sonyps4.ru

Не прошел аутентификацию. Идентификация и аутентификация: основные понятия

При подключении к WiFi сети возникает ошибка аутентификации – это весьма распространенная проблема. Именно поэтому так важно разобрать, почему она появляется и как ее устранить. Но прежде чем переходить к настройкам сети и устранению неполадок следует разобрать, что такое аутентификация. Это позволит понять, почему появляется данная ошибка и как быстро и надолго ее устранить.

Что такое аутентификация

Это система защиты беспроводных сетей, которая не позволяет посторонним подключаться к вашей группе. На сегодняшний день существует несколько типов аутентификации. Выбрать наиболее подходящий вариант можно в настройках роутера или точки доступа, которая используется для создания домашней сети. Как правило, в наше время используется тип шифрования (аутентификация) WPA-PSKWPA2-PSK2 mixed.

Это наиболее защищенный тип шифрования данных, который очень сложно взломать или обойти. При этом он также может разделяться на два типа. К примеру, в домашних условиях используется вариант с одной ключевой фразой для всех абонентов. Пользователь сам устанавливает ключ, который в дальнейшем требуется для подключения к сети.

Второй тип шифрования используется в организациях, которые требуют повышенного уровня защиты. В таком случае каждому доверенному абоненту присваивается уникальная парольная фраза. То есть вы сможете войти в группу только со своего компьютера и только после введения уникального ключа. В подавляющем большинстве случаев ошибка аутентификации при подключении к сети WiFi возникает именно в случае несоответствия типов шифрования и введенной парольной фразы.

Почему возникает ошибка аутентификации WiFi: Видео

Почему появляется ошибка проверки подлинности и как ее устранить

Как уже говорилось выше, если при подключении к WiFi сети система пишет «Ошибка аутентификации», то в первую очередь стоит проверить правильно написания ключевой фразы, а также включен ли Caps Lock. , то его можно проверить в настройках роутера. Но для этого вам придется подключиться к нему при помощи кабеля.

Рассмотрим, как узнать пароль на примере роутера D-LinkDir-615. После подключения к устройству откройте любимый браузер и в адресной строке пропишите IP маршрутизатора. Узнать его можно в инструкции или на корпусе самого устройства (внимательно осмотрите его со всех сторон).

Как легко узнать IP адрес WiFi роутера: Видео

Также узнать IP роутера можно при помощи командной строки. Нажмите комбинацию клавиш Windows+R, пропишите CMD и нажмите «Enter». В появившемся окне напишите команду ipconfig. Найдите строку «Основной шлюз» – это и есть нужный нам адрес.

Пропишите его в адресной строке браузера и нажмите «Enter». Дальше система попросит ввести логин и пароль. Пишем admin, admin соответственно.

Теперь внизу экрана найдите и нажмите кнопку «Расширенные настройки». Появится несколько дополнительных окон. Нас интересует раздел под названием «WiFi». В нем нужно найти настройки безопасности. Именно здесь вы можете выбрать тип аутентификации (шифрования) и изменить пароль.

Подключение к WiFi роутеру в Windows 8: Видео

Иногда проблема аутентификации при подключении компьютера к WiFi появляется даже при правильно введенном ключе. Это может означать, что в роутере произошел сбой или он просто подвис. Устраняется это простой перезагрузкой устройства. Это можно сделать в настройках или простым отключением питания на 7-10 минут.

Также следует проверить канал, на котором работает роутер. Для этого возвращаемся в начальное меню. В разделе WiFi нажимаем «Основные настройки» и находим строку «Канал». Рекомендуется устанавливать значение «Автоматически».

Встречаются и случаи, когда подобная ошибка появляется не из-за неполадок в роутере и не из-за неправильно введенного ключа. В таком случае следует проверить настройки в операционной системе.

Проверка ОС при ошибке аутентификации

Для подключения к беспроводной сети компьютер использует вай-фай адаптер. Именно из-за его неправильной работы могут появляться проблемы аутентификации сети WiFi. В первую очередь следует проверить наличие и правильность работы драйверов. Делается это в диспетчере устройств, который можно запустить следующим образом. Находите ярлык «Мой компьютер» и нажимаете на него правой кнопкой мышки.

Выбираете «Свойства» и открываете «Диспетчер устройств». Также можно одновременно нажать две клавиши – Windows+R, в появившемся окне написать mmc devmgmt.msc и нажать «Enter». В появившемся окне нас интересует «Сетевые адаптеры». Открываем ветку и смотрим, есть ли в списке ваш WiFi модуль. Как правило, в названии имеет Wireless Network Adapter. Если устройство помечено восклицательным знаком, то драйвера работают неправильно.

Учитывая степень доверия и политику безопасности систем, проводимая проверка подлинности может быть односторонней или взаимной. Обычно она проводится с помощью криптографических методов.

Аутентификацию не следует путать с авторизацией (процедурой предоставления субъекту определённых прав) и идентификацией (процедурой распознавания субъекта по его идентификатору).

История

С древних времён перед людьми стояла довольно сложная задача - убедиться в достоверности важных сообщений. Придумывались речевые пароли, сложные печати. Появление методов аутентификации с применением механических устройств сильно упрощало задачу, например, обычный замок и ключ были придуманы очень давно. Пример системы аутентификации можно увидеть в старинной сказке «Приключения Али́-Бабы́ и сорока разбойников» . В этой сказке говорится о сокровищах, спрятанных в пещере. Пещера была загорожена камнем. Отодвинуть его можно было только с помощью уникального речевого пароля: «Сезам, откройся!».

В настоящее время в связи с обширным развитием сетевых технологий, автоматическая аутентификация используется повсеместно.

Элементы системы аутентификации

В любой системе аутентификации обычно можно выделить несколько элементов :

  • субъект , который будет проходить процедуру аутентификации
  • характеристика субъекта - отличительная черта
  • хозяин системы аутентификации , несущий ответственность и контролирующий её работу
  • сам механизм аутентификации , то есть принцип работы системы
  • механизм, предоставляющий или лишающий субъекта определенных прав доступа
Элемент аутентификации Пещера 40 разбойников Регистрация в системе Банкомат
Субъект Человек, знающий пароль Авторизованный пользователь Владелец банковской карты
Характеристика Пароль "Сезам, откройся!" Секретный пароль Банковская карта и персональный идентификатор
Хозяин системы 40 разбойников Предприятие, которому принадлежит система Банк
Механизм аутентификации Волшебное устройство, реагирующее на слова Программное обеспечение, проверяющее пароль Программное обеспечение, проверяющее карту и идентификатор
Механизм управления доступом Механизм, отодвигающий камень от входа в пещеру Процесс регистрации, управления доступом Разрешение на выполнение банковских операций

Факторы аутентификации

Ещё до появления компьютеров использовались различные отличительные черты субъекта, его характеристики. Сейчас использование той или иной характеристики в системе зависит от требуемой надёжности, защищенности и стоимости внедрения. Выделяют 3 фактора аутентификации :

  • Что-то, что мы знаем - пароль . Это секретная информация, которой должен обладать только авторизованный субъект. Паролем может быть речевое слово, текстовое слово, комбинация для замка или персональный идентификационный номер (PIN). Парольный механизм может быть довольно легко реализован и имеет низкую стоимость. Но имеет существенные минусы: сохранить пароль в секрете зачастую бывает проблематично, злоумышленники постоянно придумывают новые методы кражи, взлома и подбора пароля (см. бандитский криптоанализ). Это делает парольный механизм слабозащищенным.
  • Что-то, что мы имеем - устройство аутентификации . Здесь важен факт обладания субъектом каким-то уникальным предметом. Это может быть личная печать, ключ от замка , для компьютера это файл данных, содержащих характеристику. Характеристика часто встраивается в специальное устройство аутентификации, например, пластиковая карта , смарт-карта . Для злоумышленника заполучить такое устройство становится более проблематично, чем взломать пароль, а субъект может сразу же сообщить в случае кражи устройства. Это делает данный метод более защищенным, чем парольный механизм, однако, стоимость такой системы более высокая.
  • Что-то, что является частью нас - биометрика . Характеристикой является физическая особенность субъекта. Это может быть портрет, отпечаток пальца или ладони , голос или особенность глаза . С точки зрения субъекта, данный метод является наиболее простым: не надо ни запоминать пароль, ни переносить с собой устройство аутентификации. Однако, биометрическая система должна обладать высокой чувствительностью, чтобы подтверждать авторизованного пользователя, но отвергать злоумышленника со схожими биометрическими параметрами. Также стоимость такой системы довольно велика. Но несмотря на свои минусы, биометрика остается довольно перспективным фактором.

Способы аутентификации

Аутентификация по многоразовым паролям

Один из способов аутентификации в компьютерной системе состоит во вводе вашего пользовательского идентификатора, в просторечии называемого «логином » (англ. login - регистрационное имя пользователя) и пароля - некой конфиденциальной информации. Достоверная (эталонная) пара логин-пароль хранится в специальной базе данных.

Простая аутентификация имеет следующий общий алгоритм :

  1. Субъект запрашивает доступ в систему и вводит личный идентификатор и пароль
  2. Введенные уникальные данные поступают на сервер аутентификации, где сравниваются с эталонными
  3. При совпадении данных с эталонными, аутентификация признается успешной, при различии - субъект перемещается к 1-му шагу

Введённый субъектом пароль может передаваться в сети двумя способами:

  • Незашифрованно, в открытом виде, на основе протокола парольной аутентификации ( , PAP)
  • С использованием шифрования SSL или TLS . В этом случае уникальные данные, введённые субъектом передаются по сети защищенно.

Защищенность

С точки зрения максимальной защищенности, при хранении и передаче паролей следует использовать однонаправленные функции . Обычно для этих целей используются криптографически стойкие хэш-функции . В этом случае на сервере хранится только образ пароля. Получив пароль и проделав его хэш-преобразование , система сравнивает полученный результат с эталонным образом, хранящимся в ней. При их идентичности, пароли совпадают. Для злоумышленника, получившего доступ к образу, вычислить сам пароль практически невозможно.

Использование многоразовых паролей имеет ряд существенных минусов. Во-первых, сам эталонный пароль или его хэшированный образ хранятся на сервере аутентификации. Зачастую хранение пароля производится без криптографических преобразований, в системных файлах. Получив доступ к ним, злоумышленник легко доберётся до конфиденциальной информации. Во-вторых, субъект вынужден запоминать (или записывать) свой многоразовый пароль. Злоумышленник может заполучить его, просто применив навыки социальной инженерии , без всяких технических средств. Кроме того, сильно снижается защищенность системы в случае, когда субъект сам выбирает себе пароль. Зачастую это оказывается какое-то слово или комбинация слов, присутствующие в словаре. При достаточном количестве времени злоумышленник может взломать пароль простым перебором. Решением этой проблемы является использование случайных паролей или ограниченность по времени действия пароля субъекта, по истечении которого пароль необходимо поменять.

Базы учетных записей

На компьютерах с ОС семейства UNIX, базой является файл /etc/master.passwd (в дистрибутивах Linux обычно файл /etc/shadow, доступный для чтения только root), в котором пароли пользователей хранятся в виде хеш-функций от открытых паролей, кроме этого в этом же файле хранится информация о правах пользователя. Изначально в Unix-системах пароль (в зашифрованном виде) хранился в файле /etc/passwd , доступном для чтения всем пользователям, что было небезопасно.

На компьютерах с операционной системой Windows / / / (не входящих в домен Windows) такая база данных называется SAM (Security Account Manager - Диспетчер защиты учётных записей). База SAM хранит учётные записи пользователей, включающие в себя все данные, необходимые системе защиты для функционирования. Находится в директории %windir%\system32\config\.

Однако более надёжным способом хранения аутентификационных данных признано использование специальных аппаратных средств (компонентов).

При необходимости обеспечения работы сотрудников на разных компьютерах (с поддержкой системы безопасности) используют аппаратно-программные системы, позволяющие хранить аутентификационные данные и криптографические ключи на сервере организации. Пользователи свободно могут работать на любом компьютере (рабочей станции), имея доступ к своим аутентификационным данным и криптографическим ключам.

Аутентификация по одноразовым паролям

Заполучив однажды многоразовый пароль субъекта, злоумышленник имеет постоянный доступ к взломанной конфиденциальной информации. Эта проблема решается применением одноразовых паролей (OTP – One Time Password). Суть этого метода - пароль действителен только для одного входа в систему, при каждом следующем запросе доступа - требуется новый пароль. Реализован механизм аутентификации по одноразовым паролям может быть как аппаратно, так и программно.

Технологии использования одноразовых паролей можно разделить на:

  • Использование генератора псевдослучайных чисел, единого для субъекта и системы
  • Использование временных меток вместе с системой единого времени
  • Использование базы случайных паролей, единого для субъекта и для системы

В первом методе используется генератор псевдослучайных чисел с одинаковым значением для субъекта и для системы. Сгенерированный субъектом пароль может передаваться системе при последовательном использовании односторонней функции или при каждом новом запросе, основываясь на уникальной информации из предыдущего запроса.

Во втором методе используются временные метки. В качестве примера такой технологии можно привести SecurID . Она основана на использовании аппаратных ключей и синхронизации по времени. Аутентификация основана на генерации случайных чисел через определенные временные интервалы. Уникальный секретный ключ хранится только в базе системы и в аппаратном устройстве субъекта. Когда субъект запрашивает доступ в систему, ему предлагается ввести PIN-код, а также случайно генерируемое число, отображаемого в этот момент на аппаратном устройстве. Система сопоставляет введенный PIN-код и секретный ключ субъекта из своей базы и генерирует случайное число, основываясь на параметрах секретного ключа из базы и текущего времени. Далее проверяется идентичность сгенерированного числа и числа, введённого субъектом.

Третий метод основан на единой базе паролей для субъекта и системы и высокоточной синхронизации между ними. При этом каждый пароль из набора может быть использован только один раз. Благодаря этому, даже если злоумышленник перехватит используемый субъектом пароль, то он уже будет недействителен.

По сравнению с использованием многоразовых паролей, одноразовые пароли предоставляют более высокую степень защиты.

Многофакторная аутентификация

В последнее время всё чаще применяется, так называемая, расширенная или многофакторная аутентификация. Она построена на совместном использовании нескольких факторов аутентификации. Это значительно повышает защищенность системы.

В качестве примера можно привести использование SIM-карт в мобильных телефонах . Субъект вставляет аппаратно свою карту (устройство аутентификации) в телефон и при включении вводит свой PIN-код (пароль).

Также, к примеру в некоторых современных ноутбуках присутствует сканер отпечатка пальца . Таким образом, при входе в систему субъект должен пройти эту процедуру (биометрика), а потом ввести пароль .

Выбирая для системы тот или иной фактор или способ аутентификации необходимо прежде всего отталкиваться от требуемой степени защищенности, стоимости построения системы, обеспечения мобильности субъекта.

Можно привести сравнительную таблицу:

Уровень риска Требования к системе Технология аутентификации Примеры применения
Низкий Требуется осуществить аутентификацию для доступа к системе, причём кража, взлом, разглашение конфиденциальной информации не будет иметь значительных последствий Рекомендуется минимальное требование - использование многоразовых паролей Регистрация на портале в сети Интернет
Средний небольшой ущерб Рекомендуется минимальное требование - использование одноразовых паролей Произведение субъектом банковских операций
Высокий Требуется осуществить аутентификацию для доступа к системе, причём кража, взлом, разглашение конфиденциальной информации причинит значительный ущерб Рекомендуется минимальное требование - использование многофакторной аутентификации Проведение крупных межбанковских операций руководящим аппаратом

Протоколы аутентификации

Процедура аутентификации используется при обмене информацией между компьютерами, при этом используются весьма сложные криптографические протоколы , обеспечивающие защиту линии связи от прослушивания или подмены одного из участников взаимодействия. А поскольку, как правило, аутентификация необходима обоим объектам, устанавливающим сетевое взаимодействие, то аутентификация может быть и взаимной.

Самый простой протокол аутентификации - доступ по паролю (Password Authentication Protocol , PAP). Его суть состоит в том, что вся информация о субъекте (идентификатор и пароль) передается по сети в открытом виде. Это и является главным недостатком PAP, так как злоумышленник может легко получить доступ к передающимся незашифрованным данным.

Более сложные протоколы аутентификации основаны на принципе "запрос-ответ", например, протокол CHAP (Challenge-Handshake Authentication Protocol) . Работа протокола типа "запрос-ответ" может состоять минимум из четырех стадий:

  1. Система генерирует случайное число и отправляет его субъекту
  2. Субъект зашифровывает полученное число на основе своего уникального ключа и результат отправляет системе
  3. Система расшифровывает полученное сообщение на основе того же уникального ключа. При совпадении результата с исходным случайным числом, аутентификация проходит успешно.

Сам уникальный ключ, на основе которого производится шифрование и с одной, и с другой стороны, не передается по сети, следовательно, злоумышленник не сможет его перехватить. Но субъект должен обладать собственным вычислительным шифрующим устройством, например, смарт-карта , мобильный телефон .

Принцип действия протоколов взаимной аутентификации отличаются от протоколов типа "запрос-ответ" незначительно:

  1. Субъект отправляет системе запрос, содержащий его персональный идентификатор и случайное число N1
  2. Система зашифровывает полученное число N1 на основе уникального ключа , генерирует случайное число N2, и отправляет их оба субъекту
  3. Cубъект расшифровывает полученное число на основе своего уникального ключа и сравнивает результат с N1. Идентичность означает, что система обладает тем же уникальным ключом, что и субъект
  4. Субъект зашифровывает полученное число N2 на основе своего уникального ключа и результат отправляет системе
  5. Система расшифровывает полученное сообщение на основе того же уникального ключа. При совпадении результата с исходным числом N2, взаимная аутентификация проходит успешно.

Алгоритм, приведенный выше, часто называют рукопожатием. В обоих случаях аутентификация проходит успешно, только если субъект имеет идентичные с системой уникальные ключи.

Основой любых систем защиты информационных систем являются идентификация и аутентификация, так как все механизмы защиты информации рассчитаны на работу с поименованными субъектами и объектами АС. Напомним, что в качестве субъектов АС могут выступать как пользователи, так и процессы, а в качестве объектов АС – информация и другие информационные ресурсы системы.

Присвоение субъектам и объектам доступа личного идентификатора и сравнение его с заданным перечнем называется идентификацией. Идентификация обеспечивает выполнение следующих функций:

Установление подлинности и определение полномочий субъекта при его допуске в систему,

Контролирование установленных полномочий в процессе сеанса работы;

Регистрация действий и др.

Аутентификацией (установлением подлинности) называется проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности. Другими словами, аутентификация заключается в проверке: является ли подключающийся субъект тем, за кого он себя выдает.

Общая процедура идентификации и аутентификации пользователя при его доступе в АС представлена на рис. 2.10. Если в процессе аутентификации подлинность субъекта установлена, то система защиты информации должна определить его полномочия (совокупность прав). Это необходимо для последующего контроля и разграничения доступа к ресурсам.

По контролируемому компоненту системы способы аутентификации можно разделить на аутентификацию партнеров по общению и аутентификацию источника данных. Аутентификация партнеров по общению используется при установлении (и периодической проверке) соединения во время сеанса. Она служит для предотвращения таких угроз, как маскарад и повтор предыдущего сеанса связи. Аутентификация источника данных – это подтверждение подлинности источника отдельной порции данных.

По направленности аутентификация может быть односторонней (пользователь доказывает свою подлинность системе, например при входе в систему) и двусторонней (взаимной).

Рис. 2.10. Классическая процедура идентификации и аутентификации

Обычно методы аутентификации классифицируют по используемым средствам. В этом случае указанные методы делят на четыре группы:

1. Основанные на знании лицом, имеющим право на доступ к ресурсам системы, некоторой секретной информации – пароля.

2. Основанные на использовании уникального предмета: жетона, электронной карточки и др.

3. Основанные на измерении биометрических параметров человека – физиологических или поведенческих атрибутах живого организма.

4. Основанные на информации, ассоциированной с пользователем, например, с его координатами.

Рассмотрим эти группы.

1. Наиболее распространенными простыми и привычными являются методы аутентификации, основанные на паролях – секретных идентификаторах субъектов. Здесь при вводе субъектом своего пароля подсистема аутентификации сравнивает его с паролем, хранящимся в базе эталонных данных в зашифрованном виде. В случае совпадения паролей подсистема аутентификации разрешает доступ к ресурсам АС.

Парольные методы следует классифицировать по степени изменяемости паролей:

Методы, использующие постоянные (многократно используемые) пароли,

Методы, использующие одноразовые (динамично изменяющиеся) пароли.

В большинстве АС используются многоразовые пароли. В этом случае пароль пользователя не изменяется от сеанса к сеансу в течение установленного администратором системы времени его действительности. Это упрощает процедуры администрирования, но повышает угрозу рассекречивания пароля. Известно множество способов вскрытия пароля: от подсмотра через плечо до перехвата сеанса связи. Вероятность вскрытия злоумышленником пароля повышается, если пароль несет смысловую нагрузку (год рождения, имя девушки), небольшой длины, набран на одном регистре, не имеет ограничений на период существования и т. д. Важно, разрешено ли вводить пароль только в диалоговом режиме или есть возможность обращаться из программы.

В последнем случае, возможно запустить программу по подбору паролей – «дробилку».

Более надежный способ – использование одноразовых или динамически меняющихся паролей.

Известны следующие методы парольной защиты, основанные на одноразовых паролях:

Методы модификации схемы простых паролей;

Методы «запрос-ответ»;

Функциональные методы.

В первом случае пользователю выдается список паролей. При аутентификации система запрашивает у пользователя пароль, номер в списке которого определен по случайному закону. Длина и порядковый номер начального символа пароля тоже могут задаваться случайным образом.

При использовании метода «запрос-ответ» система задает пользователю некоторые вопросы общего характера, правильные ответы на которые известны только конкретному пользователю.

Функциональные методы основаны на использовании специальной функции парольного преобразования . Это позволяет обеспечить возможность изменения (по некоторой формуле) паролей пользователя во времени. Указанная функция должна удовлетворять следующим требованиям:

Для заданного пароля x легко вычислить новый пароль ;

Зная х и y, сложно или невозможно определить функцию .

Наиболее известными примерами функциональных методов являются: метод функционального преобразования и метод «рукопожатия».

Идея метода функционального преобразования состоит в периодическом изменении самой функции . Последнее достигается наличием в функциональном выражении динамически меняющихся параметров, например, функции от некоторой даты и времени. Пользователю сообщается исходный пароль, собственно функция и периодичность смены пароля. Нетрудно видеть, что паролями пользователя на заданных -периодах времени будут следующие: x, f(x), f(f(x)), ..., f(x)n-1.

Метод «рукопожатия» состоит в следующем. Функция парольного преобразования известна только пользователю и системе защиты. При входе в АС подсистема аутентификации генерирует случайную последовательность x, которая передается пользователю. Пользователь вычисляет результат функции y=f(x) и возвращает его в систему. Система сравнивает собственный вычисленный результат с полученным от пользователя. При совпадении указанных результатов подлинность пользователя считается доказанной.

Достоинством метода является то, что передача какой-либо информации, которой может воспользоваться злоумышленник, здесь сведена к минимуму.

В ряде случаев пользователю может оказаться необходимым проверить подлинность другого удаленного пользователя или некоторой АС, к которой он собирается осуществить доступ. Наиболее подходящим здесь является метод «рукопожатия», так как никто из участников информационного обмена не получит никакой конфиденциальной информации.

Отметим, что методы аутентификации, основанные на одноразовых паролях, также не обеспечивают абсолютной защиты. Например, если злоумышленник имеет возможность подключения к сети и перехватывать передаваемые пакеты, то он может посылать последние как собственные.

2. В последнее время получили распространение комбинированные методы идентификации, требующие, помимо знания пароля, наличие карточки (token) – специального устройства, подтверждающего подлинность субъекта.

Карточки разделяют на два типа:

Пассивные (карточки с памятью);

Активные (интеллектуальные карточки).

Самыми распространенными являются пассивные карточки с магнитной полосой, которые считываются специальным устройством, имеющим клавиатуру и процессор. При использовании указанной карточки пользователь вводит свой идентификационный номер. В случае его совпадения с электронным вариантом, закодированным в карточке, пользователь получает доступ в систему. Это позволяет достоверно установить лицо, получившее доступ к системе и исключить несанкционированное использование карточки злоумышленником (например, при ее утере). Такой способ часто называют двухкомпонентной аутентификацией.

Иногда (обычно для физического контроля доступа) карточки применяют сами по себе, без запроса личного идентификационного номера.

К достоинству использования карточек относят то, что обработка аутентификационной информации выполняется устройством чтения, без передачи в память компьютера. Это исключает возможность электронного перехвата по каналам связи.

Недостатки пассивных карточек следующие: они существенно дороже паролей, требуют специальных устройств чтения, их использование подразумевает специальные процедуры безопасного учета и распределения. Их также необходимо оберегать от злоумышленников, и, естественно, не оставлять в устройствах чтения. Известны случаи подделки пассивных карточек.

Интеллектуальные карточки кроме памяти имеют собственный микропроцессор. Это позволяет реализовать различные варианты парольных методов защиты: многоразовые пароли, динамически меняющиеся пароли, обычные запрос-ответные методы. Все карточки обеспечивают двухкомпонентную аутентификацию.

К указанным достоинствам интеллектуальных карточек следует добавить их многофункциональность. Их можно применять не только для целей безопасности, но и, например, для финансовых операций. Сопутствующим недостатком карточек является их высокая стоимость.

Перспективным направлением развития карточек является наделение их стандартом расширения портативных систем PCMCIA (PC Card). Такие карточки являются портативными устройствами типа PC Card, которые вставляются в разъем PC Card и не требуют специальных устройств чтения. В настоящее время они достаточно дороги.

3. Методы аутентификации, основанные на измерении биометрических параметров человека (см. таблицу 2.6), обеспечивают почти 100 % идентификацию, решая проблемы утраты паролей и личных идентификаторов. Однако такие методы нельзя использовать при идентификации процессов или данных (объектов данных), так как они только начинают развиваться (имеются проблемы со стандартизацией и распространением), требуют пока сложного и дорогостоящего оборудования. Это обусловливает их использование пока только на особо важных объектах и системах.

Примерами внедрения указанных методов являются системы идентификации пользователя по рисунку радужной оболочки глаза, отпечаткам ладони, формам ушей, инфракрасной картине капиллярных сосудов, по почерку, по запаху, по тембру голоса и даже по ДНК.

Таблица 2.6

Примеры методов биометрии

Физиологические методы

Поведенческие методы

Снятие отпечатков пальцев

Сканирование радужной оболочки глаза

Сканирование сетчатки глаза

Геометрия кисти руки

Распознавание черт лица

Анализ клавиатурного почерка

Новым направлением является использование биометрических характеристик в интеллектуальных расчетных карточках, жетонах-пропусках и элементах сотовой связи. Например, при расчете в магазине предъявитель карточки кладет палец на сканер в подтверждение, что карточка действительно его.

Назовем наиболее используемые биометрические атрибуты и соответствующие системы.

· Отпечатки пальцев. Такие сканеры имеют небольшой размер, универсальны, относительно недороги. Биологическая повторяемость отпечатка пальца составляет 10-5 %. В настоящее время пропагандируются правоохранительными органами из-за крупных ассигнований в электронные архивы отпечатков пальцев.

· Геометрия руки. Соответствующие устройства используются, когда из-за грязи или травм трудно применять сканеры пальцев. Биологическая повторяемость геометрии руки около 2 %.

· Радужная оболочка глаза. Данные устройства обладают наивысшей точностью. Теоретическая вероятность совпадения двух радужных оболочек составляет 1 из 1078.

· Термический образ лица . Системы позволяют идентифицировать человека на расстоянии до десятков метров. В комбинации с поиском данных по базе данных такие системы используются для опознания авторизованных сотрудников и отсеивания посторонних. Однако при изменении освещенности сканеры лица имеют относительно высокий процент ошибок.

· Голос. Проверка голоса удобна для использования в телекоммуникационных приложениях. Необходимые для этого 16-разрядная звуковая плата и конденсаторный микрофон стоят менее 25 $. Вероятность ошибки составляет 2 – 5%. Данная технология подходит для верификации по голосу по телефонным каналам связи, она более надежна по сравнению с частотным набором личного номера. Сейчас развиваются направления идентификации личности и его состояния по голосу – возбужден, болен, говорит правду, не в себе и т.д.

· Ввод с клавиатуры. Здесь при вводе, например, пароля отслеживаются скорость и интервалы между нажатиями.

· Подпись. Для контроля рукописной подписи используются дигитайзеры.

4. Новейшим направлением аутентификации является доказательство подлинности удаленного пользователя по его местонахождению. Данный защитный механизм основан на использовании системы космической навигации, типа GPS (Global Positioning System). Пользователь, имеющий аппаратуру GPS, многократно посылает координаты заданных спутников, находящихся в зоне прямой видимости. Подсистема аутентификации, зная орбиты спутников, может с точностью до метра определить месторасположение пользователя. Высокая надежность аутентификации определяется тем, что орбиты спутников подвержены колебаниям, предсказать которые достаточно трудно. Кроме того, координаты постоянно меняются, что сводит на нет возможность их перехвата.

Аппаратура GPS проста и надежна в использовании и сравнительно недорога. Это позволяет ее использовать в случаях, когда авторизованный удаленный пользователь должен находиться в нужном месте.

Суммируя возможности средств аутентификации, ее можно классифицировать по уровню информационной безопасности на три категории:

1. Статическая аутентификация;

2. Устойчивая аутентификация;

3. Постоянная аутентификация.

Первая категория обеспечивает защиту только от НСД в системах, где нарушитель не может во время сеанса работы прочитать аутентификационную информацию. Примером средства статической аутентификации являются традиционные постоянные пароли. Их эффективность преимущественно зависит от сложности угадывания паролей и, собственно, от того, насколько хорошо они защищены.

Для компрометации статической аутентификации нарушитель может подсмотреть, подобрать, угадать или перехватить аутентификационные данные и т. д.

Устойчивая аутентификация использует динамические данные аутентификации, меняющиеся с каждым сеансом работы. Реализациями устойчивой аутентификации являются системы, использующие одноразовые пароли и электронные подписи. Усиленная аутентификация обеспечивает защиту от атак, где злоумышленник может перехватить аутентификационную информацию и пытаться использовать ее в следующих сеансах работы.

Однако устойчивая аутентификация не обеспечивает защиту от активных атак, в ходе которых маскирующийся злоумышленник может оперативно (в течение сеанса аутентификации) перехватить, модифицировать и вставить информацию в поток передаваемых данных.

Постоянная аутентификация обеспечивает идентификацию каждого блока передаваемых данных, что предохраняет их от несанкционированной модификации или вставки. Примером реализации указанной категории аутентификации является использование алгоритмов генерации электронных подписей для каждого бита пересылаемой информации.

Как известно, практически в любых компьютерных системах существует необходимость аутентификации. В ходе этой процедуры компьютерная система проверяет, действительно ли пользователь тот, за кого себя выдает. Для того, чтобы получить доступ к компьютеру, в Интернет, к системе удаленного управления банковским счетом и т. д., пользователю необходимо убедительно доказать компьютерной системе, что "он есть та самая персона", а не кто-либо еще. Для этого он должен предъявить системе некую аутентификационную информацию, на основании которой модуль аутентификации данной системы выносит решение о предоставлении ему доступа к требуемому ресурсу (доступ разрешен/нет).

В настоящее время для такой проверки применяется информация трех видов.

Первый - уникальная последовательность символов , которую пользователь должен знать для успешного прохождения аутентификации. Простейший пример - парольная аутентификация, для которой достаточно ввести в систему свой идентификатор (например, логин) и пароль.

Второй вид информации - уникальное содержимое или уникальные характеристики предмета. Простейший пример - ключ от любого замка. В случае же компьютерной аутентификации в этом качестве выступают любые внешние носители информации: смарт-карты, электронные таблетки iButton, USB-токены и т. д.

И, наконец, третий вид аутентификации - по биометрической информации , которая неотъемлема от пользователя. Это может быть отпечаток пальца, рисунок радужной оболочки глаза, форма лица, параметры голоса и т. д.

Очень часто комбинируют несколько видов информации, по которой проводится аутентификация. Типичный пример: аутентификационная информация хранится на смарт-карте, для доступа к которой нужно ввести пароль (PIN-код). Такая аутентификация называется двухфакторной . Существуют реальные системы и с трехфакторной аутентификацией.

В ряде случаев требуется и взаимная аутентификация - когда оба участника информационного обмена проверяют друг друга. Например, перед передачей удаленному серверу каких-либо важных данных пользователь должен убедиться, что это именно тот сервер, который ему необходим.

Удаленная аутентификация

В случае удаленной аутентификации (скажем, пользователь намерен получить доступ к удаленному почтовому серверу для проверки своей электронной почты) существует проблема передачи аутентификационной информации по недоверенным каналам связи (через Интернет или локальную сеть). Чтобы сохранить в тайне уникальную информацию, при пересылке по таким каналам используется множество протоколов аутентификации. Рассмотрим некоторые из них, наиболее характерные для различных применений.

Доступ по паролю

Простейший протокол аутентификации - доступ по паролю (Password Access Protocol, PAP): вся информация о пользователе (логин и пароль) передается по сети в открытом виде (рис. 1). Полученный сервером пароль сравнивается с эталонным паролем данного пользователя, который хранится на сервере. В целях безопасности на сервере чаще хранятся не пароли в открытом виде, а их хэш-значения.

Рисунок 1 - Схема протокола PAP

Данная схема имеет весьма существенный недостаток: любой злоумышленник, способный перехватывать сетевые пакеты, может получить пароль пользователя с помощью простейшего анализатора пакетов типа sniffer. А получив его, злоумышленник легко пройдет аутентификацию под именем владельца пароля.

По сети в процессе аутентификации может передаваться не просто пароль, а результат его преобразования - скажем, тот же хэш пароля. К сожалению, это не устраняет описанный выше недостаток - злоумышленник с тем же успехом может перехватить хэш пароля и применять его впоследствии.

Недостатком данной схемы аутентификации можно считать и то, что любой потенциальный пользователь системы должен предварительно зарегистрироваться в ней - как минимум ввести свой пароль для последующей аутентификации. А описанные ниже более сложные протоколы аутентификации типа "запрос-ответ" позволяют в принципе расширить систему на неограниченное количество пользователей без их предварительной регистрации.

Запрос-ответ

В семейство протоколов, называемых обычно по процедуре проверки "запрос-ответ", входит несколько протоколов, которые позволяют выполнить аутентификацию пользователя без передачи информации по сети. К протоколам семейства "запрос-ответ" относится, например, один из наиболее распространенных - протокол CHAP (Challenge-Handshake Authentication Protocol).

Процедура проверки включает как минимум четыре шага (рис. 2):

  • · пользователь посылает серверу запрос на доступ, включающий его логин;
  • · сервер генерирует случайное число и отправляет его пользователю;
  • · пользователь шифрует полученное случайное число симметричным алгоритмом шифрования на своем уникальном ключе, результат зашифрования отправляется серверу;
  • · сервер расшифровывает полученную информацию на том же ключе и сравнивает с исходным случайным числом. При совпадении чисел пользователь считается успешно аутентифицированным, поскольку признается владельцем уникального секретного ключа.

Рисунок 2 - Схема протокола аутентификации типа "запрос-ответ".

Аутентифицирующей информацией в данном случае служит ключ, на котором выполняется шифрование случайного числа. Как видно из схемы обмена, данный ключ никогда не передается по сети, а лишь участвует в вычислениях, что составляет несомненное преимущество протоколов данного семейства.

Основной недостаток подобных систем аутентификации - необходимость иметь на локальном компьютере клиентский модуль, выполняющий шифрование. Это означает, что, в отличие от протокола PAP, для удаленного доступа к требуемому серверу годится только ограниченное число компьютеров, оснащенных таким клиентским модулем.

Однако в качестве клиентского компьютера может выступать и смарт-карта либо аналогичное "носимое" устройство, обладающее достаточной вычислительной мощностью, например, мобильный телефон. В таком случае теоретически допустима аутентификация и получение доступа к серверу с любого компьютера, оснащенного устройством чтения смарт-карт, с мобильного телефона или КПК.

Протоколы типа "запрос-ответ" легко "расширяются" до схемы взаимной аутентификации (рис. 3). В этом случае в запросе на аутентификацию пользователь (шаг 1) посылает свое случайное число (N1). Сервер на шаге 2, помимо своего случайного числа (N2), должен отправить еще и число N1, зашифрованное соответствующим ключом. Тогда перед выполнением шага 3 пользователь расшифровывает его и проверяет: совпадение расшифрованного числа с N1 указывает, что сервер обладает требуемым секретным ключом, т. е. это именно тот сервер, который нужен пользователю. Такая процедура аутентификации часто называется рукопожатием.


Рисунок 3 - Схема протокола взаимной аутентификации

Как видно, аутентификация будет успешна только в том случае, если пользователь предварительно зарегистрировался на данном сервере и каким-либо образом обменялся с ним секретным ключом.

Заметим, что вместо симметричного шифрования в протоколах данного семейства может применяться и асимметричное шифрование, и электронная цифровая подпись. В таких случаях схему аутентификации легко расширить на неограниченное число пользователей, достаточно применить цифровые сертификаты в рамках инфраструктуры открытых ключей.

Протокол Kerberos

Протокол Kerberos, достаточно гибкий и имеющий возможности тонкой настройки под конкретные применения, существует в нескольких версиях. Мы рассмотрим упрощенный механизм аутентификации, реализованный с помощью протокола Kerberos версии 5 (рис. 4):

Рисунок 4 - Схема протокола Kerberos

Прежде всего, стоит сказать, что при использовании Kerberos нельзя напрямую получить доступ к какому-либо целевому серверу. Чтобы запустить собственно процедуру аутентификации, необходимо обратиться к специальному серверу аутентификации с запросом, содержащим логин пользователя. Если сервер не находит автора запроса в своей базе данных, запрос отклоняется. В противном случае сервер аутентификации формирует случайный ключ, который будет использоваться для шифрования сеансов связи пользователя с еще одним специальным сервером системы: сервером предоставления билетов (Ticket-Granting Server, TGS). Данный случайный ключ (обозначим его Ku-tgs) сервер аутентификации зашифровывает на ключе пользователя (Kuser) и отправляет последнему. Дополнительная копия ключа Ku-tgs с рядом дополнительных параметров (называемая билетом) также отправляется пользователю зашифрованной на специальном ключе для связи серверов аутентификации и TGS (Ktgs). Пользователь не может расшифровать билет, который необходим для передачи серверу TGS на следующем шаге аутентификации.

Следующее действие пользователя - запрос к TGS, содержащий логин пользователя, имя сервера, к которому требуется получить доступ, и тот самый билет для TGS. Кроме того, в запросе всегда присутствует метка текущего времени, зашифрованная на ключе Ku-tgs. Метка времени нужна для предотвращения атак, выполняемых повтором перехваченных предыдущих запросов к серверу. Подчеркнем, что системное время всех компьютеров, участвующих в аутентификации по протоколу Kerberos, должно быть строго синхронизировано.

В случае успешной проверки билета сервер TGS генерирует еще один случайный ключ для шифрования сеансов связи между пользователем, желающим получить доступ, и целевым сервером (Ku-serv). Этот ключ шифруется на ключе Kuser и отправляется пользователю. Кроме того, аналогично шагу 2, копия ключа Ku-serv и необходимые целевому серверу параметры аутентификации (билет для доступа к целевому серверу) посылаются пользователю еще и в зашифрованном виде (на ключе для связи TGS и целевого сервера - Kserv).

Теперь пользователь должен послать целевому серверу полученный на предыдущем шаге билет, а также метку времени, зашифрованную на ключе Ku-serv. После успешной проверки билета пользователь наконец-то считается аутентифицированным и может обмениваться информацией с целевым сервером. Ключ Ku-serv, уникальный для данного сеанса связи, часто применяется и для шифрования пересылаемых в этом сеансе данных.

В любой системе может быть несколько целевых серверов. Если пользователю необходим доступ к нескольким из них, он снова формирует запросы к серверу TGS - столько раз, сколько серверов нужно ему для работы. Сервер TGS генерирует для каждого из таких запросов новый случайный ключ Ku-serv, т. е. все сессии связи с различными целевыми серверами защищены при помощи разных ключей.

Процедура аутентификации по протоколу Kerberos выглядит достаточно сложной. Однако не стоит забывать, что все запросы и зашифровывание их нужными ключами автоматически выполняет ПО, установленное на локальном компьютере пользователя. Вместе с тем необходимость установки достаточно сложного клиентского ПО - несомненный недостаток данного протокола. Впрочем, сегодня поддержка Kerberos встроена в наиболее распространенные ОС семейства Windows, начиная с Windows 2000, что нивелирует данный недостаток.

Второй недостаток - необходимость в нескольких специальных серверах (доступ к целевому серверу обеспечивают как минимум еще два, сервер аутентификации и TGS). Однако в системах с небольшим числом пользователей все три сервера (аутентификации, TGS и целевой) могут физически совмещаться на одном компьютере.

Вместе с тем следует подчеркнуть, что сервер аутентификации и TGS должны быть надежно защищены от несанкционированного доступа злоумышленников. Теоретически злоумышленник, получивший доступ к TGS или серверу аутентификации, способен вмешаться в процесс генерации случайных ключей или получить ключи всех пользователей и, следовательно, инициировать сеансы связи с любым целевым сервером от имени любого легального пользователя.



Загрузка...