статус кадра

Формат последовательности завершения

    Структура поля "управление доступом" в кадре ЛВС Token Ring.

УД - управление доступом (Access Control) - имеет следующую структуру: [ P | P | P | T | M | R | R | R ] , где PPP - биты приоритета;

сетевой адаптер имеет возможность присваивать приоритеты маркеру и кадрам данных путем записи в поле битов приоритета уровня приоритета в виде чисел от 0 до 7 (7 - наивысший приоритет); РС имеет право передачи сообщения только в том случае, когда ее собственный приоритет не ниже приоритета маркера, который она получила;T - бит маркера: 0 для маркера и 1 для кадра данных;M - бит монитора:1, если кадр передан активным монитором и 0 - в противном случае; получение активным монитором кадра с битом монитора, равным 1, означает, что сообщение или маркер обошло ЛВС не найдя адресата;RRR - биты резервирования используются совместно с битами приоритета; РС может резервировать дальнейшее использование сети, поместив значение своего приоритета в биты резервирования, если ее приоритет выше текущего значения поля резервирования;

после этого, когда передающий узел, получив вернувшийся кадр данных, формирует новый маркер, он устанавливает его приоритет равным значению поля резервирования у полученного перед этим кадра; таким образом маркер будет передан узлу, установившему в поле резервирования наивысший приоритет;

    Назначение битов приоритета (бита маркера, бит монитора, битов резервирования) поля "управление доступом" в маркере ЛВС Token Ring. См выше

    В чем отличие кадров уровня MAC от кадров уровня LLC?

УК - управление кадром (Frame Control - FC) определяет тип кадра (MAC или LLC) и контрольный код MAC; однобайтовое поле содержит две области:

, где FF - формат (тип) кадра: 00 - для кадра типа MAC; 01 - для кадра уровня LLC; (значения 10 и 11 зарезервированы); 00 - неиспользуемые резервные разряды; CCCC - код УДС-кадра MAC (поле физического управления), определяющий к какому типу (определенных стандартом IEEE 802.5) управляющих кадров уровня MAC он принадлежит;

    В каком поле кадра данных указывается принадлежность к типу MAC (LLC)? В поле УК (см.выше)

    Длина поля данных в кадрах ЛВС Token Ring.

специального ограничения на длину поля данных нет, хотя практически оно возникает из-за ограничений на допустимое время занятия сети отдельной рабочей станцией и составляет 4096 байт и может достигать 18 Кбайт для сети со скоростью передачи 16 Мбит/с.

    Какую дополнительную информацию и для чего содержит концевой разделитель кадра ЛВС Token Ring?

КО - конечный ограничитель, содержащий, кроме уникальной последовательности электрических импульсов, еще две области длиной 1 бит каждая:

    бит промежуточного кадра (Intermediate Frame), принимающий значения:

1, если данный кадр является частью многопакетной передачи,

0, если кадр является последним или единственным;

    бит обнаруженной ошибки (Error-detected), который устанвливается в 0 в момент создания кадра в источнике и может быть изменен на значение 1 в случае обнаружения ошибки при прохождении через узлы сети; после этого кадр ретранслируется без контроля шибок в последующих узлах до достижения узла источника, который в этом случае предпримет повторную попытку передачи кадра;

    Как функционирует сеть Token Ring, если "бит обнаруженной ошибки" в концевом разделителе кадра имеет значение "1"?

после этого кадр ретранслируется без контроля шибок в последующих узлах до достижения узла источника, который в этом случае предпримет повторную попытку передачи кадра;

    Структура поля "статус пакета" кадра данных ЛВС Token Ring.

СК - (состояние) статус кадра (Frame Status - FS) - однобайтовое поле, содержащее 4 резервных бита (R) и два внутренних поля:

        бит (индикатор) распознавания адреса (A);

        бит (индикатор) копирования пакета (С): [ AC RR AC RR ]

Так как контрольная сумма не охватывает поле СП, то каждое однобитное поле в байте задублировано для гарантии достоверности данных.

Передающий узел устанавливает в 0 биты А и С .

Приемный узел после получения кадра устанавливает бит А в 1.

Если после копирования кадра в буфер приемного узла не обнаружено ошибок в кадре, то бит С также устанавливается в 1.

Таким образом, признаком успешной передачи кадра является возвращение кадра к источнику с битами: А =1 и С =1.

А=0 означает, что станции-адресата больше нет в сети или РС вышла из строя (выключена).

А=1 и С=0 означает, что произошла ошибка на пути кадра от источника к адресату (при этом также будет установлен в 1 бит обнаружения ошибки в концевом разделителе).

А=1, С=1 и бит обнаружения ошибки = 1 означает, что ошибка произошла на обратном пути кадра от адресата к источнику, после того как кадр был успешно принят узлом-адресатом.

    О чем свидетельствует значение "бита распознавания адреса" ("бита копирования пакета в буфер"), равное 1 (0)? - См выше

    Максимальное число станций в одном кольце ЛВС Token Ring равно...? -256

    Чему равно максимальное расстояние между станциями в ЛВС Token Ring?

Максимальное расстояние между станциями зависит от типа передающей среды

(линии связи) и составляет:

        100 метров - для витой пары (UTP категории 4);

        150 метров - для витой пары (IBM тип 1);

        3000 метров - для оптоволоконного многомодового кабеля.

    Достоинства и недостатки Token Ring.

Достоинства Token Ring:

    отсутствие конфликтов в среде передачи данных;

    обеспечивается гарантированное время доступа всем пользователям сети;

    сеть Token Ring хорошо функционирует и при больших нагрузках, вплоть до нагрузки 100%, в отличие от Ethernet, в которой уже при нагрузке 30% и более существенно возрастает время доступа; это крайне важно для сетей реального времени;

    больший допустимый размер передаваемых данных в одном кадре (до 18 Кбайт), по сравнению с Ethernet, обеспечивает более эффективное функционирование сети при передаче больших объемов данных;

    реальная скорость передачи данных в сети Token Ring может оказаться выше, чем в обычном Ethernet (реальная скорость зависит от особенностей аппаратуры используемых адаптеров и от быстродействия компьютеров сети).

Недостатки Token Ring:

    более высокая стоимость сети Token Ring по сравнению с Ethernet, так как:

    дороже адаптеры из-за более сложного протокола Token Ring;

    дополнительные затраты на приобретение концентраторов MSAU;

    меньшие размеры сети Token Ring по сравнению с Ethernet;

    необходимость контроля за целостностью маркера.

    В каких ЛВС отсутствуют конфликты в среде передачи данных (обеспечивается гарантированное время доступа всем пользователям сети)?

В ЛВС с маркерным доступом

    Краткая характеристика ЛВС FDDI.

    Максимальное число станций в кольце - 500.

    Максимальная протяженность сети - 100 км.

    Среда передачи - оптоволоконный кабель (возможно применение витой пары).

    Максимальное расстояние между станциями зависит от типа передающей среды и составляет:

    2 км - для оптоволоконного многомодового кабеля.

    50 (40 ?) км - для оптоволоконного одномодового кабеля;

    100 м - для витой пары (UTP категории 5);

    100 м - для витой пары (IBM тип 1).

    Метод доступа - маркерный.

    Скорость передачи данных - 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Ограничение на общую длину сети обусловлено ограничением времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. Максимальное расстояние между абонентами определяется затуханием сигналов в кабеле.

    Что означает аббревиатура FDDI?

FDDI (Fiber Distributed Data Interface -оптоволоконный интерфейс распределения данных) - одна из первых высокоскоростных технологий ЛВС.

    Назначение сетевой технологии FDDI.

Стандарт FDDI ориентирован на высокую скорость передачи данных - 100 Мбит/с. Этот стандарт задумывался так, чтобы максимально соответствовать стандарту IEEE 802.5 Token Ring. Небольшие отличия от этого стандарта определяются необходимостью обеспечения большей скорости передачи данных на большие расстояния.

FDDI-технология предусматривает использование оптического волокна в качестве среды передачи, что обеспечивает:

    высокую надежность;

    гибкость реконфигурации;

    высокую скорость передачи данных - 100 Мбит/с;

    большие расстояния между станциями (для многомодового волокна - 2 км; для одномодового при использовании лазерных диодов - до 40 км; максимальная длина всей сети - 200 км).

    Какая пропускная способность обеспечивается в ЛВС FDDI?



Загрузка...