sonyps4.ru

Напряжение на выходе цап по коду. Лучший цифро-аналоговый преобразователь для ПК

Цифро-аналоговые преобразователи имеют статические и динамические характеристики.

Статические характеристики ЦАП

Основными статическими характеристиками ЦАП, являются:

· разрешающая способность;

· нелинейность;

· дифференциальная нелинейность;

· монотонность;

· коэффициент преобразования;

· абсолютная погрешности полной шкалы;

· относительная погрешности полной шкалы;

· смещение нуля;

· абсолютная погрешность

Разрешающая способность – это приращение U ВЫХ при преобразовании смежных значений D j , т.е. отличающихся на единицу младшего разряда (ЕМР). Это приращение является шагом квантования. Для двоичных кодов преобразования номинальное значение шага квантования

h = U ПШ /(2 N – 1),

где U ПШ – номинальное максимальное выходное напряжение ЦАП (напряжение полной шкалы), N – разрядность ЦАП. Чем больше разрядность преобразователя, тем выше его разрешающая способность.

Погрешность полной шкалы – относительная разность между реальным и идеальным значениями предела шкалы преобразования при отсутствии смещения нуля, т.е.

Является мультипликативной составляющей полной погрешности. Иногда указывается соответствующим числом ЕМР.

Погрешность смещения нуля – значение U ВЫХ, когда входной код ЦАП равен нулю. Является аддитивной составляющей полной погрешности. Обычно указывается в милливольтах или в процентах от полной шкалы:

Нелинейность – максимальное отклонение реальной характеристики преобразования U ВЫХ (D) от оптимальной (рис. 5.2, линия 2). Оптимальная характеристика находится эмпирически так, чтобы минимизировать значение погрешности нелинейности. Нелинейность обычно определяется в относительных единицах, но в справочных данных приводится также и в ЕМР. Для характеристики, приведенной на рис. 5.2,

Дифференциальная нелинейность – максимальное изменение (с учетом знака) отклонения реальной характеристики преобразования U ВЫХ (D) от оптимальной при переходе от одного значения входного кода к другому смежному значению. Обычно определяется в относительных единицах или в ЕМР. Для характеристики, приведенной на рис. 5.2,

Монотонность характеристики преобразования – возрастание (уменьшение) выходного напряжения ЦАП (U ВЫХ) при возрастании (уменьшении) входного кода D . Если дифференциальная нелинейность больше относительного шага квантования h/U ПШ, то характеристика преобразователя немонотонна.

Температурная нестабильность ЦАП характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.

Погрешности полной шкалы и смещения нуля могут быть устранены калибровкой (подстройкой). Погрешности нелинейности простыми средствами устранить нельзя.

Динамические характеристики ЦАП

К динамическим характеристик ам ЦАП относятся время установления и время преобразования.

При последовательном возрастании значений входного цифрового сигнала D(t) от 0 до (2 N – 1) через единицу младшего разряда выходной сигнал U ВЫХ (t) образует ступенчатую кривую. Такую зависимость называют обычно характеристикой преобразования ЦАП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (см. рис. 5.2), которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Для количественного описания этих различий существует целый ряд параметров.

Динамические параметры ЦАП определяются по изменению выходного сигнала при скачкообразном изменении входного кода, обычно от величины «все нули» до «все единицы» (рис. 5.3).

Время установления – интервал времени от момента измене
ния входного кода (рис. 5.3, t = 0) до момента, когда в последний раз выполняется равенство:

|U ВЫХ – U ПШ | = d/2,

причем d/2 обычно соответствует ЕМР.

Скорость нарастания – максимальная скорость изменения U ВЫХ (t) во время переходного процесса. Определяется как отношение приращения D U ВЫХ ко времени Dt, за которое произошло это приращение. Обычно указывается в технических характеристиках ЦАП с выходным сигналом в виде напряжения. У цифро-аналоговых преобразователей с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ.

Для перемножающих ЦАП с выходом в виде напряжения часто указываются частота единичного усиления и мощностная полоса пропускания, которые в основном определяются свойствами выходного усилителя.

На рисунке 5.4 приведены два способа линеаризации, из которых следует, что способ линеаризации для получения минимального значения D л, показанный на рис. 5.4, б, позволяет уменьшить погрешность D л вдвое по сравнению с методом линеаризации по граничным точкам (рис. 5.4, а).

Для цифро-аналоговых преобразователей с n двоичными разрядами в идеальном случае (при отсутствии погрешностей преобразования) аналоговый выход U ВЫХ соотносится с входным двоичным числом следующим образом:

U ВЫХ = U ОП (a 1 2 -1 + a 2 2 -2 +…+ a n 2 -n),

где U ОП – опорное напряжение ЦАП (от встроенного или внешнего источника).

Так как ∑ 2 -i = 1 – 2 -n , то при всех включенных разрядах выходное напряжение ЦАП равно:

U ВЫХ (a 1 …a n) = U ОП (1 – 2 -n) = (U ОП /2 n) (2 n – 1) = D (2 n – 1) = U ПШ,

где U ПШ – напряжение полной шкалы.

Таким образом, при включении всех разрядов выходное напряжение цифро-аналогового преобразователя, которое в этом случае образует U ПШ, отличается от значения опорного напряжения (U ОП) на величину младшего разряда преобразователя (D), определяемого как

D = U ОП /2 n .

При включении какого-либо i-го разряда выходное напряжение ЦАП определится из соотношения:

U ВЫХ /a i = U ОП 2 -i .

Цифро-аналоговый преобразователь преобразует цифровой двоичный код Q 4 Q 3 Q 2 Q 1 в аналоговую величину, обычно напряжение U ВЫХ. или ток I ВЫХ. Каждый разряд двоичного кода имеет определенный вес i-го разряда вдвое больше, чем вес (i-1)-го. Работу ЦАП можно описать следующей формулой:

U ВЫХ = e (Q 1 · 1 + Q 2 ·2 + Q 3 ·4 + Q 4 ·8 +…),

где e – напряжение, соответствующее весу младшего разряда, Q i – значение i -го разряда двоичного кода (0 или 1).

Например, числу 1001 соответствует:

U ВЫХ = е (1 ·1 + 0 ·2 + 0 ·4 + 1 · = 9 ·e,

а числу 1100 соответствует

U ВЫХ = e (0 ·1 + 0 ·2 + 1 ·4 + 1 · = 12 ·e.

Цифро-аналоговый преобразователь (ЦАП) - это устройство для преобразования цифрового кода в аналоговый сигнал по величине, пропорциональной значению кода.

ЦАП применяются для связи цифровых управляющих систем с устройствами, которые управляются уровнем аналогового сигнала. Также, ЦАП является составной частью во многих структурах аналого-цифровых устройств и преобразователей.

ЦАП характеризуется функцией преобразования. Она связывает изменение цифрового кода с изменением напряжения или тока. Функция преобразования ЦАП выражается следующим образом

U вых - значение выходного напряжения, соответствующее цифровому коду N вх , подаваемому на входы ЦАП.

U мах - максимальное выходное напряжение, соответствующее подаче на входы максимального кода N мах

Величину К цап , определяемую отношением , называют коэффициентом цифроаналогового преобразования. Несмотря на ступенчатый вид характеристики, связанный с дискретным изменением входной величины (цифрового кода), считается, что ЦАП являются линейными преобразователями.

Если величину N вх представить через значения весов его разрядов, функцию преобразования можно выразить следующим образом

, где

i - номер разряда входного кода N вх ; A i - значение i -го разряда (ноль или единица); U i – вес i -го разряда; n – количество разрядов входного кода (число разрядов ЦАП).

Вес разряда определяется для конкретной разрядности, и вычисляется по следующей формуле

U ОП -опорное напряжение ЦАП

Принцип работы большинства ЦАП - этосуммирование долей аналоговых сигналов (веса разряда), в зависимости от входного кода.

ЦАП можно реализовать с помощью суммирования токов, суммирования напряжений и деления напряжений. В первом и втором случае в соответствии со значениями разрядов входного кода, суммируются сигналы генераторов токов и источников Э.Д.С. Последний способ представляет собой управляемый кодом делитель напряжения. Два последних способа не нашли широкого распространения в связи с практическими трудностями их реализации.

Способы реализации ЦАП с взвешенным суммированием токов

Рассмотрим построение простейшего ЦАП с взвешенным суммированием токов.

Этот ЦАП состоит из набора резисторов и набора ключей. Число ключей и число резисторов равно количеству разрядов n входного кода. Номиналы резисторов выбираются в соответствии с двоичным законом. Если R=3 Ом, то 2R= 6 Ом, 4R=12 Ом, и так и далее, т.е. каждый последующий резистор больше предыдущего в 2 раза. При присоединении источника напряжения и замыкании ключей, через каждый резистор потечет ток. Значения токов по резисторам, благодаря соответствующему выбору их номиналов, тоже будут распределены по двоичному закону. При подаче входного кода N вх включение ключей производится в соответствии со значением соответствующих им разрядов входного кода. Ключ замыкается, если соответствующий ему разряд равен единице. При этом в узле суммируются токи, пропорциональные весам этих разрядов и величина вытекающего из узла тока в целом будет пропорциональна значению входного кода N вх .

Сопротивление резисторов матрицы выбирают достаточно большое (десятки кОм). Поэтому для большинства практических случаев для нагрузки ЦАП играет роль источника тока. Если на выходе преобразователя необходимо получить напряжение, то на выходе такого ЦАП устанавливается преобразователь "ток-напряжение", например, на операционном усилителе

Однако при смене кода на входах ЦАП меняется величина тока, отбираемая от источника опорного напряжения. Это является главным недостатком такого способа построения ЦАП. Такой метод построения можно использовать только в том случае, если источник опорного напряжения будет с низким внутренним сопротивлением. В другом случае в момент смены входного кода изменяется ток, отбираемый у источника, что приводит к изменению падения напряжения на его внутреннем сопротивлении и, в свою очередь, к дополнительному напрямую не связанному со сменой кода изменению выходного тока. Исключить этот недостаток позволяет структура ЦАП с переключающимися ключами

В такой структуре имеется два выходных узла. В зависимости от значения разрядов входного кода соответствующие им ключи подключаются к узлу, связанному с выходом устройства, или к другому узлу, который чаще всего заземляется. При этом через каждый резистор матрицы ток течет постоянно, независимо от положения ключа, а величина тока, потребляемого от источника опорного напряжения, постоянна.

Общим недостатком обеих рассмотренных структур является большое соотношение между наименьшим и наибольшим номиналом резисторов матрицы. Вместе с тем, не смотря на большую разницу номиналов резисторов необходимо обеспечивать одинаковую абсолютную точность подгонки как самого большого, так и самого маленького по номиналу резистора. В интегральном исполнении ЦАП при числе разрядов более 10 это обеспечить достаточно трудно.

От всех указанных выше недостатков свободны структуры на основе резистивных R-2R матриц

При таком построении резистивной матрицы ток в каждой последующей параллельной ветви меньше чем в предыдущей в два раза. Наличие только двух номиналов резисторов в матрице позволяет достаточно просто осуществлять подгонку их значений.

Выходной ток для каждой из представленных структур пропорционален одновременно не только величине входного кода, но и величине опорного напряжения. Часто говорят, что он пропорционален произведению этих двух величин. Поэтому такие ЦАП называют умножающими. Такими свойствами будут обладать все ЦАП, в которых формирование взвешенных значений токов, соответствующих весам разрядов, производится с помощью резистивных матриц.

Кроме использования по прямому назначению умножающие ЦАП используются как аналого-цифровые перемножители, в качестве кодоуправляемых сопротивлений и проводимостей. Они широко применяются как составные элементы при построении кодоуправляемых (перестраиваемых) усилителей, фильтров, источников опорных напряжений, формирователей сигналов и т.д.

Основные параметры и погрешности ЦАП

Основные параметры, которые можно увидеть в справочнике:

1. Число разрядов – количество разрядов входного кода.

2. Коэффициент преобразования – отношение приращения выходного сигнала к приращению входного сигнала для линейной функции преобразования.

3. Время установления выходного напряжения или тока – интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное напряжение или ток окончательно войдут в зону шириной младшего значащего разряда (МЗР ).

4. Максимальная частота преобразования – наибольшая частота смены кода, при которой заданные параметры соответствуют установленным нормам.

Существуют и другие параметры, характеризующие исполнение ЦАП и особенности его функционирования. В их числе: входное напряжение низкого и высокого уровня, ток потребления, диапазон выходного напряжения или тока.

Важнейшими параметрами для ЦАП являются те, которые определяют его точностные характеристики.

Точностные характеристики каждого ЦАП, прежде всего, определяются нормированными по величине погрешностями.

Погрешности делятся на динамические и статические. Статическими погрешностями называются погрешности, остающиеся после завершения всех переходных процессов, связанных со сменой входного кода. Динамические погрешности определяются переходными процессами на выходе ЦАП, возникшими вследствие смены входного кода.

Основные типы статических погрешностей ЦАП:

Абсолютная погрешность преобразования в конечной точке шкалы – отклонение значения выходного напряжения (тока) от номинального значения, соответствующего конечной точке шкалы функции преобразования. Измеряется в единицах младшего разряда преобразования.

Напряжение смещения нуля на выходе – напряжение постоянного тока на выходе ЦАП при входном коде, соответствующем нулевому значению выходного напряжения. Измеряется в единицах младшего разряда. Погрешность коэффициента преобразования (масштабная) –связанная с отклонением наклона функции преобразования от требуемого.

Нелинейность ЦАП – отклонение действительной функции преобразования от оговоренной прямой линии. Является самой плохой погрешностью с которой трудно бороться.

Погрешности нелинейности в общем случае разделяют на два типа – интегральные и дифференциальные.

Погрешность интегральной нелинейности – максимальное отклонение реальной характеристики от идеальной. Фактически при этом рассматривается усредненная функция преобразования. Определяют эту погрешность в процентах от конечного диапазона выходной величины.

Дифференциальная нелинейность связана с неточностью задания весов разрядов, т.е. с погрешностями элементов делителя, разбросом остаточных параметров ключевых элементов, генераторов токов и т.д.

Способы идентификации и коррекции погрешностей ЦАП

Желательно, чтобы коррекция погрешностей производилось при изготовлении преобразователей (технологическая подгонка). Однако, часто она желательна и при использовании конкретного образца БИС в том или ином устройстве. В этом случае коррекция проводится введением в структуру устройства кроме БИС ЦАП дополнительных элементов. Такие методы получили название структурных.

Самым сложным процессом является обеспечение линейности, так как они определяются связанными параметрами многих элементов и узлов. Чаще всего осуществляют подгонку только смещения нуля, коэффициента

Точностные параметры, обеспечиваемые технологическими приемами, ухудшаются при воздействии на преобразователь различных дестабилизирующих факторов, в первую очередь – температуры. Необходимо помнить и о факторе старения элементов.

Погрешность смещения нуля и масштабная погрешность легко корректируются на выходе ЦАП. Для этого в выходной сигнал вводят постоянное смещение, компенсирующее смещение характеристики преобразователя. Необходимый масштаб преобразования устанавливают, либо корректируя коэффициент усиления, устанавливаемого на выходе преобразователя усилителя, либо подстраивая величину опорного напряжения, если ЦАП является умножающим.

Методы коррекции с тестовым контролем заключаются в идентификации погрешностей ЦАП на всем множестве допустимых входных воздействий и добавлением, рассчитанных на основе этого поправок, к входной или выходной величине для компенсации этих погрешностей.

При любом методе коррекции с контролем по тестовому сигналу предусматриваются следующие действия:

1. Измерение характеристики ЦАП на достаточном для идентификации погрешностей множестве тестовых воздействий.

2. Идентификация погрешностей вычислением их отклонений по результатам измерений.

3. Вычисление корректирующих поправок для преобразуемых величин или требуемых корректирующих воздействий на корректируемые блоки.

4. Проведение коррекции.

Контроль может проводиться один раз перед установкой преобразователя в устройство с помощью специального лабораторного измерительного оборудования. Может проводиться и с помощью специализированного оборудования встроенного в устройство. При этом контроль, как правило, проводится периодически, все то время пока преобразователь не участвует непосредственно в работе устройства. Такая организация контроля и коррекции преобразователей может осуществляться при его работе в составе микропроцессорной измерительной системы.

Основной недостаток любого метода сквозного контроля – большое время контроля наряду с разнородностью и большим объемом используемой аппаратуры.

Определенные тем или иным способом величины поправок хранятся, как правило, в цифровой форме. Коррекция же погрешностей с учетом этих поправок может проводиться как в аналоговой, так и цифровой форме.

При цифровой коррекции поправки добавляются с учетом их знака к входному коду ЦАП. В результате на вход ЦАП поступает код, при котором на его выходе формируется требуемое значение напряжения или тока. Наиболее простая реализация такого способа коррекции состоит из корректируемого ЦАП, на входе которого установлено цифровое запоминающее устройство (ЗУ) . Входной код играет роль адресного. В ЗУ по соответствующим адресам занесены, заранее рассчитанные с учетом поправок, значения кодов, подаваемые на корректируемый ЦАП.

При аналоговой коррекции кроме основного ЦАП используется еще один дополнительный ЦАП. Диапазон его выходного сигнала соответствует максимальной величине погрешности корректируемого ЦАП. Входной код одновременно поступает на входы корректируемого ЦАП и на адресные входы ЗУ поправок. Из ЗУ поправок выбирается соответствующая данному значению входного кода поправка. Код поправки преобразуется в пропорциональный ему сигнал, который суммируется с выходным сигналом корректируемого ЦАП. Ввиду малости требуемого диапазона выходного сигнала дополнительного ЦАП по сравнению с диапазоном выходного сигнала корректируемого ЦАП собственными погрешностями первого пренебрегают.

В ряде случаев возникает необходимость проведения коррекции динамики работы ЦАП.

Переходная характеристика ЦАП при смене различных кодовых комбинаций будет различной, иными словами – различным будет время установления выходного сигнала. Поэтому при использовании ЦАП необходимо учитывать максимальное время установления. Однако в ряде случаев удается корректировать поведение передаточной характеристики.

Особенности применения БИС ЦАП

Для успешного применения современных БИС ЦАП недостаточно знать перечень их основных характеристик и основные схемы их включения.

Существенное влияние на результаты применения БИС ЦАП оказывает выполнение эксплуатационных требований, обусловленных особенностями конкретной микросхемы. К таким требованиям относятся не только использование допустимых входных сигналов, напряжения источников питания, емкости и сопротивления нагрузки, но и выполнение очередности включения разных источников питания, разделение цепей подключения разных источников питания и общей шины, применение фильтров и т.д.

Для прецизионных ЦАП особое значение приобретает выходное напряжение шума. Особенность проблемы шума в ЦАП заключается в наличии на его выходе всплесков напряжения, вызванных переключением ключей внутри преобразователя. По амплитуде эти всплески могут достигать нескольких десятков значений весов МЗР и создавать трудности в работе следующих за ЦАП устройств обработки аналоговых сигналов. Решением проблемы подавления таких всплесков является использование на выходе ЦАП устройств выборки-хранения (УВХ ). УВХ управляется от цифровой части системы, формирующей новые кодовые комбинации на входе ЦАП. Перед подачей новой кодовой комбинации УВХ переводится в режим хранения, размыкая цепь передачи аналогового сигнала на выход. Благодаря этому всплеск выходного напряжения ЦАП не попадает на вывод УВХ , которое затем переводится в режим слежения, повторяя выходной сигнал ЦАП.

Специальное внимание при построении ЦАП на базе БИС необходимо уделять выбору операционного усилителя, служащего для преобразования выходного тока ЦАП в напряжение. При подаче входного кода ЦАП на выходе ОУ будет действовать ошибка D U , обусловленная его напряжением смещения и равная

,

где U см – напряжение смещения ОУ ; R ос – величина сопротивления в цепи обратной связи ОУ ; R м – сопротивление резистивной матрицы ЦАП (выходное сопротивление ЦАП), зависящее от величины поданного на его вход кода.

Поскольку отношение изменяется от 1 до 0, ошибка, обусловленная U см , изменяется в приделах (1...2)U см . Влиянием U см пренебрегают при использовании ОУ, у которого .

Вследствие большой площади транзисторных ключей в КМОП БИС существенная выходная емкость БИС ЦАП (40...120 пФ в зависимости от величины входного кода). Эта емкость оказывает существенное влияние на время установления выходного напряжения ОУ до требуемой точности. Для уменьшения этого влияния R ос шунтируют конденсатором С ос .

В ряде случаев на выходе ЦАП необходимо получать двуполярное выходное напряжение. Этого можно добиться введением на выходе смещения диапазона выходного напряжения, а для умножающих ЦАП переключением полярности источника опорного напряжения.

Следует обратить внимание, что если вы используете интегральный ЦАП, имеющий число разрядов большее чем вам нужно, то входы неиспользуемых разрядов подключают к земляной шине, однозначно определяя на них уровень логического нуля. Причем для того, чтобы работать по возможности с большим диапазоном выходного сигнала БИС ЦАП за таковые разряды принимают разряды, начиная с самого младшего.

Один из практических примеров применения ЦАП- это формирователи сигналов разной формы. Сделал небольшую модель в протеусе. С помощью ЦАП управляемого МК (Atmega8, хотя можно сделать и на Tiny), формируются сигналы различной формы. Программа написана на Си в CVAVR. По нажатию кнопки формируемый сигнал меняется.

БИС ЦАП DAC0808 National Semiconductor,8 –разрядный, высокоскоростной, включена согласно типовой схеме. Так как выход у него токовый, с помощью инвертирующего усилителя на ОУ преобразуется в напряжение.

В принципе можно даже вот такие интересные фигуры, что-то напоминает правда? Если выбрать разрядность по больше, то получится более плавные

Список литературы:
1. Бахтияров Г.Д., Малинин В.В., Школин В.П. Аналого-цифровые преобразователи/Под ред. Г.Д.Бахтиярова - М.: Сов. радио. – 1980. – 278 с.: ил.
2. Проектирование аналого-цифровых контрольно-управляющих микропроцессорных систем.
3. О.В. Шишов. - Саранск: Изд-во Мордов. ун-та 1995. - с.

Ниже вы можете скачать проект в

). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами.

Применение

Характеристики

Для описания цифро-аналоговых преобразователей в общем случае используют следующие характеристики.

Статические характеристики:

  • Разрядность . Определяет количество уровней аналогового сигнала, которое может воспроизводить ЦАП. Для N разрядного ЦАП число уровней аналогового сигнала равно 2 N (включая значение для нулевого кода);
  • Статическая характеристика преобразования. Это график, у которого по оси абсцисс отложены значения кода, а по оси ординат значения выходного сигнала ЦАП.
  • Статическая нелинейность. Для описания статической нелинейности используют две величины: дифференциальная нелинейность (DNL) и интегральная нелинейность (INL);
  • Монотонность . Одна из важнейших характеристик ЦАП, которая говорит о том, что при увеличении кода, значение аналогового сигнала так же увеличивается. Унарная архитектура гарантирует монотонность. Для бинарной архитектуры монотонность не гарантируется;
  • Напряжение питания;
  • Потребляемая мощность;
  • Смещение нуля;
  • Ошибка усиления;

Динамические характеристики:

Архитектура ЦАП - это способ формирования выходного сигнала на функциональном уровне. Иначе говоря, это описание того, на сумму из каких чисел будет раскладываться значение выходного сигнала. Выходной сигнал формируется с помощью взвешивающих элементов, каждый из которых отвечает за свою "порцию" выходного сигнала. Различают следующие архитектуры по набору значений взвешивающих элементов:

  • Бинарная архитектура;

Соотношение двух соседних взвешивающих элементов равно 2. То есть выходной сигнал формируется так же, как это происходит в двоичной системе счисления . Соответственно, веса элементов, формирующих выходной сигнал, в нормированном виде, будут равны 1, 2, 4, 8, 16 и т. д. Управление взвешивающими элементами осуществляется бинарным кодом.

  • Унарная архитектура;

Соотношение двух соседних взвешивающих элементов равно 1. То есть выходной сигнал формируется так же, как это происходит в унарной системе счисления . Соответственно, веса всех элементов, в нормированном виде, равны 1. Управление осуществляется унарным или унитарным кодом .

  • Архитектура Фибоначчи;

Веса элементов представляют собой последовательность чисел Фибоначчи . Выходной сигнал формируется так же, как это происходит в Фибоначчиевой системе счисления .

Кроме того, существует понятие сегментной архитектуры , которая предполагает разделение входного кода на несколько групп. Как правило, две. Каждая группа обрабатывается независимо своим сегментом. Выходные сигналы всех сегментов комбинируются, образуя выходной сигнал ЦАП. Наиболее часто встречается следующая конфигурация сегментной архитектуры: младшие разряды обрабатываются сегментом, построенном по бинарной архитектуре, старшие разряды - сегментом, построенном по унарной архитектуре.

Типы взвешивающих элементов и способы формирования веса

Цифро-аналоговые преобразователи независимо от архитектуры могут использовать в качестве элемента, взвешивающего аналоговый сигнал, следующие типы компонентов: конденсаторы, резисторы и источники тока.

  • Конденсаторы. Данный тип взвешивающих элементов в случае применения в бинарной архитектуре может либо иметь номиналы, отличающиеся у соседних элементов в 2 раза, либо иметь номиналы 1 и 2 и формировать лестничную цепь C-2C.
  • Резисторы. Данный тип взвешивающих элементов имеет те же принципы построения, что конденсаторы. Кроме того, существуют реализации подобных структур на основе не резисторов, а транзисторов, выступающих в роли резисторов. Такие цепи называются M-2M.
  • Источники тока. Это, как правило, транзистор в режиме насыщения. Использование данных типов взвешивающих элементов позволяет обойтись без буферов, которые необходимы для других типов взвешивающих элементов.

Для формирования веса взвешивающего элемента есть следующие способы:

  1. Масштабирование номиналов. С точки зрения полупроводниковой технологии это всегда эквивалентно масштабированию размеров элементов;
  2. Использование лестничной структуры. Применимо только к ёмкостным и резистивным взвешивающих элементам. В зависимости от типа взвешивающего элемента такие структуры получают названия R-2R, C-2C или M-2M (вместо резисторов используются транзисторы);
  3. Инжекция заряда на плавающий затвор. Применимо лишь для специальных технологий, предусматривающих формирование плавающего затвора у транзистора. Как правило, это технологии предназначенные для изготовления энергонезависимой памяти.

Последовательные и параллельные ЦАП

В зависимости от способа обработки разрядов входного кода ЦАП разделяют на два вида: последовательные и параллельные. К последовательным ЦАП можно отнести следующие виды:

  • Широтно-импульсный модулятор - простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот . Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi -аудиотехнике;
  • ЦАП передискретизации , такие, как дельта-сигма -ЦАП, основаны на изменяемой плотности импульсов.

Иногда складывается впечатление, что цифровой мир практически полностью сливается с реальным. Но несмотря на появление таких систем как «gigaFLOPS», «22 nm» и многих других реальный мир упорно остается аналоговым и никак не цифровым, а мы по-прежнему должны работать с нашими цифровым системами, которые в современном мире присутствуют практически везде.

Цифро-аналоговый преобразователь ЦАП преобразовывает входной цифровой сигнал в аналоговый выходной. Понятие «точность» может варьироваться (в зависимости от производителя), но мы опишем цифро-аналоговые преобразователи с разрешением от 8 до 16 бит и скоростью до 10 Мвыборок/с. Данные цифро-аналоговые преобразователи ЦАП используются в различных системах – аудио- и видео аппаратуре, управление процессором, измерительные приборы, системы автоматизации, системы электропривода и многих других. У каждой отдельной системы существуют индивидуальные требования к ЦАП, например, разрешение, статические и динамические характеристики, потребляемая мощность и другие.

В параметрах и техническом описании указываются погрешность смещения, дифференциальная нелинейность (DNL), интегральная нелинейность (INL) и другие параметры, необходимые для обеспечения хорошей производительности в системах постоянного тока, например таких, как управления электроприводом или каким-то технологическим процессом.

Некоторые приложения, например, для генерации сигнала на экране монитора, подчеркивают необходимость хорошей производительности на переменном токе, который в техническом описании указывается в таких параметрах как время отставания, шумы и полоса частот пропускания. Сделать само устройство с применением ЦАП значительно сложнее, чем выбрать цифро-аналоговый преобразователь из каталога, ведь в систему помимо ЦАП будет входить еще много электронных компонентов, влияние которых также нужно учитывать. Ниже мы попытаемся это рассмотреть.
Содержание:

Три основные архитектуры для точных ЦАП

При выборе точности цифро-аналогового преобразователя для вашей системы необходимо, чтоб спецификация ЦАП соответствовала требованиям системы. По сравнению с изобилием архитектур аналого-цифровых преобразователей АЦП выбор цифро-аналогового преобразователя может показаться легкой задачей, так как в ЦАП имеется всего три основных архитектуры. Но это только кажется что задача легкая, ведь различие в производительности каждой из архитектур довольно существенны.

В ЦАП используют три основные архитектуры – струнная (последовательная), R-2R, умножающий ЦАП (multiplying DAC (MDAC)).

Струнный цифро-аналоговый преобразователь

Концепция, лежащая в основе струнного цифро-аналогового преобразователя, исходит от Лорда Кельвина с середины 1800 годов:

Входной декодер имеет несколько переключателей, по одному для каждой комбинации битов. Каждый цифровой вход подключается к соответствующему напряжению усилителя выходного напряжения.

N – битовый ЦАП состоит из последовательности 2 N соответствующих резисторов, а также источника напряжения на одном конце, и «земли» на другом. Трехбитный ЦАП (рисунок выше) требует восемь резисторов и семь переключателей, но эти цифры растут очень сильно с повышением разрядности и для 16 битного ЦАП необходимо уже 65536 резисторов!!! Это число очень большое, даже для современных систем. Для уменьшения количества резисторов используют интерполяционные усилители и ответвления на отдельные резисторы.

Струнные или последовательные цифро-аналоговые преобразователи вполне подходят для большинства точных приложений таких как, контроль перемещений, системы автоматического управления (в сервоприводах и при управлении электроприводом).

Выходное напряжение струнных ЦАП изначально монотонное с хорошей дифференциальной нелинейность (DNL), но его интегральная нелинейность (INL) не очень хороша, так как напрямую зависит от погрешности резистора. С точки зрения систем переменного тока струнные ЦАП демонстрируют более низкую производительность в сравнении с другими архитектурами, так как обладает довольно высоким уровнем шумов, что вызвано большим полным сопротивлением резисторов, а структура коммутации приводит к замедлению обработки сигналов при переходах, ограничивая при этом скорость обновлений.

Архитектура R-2R

Данная архитектура наиболее распространена среди цифро-аналоговых преобразователей и схема ее показана ниже:

Данная архитектура использует только резисторы с двумя различными сопротивлениями, соотношения между которыми определяются как 2 к 1.

При установке конкретного бита соответствующий 2R резистор переключается в положение V REF — H , в противном случае он устанавливается в положение V REF — L (земля). В результате получаем выходное напряжение, которое будет являться суммой всех лестничных напряжений 2R.

Архитектура R-2R хорошо подходит для применения в промышленных установках и устройствах. Они более точны, чем струнные цифро-аналоговые преобразователи, имеют более низкий уровень шумов из-за наличия меньшего результирующего сопротивления, а также у них лучше INL и DNL производительность.

Преобразование сигнала в преобразователе с архитектурой R-2R представляет собой переключение ножки 2R между V REF — H и V REF — L . Внутренние резисторы и переключатели внутри устройства не совпадают идеально, что может приводить к определенным сбоям в процессе переключения.

Умножающий цифро-аналоговый преобразователь MDAC

Умножающий преобразователь MDAC тоже использует архитектуру R-2R, но с опорным напряжением V REF . Схема ниже:

Когда бит установлен, соответствующий 2R резистор подключается к виртуальной «земле» — суммирующий операционный усилитель. Именно поэтому умножающий цифро-аналоговый преобразователь выдает не напряжение, а ток, при этом опорное напряжение V REF может превышать номинальное или вовсе быть отрицательным.

Источник V REF «видит» в MDAC постоянное сопротивление, равное R, поэтому имеет всегда постоянный выходной ток, что повышает производительность во время быстрых переходов, так как нет необходимости ждать пока восстановится величина опорного напряжения. В зависимости от цифрового кода текущий поток разделяется на выходной контакт, и контакт заземления. Это значит, что выходной импеданс будет различен, а это несколько затрудняет выбор внешнего операционного усилителя ОУ.

Для повышения производительности выхода MDAC включают в качестве обратной связи внутренний резистор с тепловой реакцией, примерно соответствующей внутреннему резистору ступени. Внутренний шум из умножающего цифро-аналогового преобразователя исходит как от сопротивлений ступеней, так и от сопротивления обратной связи. Поскольку выходное сопротивление является кодозависимым, то от него зависит и коэффициент усиления шумов, хотя уровень шумов у MDAC значительно ниже, чем у последовательных (струнных) ЦАП. Стоит отметить, что внешний операционный усилитель ОУ может быть с низким уровнем шумов.

Одним из недостатков является то, что входной сигнал является обратным выходному, что в свою очередь требует дополнительной операции инвертирования.

Понимание параметров производительности переменного тока

Для получения максимальной производительности при работе цифро-аналогового преобразователя на переменном токе нужно понять определенные тонкости, а также возможные шаги, которые можно сделать для оптимизации.

Время, необходимое для выхода операционного усилителя ОУ на окончательное значение, является одним из основных показателей качества ЦАП. Ниже показаны участки времени срабатывания цифро-аналогового преобразователя:

  • Мертвое время (Dead time ): это время, необходимое для достижения 10% от требуемого значения выходного аналогового сигнала, начиная с момента, когда цифровой код поступил на цифро-аналоговый преобразователь;
  • Время нарастания выходного сигнала(Slew time ): время, необходимое для возрастания аналогового выходного сигнала с 10% до 90%;
  • Время восстановления и установления(Recovery time, linear settling time ): перерегулирование и установление аналогового сигнала заданной формы;

После установления значения выходного аналогового сигнала в диапазоне допустимой ошибки процесс считается завершенным даже в случае, если сигнал все еще колеблется, но не выходит за пределы допустимой ошибки.

Ниже показан переходный процесс реального 18 битного, одноканального, R-2R цифро-аналогового преобразователя DAC988:

Время установления сигнала измеряется от момента перехода сигнала LDAC на низкий уровень, после чего начался переходный процесс в системе. Обратите внимание на то, что процесс убывания сигнала самый длительный, с долгим процессом восстановления и несущественным влиянием на него статического сигнала.

Ошибки переключения

Идеальное изменение выходного сигнала ЦАП – это монотонное его нарастание или спадания, но в реальности это не так, а изменения сигнала происходят скачкообразно. В отличии от времени установления, ошибка переключения вызвана не соответствием внутренних переключений (доминирующий фактор), или же емкостными связями между входными цифровыми и выходными аналоговыми сигналами:

Ошибка характеризуется площадью под положительным и отрицательным ложным импульсом и измеряется в вольт-секундах (чаще всего в мкВ∙с или нВ∙с).

С возрастанием количества параллельных переключателей возрастает и ошибка. Это один из недостатков архитектуры R-2R. Ошибки в архитектуре R-2R наиболее заметна при изменении всех битов или при переключении наиболее значащих битов, при переключении из 0x7FFF в 0x8000 (для 16-битных ЦАП).

Если уменьшить количество переключающихся последовательных резисторов нельзя, то применяют на выходе преобразователя, схемы показаны ниже:

На рисунке а) показан самый простой RC фильтр, который устанавливается на выходе и позволяет несколько снизить уровень амплитуды выходной ошибки, однако тем самым он затягивает скорость нарастания сигнала, чем увеличивает время отставания. На рисунке b) представлен вариант с добавлением выборки и удержанием цепи. Да, это позволяет снизить ошибку практически до нуля, однако реализовать такую схему чрезвычайно сложно, так как она накладывает жесткие требования к временным показателям срабатывания, а также жесткую синхронизацию с частотой обновления ЦАП.

Источники шума

Шум – один из важнейших компонентов производительности современного цифро-аналогового преобразователя на переменном токе. Существует три основных источника шума – внутренняя цепь резисторов, внутренние и внешние усилители, источники опорного напряжения. Влияние внутренних резисторов на шумы преобразователя рассматривалось ранее в этой статье, поэтому рассмотрим остальные два источника шумов.

Шум внешнего операционного усилителя ОУ

Выход усилителя ЦАП является еще одним источником шумов. MDAC использует внешний операционный усилитель, но другие архитектуры используют внутренний ОУ, чем влияют на общий коэффициент выходных шумов.

Шум в схеме операционных усилителей имеет три основных составляющих:

  • 1/f шума или фликкер-шум;
  • Шумы широкополосного напряжения или белый шум;
  • Шумы напряжений и токов на резисторах;

Первые два считаются внутренними свойствами самого операционного усилителя ОУ, а полоса пропускания ограничивается самим цифро-аналоговым преобразователем, что значительно снижает влияние широкополосных шумов. Для лучшей производительности на переменном токе следует обратить внимание на операционные усилители с низким уровнем 1/f шумов.

Шумы от внешнего опорного напряжения V REF

Выходные шумы ЦАП напрямую зависят от шумов в опорном напряжении, которое может быть как внешним, так и внутренним. Для обеспечения максимальной производительности и минимального уровня шумов необходимо использовать качественные источники опорного напряжения. Существует огромный выбор источников опорного напряжения от нескольких производителей.

Вывод

Получение максимальной производительности переменного тока от прецизионного ЦАП представляет собой сочетание понимания технических характеристик, выбора правильной архитектуры и добавления нужных внешних компонентов, и, конечно же, следование проверенным методикам выбора и расчета электронных компонентов.

Цифро-аналоговый преобразователь (ЦАП) предназначен для автоматического преобразования (декодирования) входных величин, представленных числовыми кодами, в соответствующие им значения непрерывно изменяющихся во времени (т.е. аналоговых) величин. Иными словами, ЦАП выполняет обратное по сравнению с АЦП преобразование. Выходные физические величины АЦП чаще всего представляют собой электрические напряжения и токи, но могут быть также временными интервалами, угловыми перемещениями и т. п. В системе автоматики с ЭВМ удобнее обрабатывать (преобразовывать и передавать) цифровой сигнал, но человеку (оператору) привычнее и удобнее воспринимать аналоговые сигналы, соответствующие значениям числовых кодов. С помощью АЦП информация вводится в ЭВМ, а с помощью ЦАП она выводится из ЭВМ для воздействия на управляемый объект и восприятия человеком.

В схемах ЦАП обычно используется представление двоичного числа, состоящего из нескольких разрядов, в виде суммы степеней числа 2. Каждый разряд (если в нем записана единица) преобразуется в аналоговый сигнал, пропорциональный числу 2 в степени, равной номеру разряда, уменьшенному на единицу.

На рис. 4.38 показана простая схема ЦАП, основу которой составляет резистивная матрица - набор резисторов, которые подключаются ко входу операционного усилителя ключами, управляемыми соответствующими разрядами двоичного числа. В качестве ключей могут быть использованы триоды (например МОП-транзисторы). Если в данном разряде записана 1, то ключ замкнут, если 0 - разомкнут.

Необходимость использования операционного усилителя обусловлена тем, что в ЦАП выходной сигнал является аналоговым. И входной, и выходной сигналы операционного усилителя представляют собой напряжения постоянного (в смысле неизменной полярности) тока.

Коэффициент передачи операционного усилителя равен отношению сопротивления резистора R о.с в цепи обратной связи к сопротивлению резистора на входе усилителя, которое, как видно из рис. 4.38, для каждого разряда имеет свое значение. Коэффициенты передачи K = - U вых /U оп по каждому разряду преобразуемого двоичного числа (если в этом разряде записана 1) соответственно равны: K 0 = R о.с /R 0 ; K 1 = 2R о.с /R 0 ; K 2 = 4R о.с /R 0 ;
K
3 = 8R о.с /R 0 . Выходное напряжение ЦАП

U вых = - U оп (K 3 + K 2 + K 1 + K 0) =

= - U оп (R о.с /R 0)(8x 3 + 4x 2 + 2x 1 + x 0),

где х принимает значение 1 или 0 в зависимости от того, что записано в данном разряде двоичного числа.

Рис. 4.38. Схема цифроаналогового
преобразователя на базе резистивной матрицы

Таким образом, четырехразрядное двоичное число преобразуется в напряжение U вых,которое может принимать 16 возможных значений от 0 до 15Du кв, где Du кв - шаг квантования.


Для уменьшения погрешности квантования необходимо увеличивать число двоичных разрядов ЦАП. При изготовлении интегральных микросхем ЦАП по данной схеме очень трудно сделать высокоточные резисторы с сопротивлениями, отличающимися друг от друга в десятки и сотни раз. Кроме того, нагрузка источника опорного напряжения U оп изменяется в зависимости от состояния ключей, поэтому необходимо применять источник с малым внутренним сопротивлением.

Схема ЦАП, показанная на рис. 4.39, свободна от указанных недостатков. В ней весовые коэффициенты каждого разряда задаются последовательным делением опорного напряжения с помощью резистивной матрицы типа R- 2R ,представляющей собой многозвенный делитель напряжения.

В данной схеме ЦАП используются двухпозиционные ключи , которые подсоединяют резисторы 2R либо ко входу операционного усилителя (при 1 в данном разряде), либо к общему нулевому проводу. Входное сопротивление резистивной матрицы при этом не зависит от положения ключей. Коэффициент передачи между соседними узловыми точками матрицы составляет 0,5. Выходное напряжение

U вых = - U оп (R /16R )(x 1 + 2x 2 + 4x 3 + 8x 4).

Рис. 4.39. Схема цифроаналогового преобразователя
на базе резистивной матрицы R-2R

Наибольшее влияние на погрешность ЦАП оказывают отклонения сопротивлений резисторов от их номинальных значений, а также то, что у реального ключа сопротивление в закрытом состоянии не равно бесконечности, а в открытом - не равно нулю. Выпускаемые резистивные матрицы имеют относительную погрешность около сотых долей процента, т.е. являются очень точными.

4.5.2. Аналого-цифровые преобразователи параллельного кодирования

Аналого-цифровой преобразователь (АЦП) предназначен для автоматического преобразования (измерения и кодирования) непрерывно изменяющихся во времени (т.е. аналоговых) величин в соответствующие значения числовых кодов. В данном случае под словом «цифра» понимается двоичный код. Когда говорят о цифровой звукозаписывающей и воспроизводящей аппаратуре или о цифровой телефонии, то подразумевают, что непрерывно изменяющийся звуковой сигнал записывается или передается оцифрованным, т.е. в виде двоичных (бинарных) кодов.

В зависимости от способа преобразования АЦП подразделяют на последовательные, параллельные и последовательно-параллельные.

Наиболее быстродействующими являются АЦП параллельного типа. Преобразование аналогового сигнала в код в них осуществляется за один шаг, но такие АЦП требуют нескольких компараторов. Входное напряжение одновременно сравнивается во всех компараторах с несколькими опорными напряжениями. Параллельные АЦП имеют большее число элементов, чем последовательные.

Рассмотрим работу параллельного трехразрядного
АЦП (рис. 4.40).

Рис. 4.40. Схема параллельного трехразрядного АЦП

Тремя двоичными разрядами можно представить восемь чисел - от 0 до 7. Поэтому используются семь компараторов для сравнения входного напряжения с опорными напряжениями, получаемыми с помощью резисторного делителя . От каждого компаратора поступает сигнал 0, если входное напряжение меньше опорного, и 1 - в противном случае.

Состояния компараторов и соответствующие им двоичные коды представлены в табл. 4.12. Преобразователь кода выдает двоичное трехразрядное число. Время преобразования параллельных АЦП может составлять несколько десятков наносекунд, что в сотни раз быстрее, чем у последовательных АЦП.

Таблица 4.12

Зависимость цифрового кода от входного напряжения

Относительное значение входного напряжения U = U вх /U оп Состояние компараторов Двоичный код-число
U < 0,5
0,5 £ U < 1,5
1,5 £ U < 2 ,5
2,5 £ U < 3,5
3,5 £ U < 4,5
4,5 £ U < 5 ,5
5,5 £ U<6 ,5
6,5 £ U

4.5.3. Аналого-цифровые преобразователи последовательного кодирования

На рис. 4.41 показана схема АЦП последовательного типа.

Рис. 4.41. Схема аналого-цифрового
преобразователя последовательного типа

По команде «Пуск» цифровой автомат ЦА вырабатывает последовательность двоичных чисел, которые поступают на вход цифро-аналогового преобразователя ЦАП, вырабатывающего напряжение U цап, соответствующее каждому входному двоичному сигналу. Это напряжение (непрерывно растущее, пока работает ЦА )подается на один из входов компаратора K , на другой вход которого поступает входное напряжение U вх.Компаратор сравнивает эти два напряжения и выдает сигнал при их равенстве. По этому сигналу ЦА останавливается, а на его выходе фиксируется двоичный код, соответствующий U вх.Таким образом, преобразование в последовательном АЦП происходит в ступенчатом режиме. Выходное значение отдельными шагами (тактами), т.е. последовательно, приближается к измеряемому значению. Поэтому последовательные АЦП на каждое преобразование аналогового сигнала затрачивают много времени. Для повышения их быстродействия используется метод поразрядного уравновешивания. Иллюстрирующая этот метод схема показана на рис. 4.42.

Рис. 4.42. Схема аналого-цифрового преобразователя
с поразрядным уравновешиванием

Роль цифрового автомата выполняет регистр Рг с датчиком тактовых импульсов ДТИ . Считывание выходного кода происходит по сигналу схемы готовности данных СГД ,который подается при поступлении сигнала от компаратора K о равенстве входного напряжения U вх и напряжения U цап. Работа компаратора синхронизирована импульсами ДТИ .Эти же импульсы последовательно переводят разряды регистра Рг в состояние 1. Перевод начинается со старшего разряда, а младшие остаются в состоянии 0. При этом ЦАП вырабатывает соответствующее напряжение, которое сравнивается в компараторе K с входным. Если U цап > U вх,то по команде компаратора старший разряд сбрасывается в состояние 0; если U цап < U m ,то в старшем разряде остается 1. Затем в состояние 1 переводится следующий по старшинству разряд Рг и снова производится сравнение напряжений U цап и U вх.Цикл повторяется до тех пор, пока не будет зафиксировано равенство указанных напряжений при переводе в состояние 1 какого-то из младших разрядов. После этого СГД подает сигнал о выдаче выходного кода. Число циклов сравнения в таком АЦП будет равно числу разрядов выходного кода.

4.6. Программируемые логические матрицы и интегральные схемы

В организации ПЗУ и программируемых логических матриц (ПЛМ) много общего. Выявим общий подход в построении этих схем на примере.

Предположим, что необходимо построить устройство, которое обеспечивает выдачу сигнала на выходе Y1 при поступлении на вход кодов 000, 001; на выходе Y2 при кодах 010, 100, 110; на выходе Y3 при кодах 011, 101, 110, 111. Подаваемые на вход устройства коды можно рассматривать как коды адреса одноразрядных ячеек ПЗУ, из которых считываемые единицы через элемент ИЛИ поступают на один из выходов Y i . Рассмотрим взаимосвязь между адресами и данными - функциями
(табл. 4.13).

На рис. 4.43, а представлена схема ПЗУ, состоящая из дешифратора адреса на логических элементах и запоминающих элементов в виде диодно-резистивных схем, в цепи которых включены перемычки. Переменные Х3 , Х2 , X1 рассматриваются как коды адресов различных ячеек памяти. Из табл. 4.13 видно, что в дешифраторе при определенных адресах возбуждаются соответствующие выходные шины, которые должны быть объединены на одном из выходов схемы: Y1 , Y2 , Y3 . Элементы ИЛИ, с помощью которых формируются сигналы Y i , представляют собой неполный шифратор.

Таблица 4.13

Таблица истинности дешифратора

Адрес Входы Выходы
Х3 Х2 XI Y1 Y2 Y3
А0 A1 А2 A3 А4 А5 А6 А7

На рис. 4.43, б представлена та же схема ПЗУ в виде двух матриц. Матрица А1 представляет собой полный линейный дешифратор на восемь выходов. Каждая вертикальная линия в А1 соответствует элементу И с тремя входами, на каждом из которых реализовано одно из сочетаний входных переменных Х3 , Х2 , X1 . Матрица А2 представляет собой неполный шифратор.

Рис. 4.43. Матрица ПЗУ, как основа ПЛМ

Каждая горизонтальная линия в А2 соответствует восьмивходовому элементу ИЛИ. О формировании необходимых сигналов на каждом из его входов говорит точка в месте пересечения вертикальной линии матрицы А1 и горизонтальной линии матрицы А2 .

Схемы, приведенные на рис. 4.43 могут быть реализованы в виде комбинационной схемы на ПЛМ (рис. 4.44).

Рис. 4.44. Комбинационная схема на ПЛМ

Сравнивая две схемы, выполняющие одни и те же функции (см. рис. 4.43, б и 4.44), видим, что схема, реализованная в виде ПЛМ, проще. Матрица А1 в ПЗУ - это полный, жестко программируемый дешифратор, в матрице ПЛМ - это программируемые под функции минтермы. Затраты на оборудование принято определять площадью полупроводникового кристалла , занимаемого схемой. Таким образом, схемы, выполненные на ПЛМ, обеспечивают большую степень интеграции и тем самым расширяют функциональные возможности микросхемы.

ГЛАВА 5.
ВЫЧИСЛИТЕЛЬНЫЕ СРЕДСТВА ОБРАБОТКИ ИНФОРМАЦИИ В СИСТЕМАХ АВТОМАТИКИ

5.1. Микропроцессоры в системах автоматизации текстильного производства

Цифровые микросхемы к настоящему времени достигли большого быстродействия при приемлемом токе потребления. Наиболее быстрые из цифровых микросхем обладают скоростью переключения порядка 3 - 5 нс. В этих микросхемах потребляемый ток прямо пропорционален скорости переключения логических вентилей в микросхеме.

Ещё одной причиной широкого распространения микропроцессоров стало то, что микропроцессор - это универсальная микросхема, которая может выполнять практически любые функции. Универсальность обеспечивает широкий спрос на эти микросхемы, а значит массовость производства. Стоимость же микросхем обратно пропорциональна массовости их производства, то есть микропроцессоры становятся дешёвыми микросхемами и тем самым ещё больше увеличивают спрос.

В наибольшей степени все вышеперечисленные свойства проявляются в однокристальных микроЭВМ или как их чаще называют по области применения: микроконтроллерах. В микроконтроллерах на одном кристалле объединяются все составные части компьютера: микропроцессор (часто называют ядро микроконтроллера), ОЗУ, ПЗУ, таймеры и порты ввода-вывода.

При переходе к комплексной автоматизации технологий текстильного производства и появлении средств для ее реализации в виде специализированных микропроцессорных подсистем управления (МПСУ) возник вопрос о многосвязанном регулировании ряда параметров . Это потребовало решения вопросов идентификации технологических процессов, их взаимосвязи и управляемости по параметрам, предлагаемым технологами в качестве регламентированных. С помощью МПСУ при комплексной автоматизации текстильных производств могут решаться следующие основные задачи.

1. Информационно-измерительные, обеспечивающие сбор обширной информации; помехозащищенность; необходимую обработку статистических данных, программную коррекцию погрешностей измерений, автоматическую диагностику и само-калибровку системы измерений. При этом программируемая логика работы МПСУ обеспечивает гибкость перенастройки и позволяет наращивать функции системы при модернизации без существенных схемных изменений.

2. Регулирование технологических параметров и режимов работы оборудования, позволяющих поддерживать регламентированные технологами параметры на заданном значении или изменять их для выполнения условий оптимизации в системах многосвязанного регулирования, быстродействия по времени, энергетических и качественных показателей. В любом случае качество регулирования определяется достоверностью измерений и получаемой информации.

3. Управление режимами работы технологического оборудования и средствами робототехники, реализуемыми преимущественно в виде автооператоров или автоманипуляторов, выполняющих операции, например, загрузки и разгрузки кип волокна, сновальных валиков и ткацких навоев, съема и установки бобин на шпулярники и прядильные машины, заправки патронами прядильных мест, присучки лент и узловязание и др.

Координация работы всех средств управления технологическим оборудованием, включая регулирование потоков сигналов во времени и пространстве, их обработку, осуществляется центральным устройством управления. Современные устройства центрального управления являются электронными и подразделяются на универсальные с использованием микроЭВМ и на специализированные с использованием микроконтроллеров, микропроцессоров и логических схем.

Применение принципа программного управления в системах автоматического управления и сбора данных о состоянии систем в сочетании с микропроцессорами существенно увеличило их функциональные возможности, обеспечило большую гибкость, уменьшило стоимость и габариты, повысило надежность, устойчивость к неблагоприятным условиям окружающей среды и другие эксплуатационные характеристики.

Микропроцессоры и микроконтроллеры на их основе нашли широкое применение в цифровых измерительных приборах и системах, что упростило ввод и выдачу данных, предупредительных сигналов или команд на дисплей, а также автоматическое масштабирование данных параметров. Микропроцессоры могут обеспечить самопроверку и самокалибровку, проверку согласованности данных, связь с микроЭВМ или приборами, управляемыми ЭВМ, и автоматическое усреднение показаний. Однако микропроцессоры и микроконтроллеры на их основе имеют меньший объем стандартного программного обеспечения, номенклатуру периферийных устройств и возможности интерфейса, чем микроЭВМ.

Микропроцессоры нашли также применение в терминалах, сетях микроЭВМ, модулях коммутации сообщений, ретрансляторах, системах накопления передачи данных, кодирующих и декодирующих устройствах, портативных системах связи, охраны и модемах.

Микропроцессоры используются в системных блоках микро-ЭВМ , контроллерах ввода-вывода и других периферийных устройствах. Микроконтроллеры в периферийных устройствах позволяют выполнять многие задачи на периферии, разгружая центральный процессор для выполнения других задач.

Микропроцессоры, микроконтроллеры и микро-ЭВМ находят применение в текстильном оборудовании: в системах контроля данных, установках контроля качества, автоматических взвешивающих и дозирующих системах, контроля узлов/машин, определения степени скручиваемости, контроллерах, управляющих отдельными операциями, например, натяжением нитей, лент, тканей и т.п., устройствах сортировки, погрузочно-разгрузочных устройствах, терминалах и устройствах автоматической диагностики.

Следует отметить, что при управлении технологическими процессорами текстильной промышленности относительно большое число регулируемых параметров и сложность алгоритмов управления требуют применение мощных микроЭВМ. Микропроцессоры находят применение в распределенных системах, в которых реализуются алгоритмы управления объектами на местах и готовятся данные для микроЭВМ, что повышает надежность систем в условиях производственных помех.

В новейших моделях микропроцессоров операционная система полностью или частично реализуется аппаратными средствами на основе флэш-памяти , что оптимизирует процесс управления промышленными объектами.



Загрузка...