sonyps4.ru

На что влияет тактовая частота процессора.

04. 07.2018

Блог Дмитрия Вассиярова.

Тактовая частота и производительность — одно и тоже?

Приветствую всех читателей, и мне будет особенно приятно порадовать вас своим рассказом на тему что такое тактовая частота процессора? Возможно, для некоторых эта тема покажется азбучной и малополезной, но я уверен что несколько интересных фактов и простых сравнений позволит по-новому взглянуть на работу ЦПУ.

Подбирая железо для компьютера или новый смартфон мы первым делом интересуемся, сколько ядер имеет процессор и какова частота их работы. Бренд самого ЦПУ в этом случае – дело вкуса (AMD или Intel, MTK или Snapdragon), но, если из представленных моделей, одна имеет в характеристиках большее значение частоты, но наверняка выбор будет сделан в ее пользу. Давайте разберемся, почему это так важно.

«Импульсивное поведение» процессора

Процессор это сердце любой вычислительной машины, а к таковым относятся не только калькуляторы и компьютеры, используемые в сложных расчетах, но и любое устройство, работающее с оцифрованными данными. Чтобы преобразовать их в музыку, видео, изображение или, тем более, заставить программу совершить определенные операции, поток «нулей» и «единиц» записанный в необходимо пропустить через блок, выполняющий логические операции. Такие обрабатывающие модули, созданные из множества полупроводниковых микротранзисторов и составляют основу кристалла процессора, или, как говорят знатоки «камня».

Но вернемся к оцифрованному потоку данных, которые в реальности представляют собой наличие или отсутствие сигнала в электроцепи, ведь именно его и обрабатывает транзистор. Но чтобы сделать такие сигналы читаемыми (отличаемыми друг от друга) его подают импульсами, Создает их тактовый генератор, интегрированный в архитектуру самого процессора.

В лучших современных за одну секунду происходит до 5 000 000 000 (пяти миллиардов!) импульсов. Это величина измеряется в гигагерцах (ГГц) и является тактовой частотой работы ядра процессора, выполняющего главные вычислительные функции. Чем больше она, тем лучше.

Но за дополнительные герцы приходится расплачиваться повышенным энергопотреблением и сильным нагревом.

А вы знаете частоту своего ЦПУ?

Узнать тактовую частоту установленного на вашем компьютере процессора можно несколькими способами:

  • Заглянуть в паспорт, лежащий в коробке от CPU;
  • Найти на мониторе «Мой компьютер», открыть в его контекстном меню «Свойства» и изучить общие параметры устройства;

  • Установить программы AIDA64 или CPU-Z , которые показывают максимально подробную информацию о вашем процессоре.

Считаем ядра и гигагерцы

В реальности более объективным показателем скорости работы ЦПУ является количество операций, выполняемых в единицу времени. А на это уже влияет количество микротранзисторов, способных одновременно обработать несколько сигналов. Может вы что-то слышали о нано технологиях, так вот чем меньшего размера вычислительный элемент, тем их больше можно разместить на «камне» процессора.

Так же тактовую производительность процессора определяет его (оптимизация взаимодействия между отдельными модулями) и количество потоков (каналов одновременного обращения к ядру).

Кроме того, для одновременного решения нескольких задач в ЦПУ используется несколько ядер. Причем имеются процессоры для смартфонов с различной тактовой частотой отдельных ядер: по 4-е энергоэффективных (1,8 ГГц) и по 4-е мощных (свыше 2,3 Ггц). Многоядерные устройства, установленные на ПК, имеют свой алгоритм оптимизации, что дает ядрам возможность работать с разной тактовой частотой.

Раз, уж я затронул тему многоядерности, то расскажу вам об одном распространенном заблуждении, касающимся нашей основной темы. Некоторые пользователи, покупая, например, процессор Intel Core 2 Quad, с частотой каждого ядра 2,5 ГГц считают, что они получат устройство способное выдавать 4 х 2,5 = 10 млрд. тактов в секунду.

Это, друзья мои, заблуждение. Потому как тактовый генератор быстрее работать от этого не станет. Единственно, чем я могу вас порадовать, что каждое ядро теоретически может выполнять отдельную операцию, но и для этого обычно требуется несколько тактов.

Разгон, троттлинг и нагрев

Здесь же считаю нужным ответить на часто задаваемый вопрос: что важнее при выборе процессора количество ядер или тактовая частота.

Оба показателя определяют производительность процессора, поэтому 2-а ядра на 4,5 GHz могут работать не хуже 4-х на 2,5 GHz. Все зависит от выполняемых задач и от реализованной в чипе архитектуры.

Правда, все-таки есть один нюанс: ядер вы в ЦПУ не добавите, а вот разогнать процессор, увеличив его тактовую частоту можно. Для этого существует несколько способов, но все они требуют выполнения ряда условий:

  • Теоретическая возможность разгона процессора;
  • Устойчивость его элементов к работе в высокотемпературном режиме или наличие дополнительной эффективной системы охлаждения;
  • Необходимый разгонный потенциал материнской платы.

Есть даже несколько недорогих ЦПУ, наиболее приспособленных к такому частотному апгрейду: AMD FX-6300, AMD FX-4350, AMD Athlon X4 860K, Intel Pentium G3258.

Наверное, вы уже заметили, что в нашем разговоре о тактовой частоте периодически упоминается такое явление как нагрев процессора. Эти два параметра тесно взаимосвязаны между собой. Уже понятно, что искусственное увеличение температуры повлечет за собой повышение температуры CPU.

А что будет, если в силу определенных причин нагреется сам процессор (поломка или загрязнение кулера, высыхание термопасты, работа в жару)?

В этом случае разработчики ЦПУ предусмотрели функцию тротлинга, которая отслеживает температуру чипа, и при достижении критических значений автоматически снижает тактовую частоту ядер и, соответственно, быстродействие всей системы.

Напоследок хочу отметить, что своя рабочая частота имеется и у ОЗУ, и у системной шины материнской платы и даже у кэш-памяти самого процессора, но именно тактовая частота ядер является максимальной.

Запомните это, чтобы случайно не запутаться в терминах и устройствах.

На этом я заканчиваю свой рассказ, и буду готовить новую статью, с целью порадовать вас новыми интересными сведениями из жизни компьютерного железа.

Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать, совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно выше тактовой частоты ОЗУ.

Разрядность

Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят, что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.

Скорость передачи данных

Название этого параметра говорит само за себя. Он высчитывается по формуле:

тактовая частота * разрядность = скорость передачи данных

Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте в 100 МГц.

100 * 64 = 6400 Мбит/сек6400 / 8 = 800 Мбайт/сек

Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов: неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.

За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав набора системной логики (чипсет ).

Шина isa

Системная шина ISA (Industry Standard Architecture) применяется начиная с процессора i80286. Гнездо для плат расширения включает основной 64-контактный и дополнительный 36-контактный разъемы. Шина 16-разрядная, имеет 24 адресные линии, обеспечивает прямое обращение к 16 Мбайт оперативной памяти. Количество аппаратных прерываний - 16, каналов DMA - 7. Допускается возможность синхронизации работы шины и процессора разными тактовыми частотами. Тактовая частота - 8 МГц. Максимальная скорость передачи данных - 16 Мбайт/с.

PCI. (Peripheral Component Interconnect bus – шина соединения периферийных компонентов)

В июне 1992 года на сцене появился новый стандарт – PCI, родителем которого была фирма Intel, а точнее организованная ею группа Special Interest Group. К началу 1993 года появился модернизированный вариант PCI. По сути дела эта шина не является локальной. Напомню, что локальной шиной называется та шина, которая подключена к системной шине напрямую. PCI же для подключения к оной использует Host Bridge (главный мост), а так же еще и Peer-to-Peer Bridge (одноранговый мост) который предназначен для соединения двух шин PCI. Кроме всего прочего, PCI является сама по себе мостом между ISA и шиной процессора.

Тактовая частота PCI может быть равна или 33 МГц или 66 МГц. Разрядность – 32 или 64. Скорость передачи данных – 132 Мбайт/сек или 264 Мбайт/сек.

Стандартом PCI предусмотрены три типа плат в зависимости от питания:

1. 5 Вольт – для стационарных компьютеров

2. 3,3 Вольт – для портативных компьютеров

3. Универсальные платы могущие работать в обоих типах компьютеров.

Большим плюсом шины PCI является удовлетворение спецификации Plug and Play –. Кроме этого, в шине PCI любая передача сигналов происходит пакетным образом где каждый пакет разбит на фазы. Начинается пакет с фазы адреса, за которой, как правило, следует один или несколько фаз данных. Количество фаз данных в пакете может быть неопределенно, но ограничено таймером, который определяет максимальное время, в течение которого устройство может использоваться шиной. Такой вот таймер имеет каждое подключенное устройство, а его значение может быть задано при конфигурировании. Для организации работы по передачи данных используется арбитр. Дело в том, что на шине могут находиться два типа устройств – мастер (инициатор, хозяин, ведущий) шины и подчиненный. Мастер берет на себя контроль за шиной и инициирует передачу данных к адресату, т. е. подчиненному устройству. Мастером или подчиненным может быть любое подключенное к шине устройство и иерархия эта постоянно меняется в зависимости от того, какое устройство запросило у арбитра шины разрешения на передачу данных и кому. За бесконфликтную работу шины PCI отвечает чипсет, а точнее North Bridge. Но на PCI жизнь не остановила своего течения. Постоянное усовершенствование видеокарт привело к тому, что физических параметров шины PCI стало не хватать, что и привело к появлению AGP.

Как известно, тактовая частота процессора что это количество выполняемых операций таковым за единицу времени, в данном случае, за секунду.

Но этого определения недостаточно для того, чтобы полностью понять, что же на самом деле означает данное понятие и какое значение оно имеет для нас, рядовых пользователей.

В интернете можно найти множество статей по этому поводу, но во всех из них чего-то не хватает.

Чаще всего это «что-то» является тем самым ключиком, который может открыть дверь к пониманию. Поэтому мы постарались собрать все основные сведения, будто это пазлы, и составить из них единую целостную картину.

Детальное определение

Итак, тактовая частота – это количество операций, которые процессор может выполнять за секунду. Измеряется эта величина в Герцах.

Эта единица измерения названа в честь известного ученого, который проводил эксперименты, направленные на изучение периодических, то есть повторяющихся процессов.

А причем Герц к операциям за секунду?

Такой вопрос возникает при чтении большинства статей в интернете у людей, которые не очень хорошо изучали физику в школе (может быть, не по своей вине). Дело в том, что эта единица как раз и обозначает частоту, то есть количество повторений, этих самых периодических процессов за секунду.

Она позволяет измерять не только число операций, а и другие всевозможные показатели. К примеру, если вы делаете 3 входа в секунду, значит, частота дыхания составляет 3 Герца.

Что же касается процессоров, то здесь могут выполняться самые разные операции, которые сводятся к вычислению тех или иных параметров. Собственно, количество вычислений этих самых параметров за секунду и называется тактовой частотой.

Как все просто!

На практике понятие «Герц» используется крайне редко, чаще мы слышим о мегаГерцах, килоГерцах и так далее. В таблице 1 приведены «расшифровки» этих величин.

Таблица 1. Обозначения

Первое и последнее в настоящее время используется крайне редко.

То есть, если вы слышите, что в нем 4 ГГц, значит, он может выполнять 4 миллиарда операций каждую секунду.

Отнюдь! На сегодняшний день это средний показатель. Наверняка, очень скоро мы услышим о моделях с частотой в тераГерц или даже больше.

Как образовывается

Итак, в нем есть следующие устройства:

  • тактовый резонатор – представляет собой обычный кристалл кварца, заключен в специальный защитный контейнер;
  • тактовый генератор – устройство, которое преобразовывает один вид колебаний в другие;
  • металлическая крышка;
  • шина данных;
  • текстолитовая подложка, к которой крепятся все остальные устройства.

Так вот, кристалл кварца, то есть тактовый резонатор образуют колебания вследствие подачи напряжения. В результате образовываются колебания электрического тока.

К подложке крепится тактовый генератор, который преобразовывает электрические колебания в импульсы. Они передаются на шины данных, и таким образом результат вычислений попадает к пользователю.

Вот именно таким путем и получается тактовая частота. Интересно, что в отношении данного понятия существует огромное количество заблуждений, в частности, относительно связи ядер и частоты. Поэтому об этом тоже стоит поговорить.

Как частота связана с ядрами

Ядро – это, фактически, и есть процессор. Под ядром подразумевается тот самый кристалл, который и заставляет все устройство выполнять определенные операции. То есть если в той или иной модели два ядра, это значит, что в нем два кристалла, которые соединяются между собой при помощи специальной шины.

Согласно распространенному заблуждению, чем больше ядер, тем больше частота. Не зря ведь сейчас разработчики стараются вместить все больше ядер в них. Но это не так. Если она равна 1 ГГц, даже если в нем 10 ядер, она так и останется 1 ГГц, и не станет 10 ГГц.

Многие владельцы компьютеров с современными процессорами замечают, что тактовая частота их процессора изменяется со временем. Иногда частота скачет до максимального значения, характерного для данной модели (например, до 3000 МГц), а иногда опускается до 1500 или даже 800 МГц. Наблюдая за подобными скачками, пользователи задаются вопросом, почему это происходит и как зафиксировать тактовую частоту на максимальном значении.

Если вы наблюдаете скачки тактовой частоты процессора во время простоя компьютера, то это вполне нормальное явление. Это работает механизм энергосбережения. В отсутствие нагрузки система понижает множитель процессора, что приводит к снижению тактовой частоты процессора. Обычно тактовая частота снижается до 1500 или 800 МГц, после чего компьютер работает на такой частоте до тех пор, пока на процессор не появится заметная нагрузка. С появлением нагрузки тактовая частота обратно прыгает до своих штатных значений.

Внизу показаны скриншоты из программы CPU-Z. Там видно, как частота процессора Intel Core i5 2310 скачет между значениями 1600 МГц и 3100 МГц.

Также в программе CPU-Z можно наблюдать как меняется множитель процессора.

Снижение тактовой частоты позволяет снизить потребление энергии процессором, что в свою очередь заметно снижает общее потребление энергии компьютером, ведь процессор является одним из самых прожорливых компонентов современного компьютера.

Кроме непосредственно экономии электроэнергии, такое поведение системы позволяет снизить температуру процессора, что в свою очередь позволяет снизить обороты вентиляторов и уменьшить уровень шума, который производится компьютером.

При желании, пользователь может зафиксировать тактовую частоту процессора на максимальном значении. Для этого нужно отредактировать используемую в операционной системе схему электропитания. Например, в Windows для этого нужно зайти в «Панель управления\Оборудование и звук\Электропитание» и кликнуть по ссылке «Настройка схемы электропитания», которая находится напротив активной схемы.

Таким образом вы попадете в дополнительные настройки схемы электропитания. Здесь нужно открыть раздел «Управление питанием процессора» и в поле «Минимальное состояние процессора» указать значение в 100 процентов.

После применения настроек процессор начнет работать на своей максимальной тактовой частоте.

Скачки тактовой частоты процессора под нагрузкой

Под нагрузкой тактовая частота также может меняться. В этом случае, это результат работы технологии Turbo Boost. Данная технология предназначена для автоматического разгона процессора до частот выше штатных. Активность такого авто-разгона зависит от нагрузки на процессор. При однопоточной нагрузке Turbo Boost тактовые частоты поднимаются заметно выше, чем при многопоточной, это может приводить к небольшим скачкам тактовой частоты процессора. Например, для процессора Core i5-2500 под нагрузкой Turbo Boost может изменять тактовую частоту в пределах от 3700 МГц (при нагрузке на одно ядро), до 3400 МГц (при нагрузке на все 4 ядра).

Если же вы наблюдаете значительные скачки частоты процессора под нагрузкой, например, скачки на 1000 МГц или больше, то это может быть признаком неисправности компьютера. В этом случае стоит проверить . При перегреве процессора может начаться так называемый «троттлинг». Это снижение тактовой частоты с целью снижения температуры процессора.

Нужно отметить, что троттлинг процессора может появляться не только в результате перегрева самого процессора, но и при перегреве его цепей питания. Такое может случится, например, при разгоне процессора на бюджетной материнской плате.

– это основной вычислительный компонент, от которого сильно зависит скорость работы всего компьютера. Поэтому, обычно, при подборе конфигурации компьютера, сначала выбирают процессор, а затем уже все остальное.

Для простых задач

Если компьютер будет использоваться для работы с документами и интернета, то вам подойдет недорогой процессор со встроенным видеоядром Pentium G5400/5500/5600 (2 ядра / 4 потока), которые лишь немного отличаются частотой.

Для монтажа видео

Для монтажа видео лучше брать современный многопоточный процессор AMD Ryzen 5/7 (6-8 ядер / 12-16 потоков), который в тандеме с хорошей видеокартой также неплохо справится с играми.
Процессор AMD Ryzen 5 2600

Для среднего игрового компьютера

Для чисто игрового компьютера среднего класса лучше взять Core i3-8100/8300, они имеют честные 4 ядра и хорошо показывают себя в играх с видеокартами среднего класса (GTX 1050/1060/1070).
Процессор Intel Core i3 8100

Для мощного игрового компьютера

Для мощного игрового компьютера лучше взять 6-ядерник Core i5-8400/8500/8600, а для ПК с топовой видеокартой i7-8700 (6 ядер / 12 потоков). Эти процессоры показывает лучшие результаты в играх и способны полностью раскрыть мощные видеокарты (GTX 1080/2080).
Процессор Intel Core i5 8400

В любом случае, чем больше ядер и выше частота процессора, тем лучше. Ориентируйтесь на ваши финансовые возможности.

2. Как устроен процессор

Центральный процессор состоит из печатной платы с кристаллом кремния и различными электронными элементами. Кристалл накрыт специальной металлической крышкой, предотвращающей его повреждение и являющейся теплораспределителем.

С другой стороны платы находятся ножки (или контактные площадки), с помощью которых процессор соединяется с материнской платой.

3. Производители процессоров

Процессоры для компьютеров производят две крупных компании — Intel и AMD на нескольких в мире высокотехнологичных фабриках. Поэтому процессор, независимо от производителя, является самым надежным компонентом компьютера.

Intel является лидером в разработке технологий, использующихся в современных процессорах. AMD частично перенимает их опыт, добавляя что-то свое и проводит более демократичную ценовую политику.

4. Чем отличаются процессоры Intel и AMD

Процессоры Intel и AMD отличаются преимущественно архитектурой (электронной схемотехникой). Некоторые лучше справляются с одними задачами, некоторые с другими.

Процессоры Intel Core в целом имеют более высокую производительность на ядро, благодаря чему опережают процессоры AMD Ryzen в большинстве современных игр и больше подходят для сборки мощных игровых компьютеров.

Процессоры AMD Ryzen в свою очередь выигрывают в многопоточных задачах, таких как монтаж видео, в принципе не сильно уступают Intel Core в играх и прекрасно подойдут для универсального компьютера, используемого как для профессиональных задач, так и для игр.

Справедливости ради стоит заметить, что старые недорогие процессоры AMD серии FX-8xxx, имеющие 8 физических ядер, неплохо справляются с монтажом видео и их можно использовать в качестве бюджетного варианта для этих целей. Но они хуже подходят для игр и устанавливаются на материнские платы с устаревшим сокетом AM3+, что сделает проблематичной замену комплектующих в будущем с целью улучшения или ремонта компьютера. Так что лучше приобрести более современный процессор AMD Ryzen и соответствующую материнскую плату на сокете AM4.

Если ваш бюджет ограничен, но в будущем вы хотите иметь мощный ПК, то можно для начала приобрести недорогую модель, а через 2-3 года поменять процессор на более мощный.

5. Сокет процессора

Socket – это разъем для соединения процессора с материнской платой. Процессорные сокеты маркируются либо по количеству ножек процессора, либо цифро-буквенным обозначением по усмотрению производителя.

Процессорные сокеты постоянно претерпевают изменения и из года в год появляются все новые модификации. Общая рекомендация приобретать процессор с наиболее современным сокетом. Это обеспечит возможность замены как процессора, так и материнской платы в ближайшие несколько лет.

Сокеты процессоров Intel

  • Окончательно устаревшие: 478, 775, 1155, 1156, 2011
  • Устаревающие: 1150, 2011-3
  • Современные: 1151, 1151-v2, 2066

Сокеты процессоров AMD

  • Устаревшие: AM1, АМ2, AM3, FM1, FM2
  • Устаревающие: AM3+, FM2+
  • Современные: AM4, TR4

У процессора и материнской платы сокеты должны быть одинаковыми, иначе процессор просто не установится. На сегодня наиболее актуальными являются процессоры со следующими сокетами.

Intel 1150 — они еще есть в продаже, но в ближайшие несколько лет выйдут из обихода и замена процессора или материнской платы станет проблематичнее. Имеют широкий модельный ряд — от самых недорогих, до довольно мощных.

Intel 1151 — современные процессоры, которые уже не на много дороже, но значительно перспективнее. Имеют широкий модельный ряд — от самых недорогих, до довольно мощных.

Intel 1151-v2 — вторая версия сокета 1151, отличается от предыдущего поддержкой самых современных процессоров 8-го поколения.

Intel 2011-3 — мощные 6/8/10-ядерные процессоры для профессиональных ПК.

Intel 2066 — топовые самые мощные и дорогие 12/16/18-ядерные процессоры для профессиональных ПК.

AMD FM2+ — процессоры с интегрированной графикой для офисных задач и самых простеньких игр. В модельном ряду есть как совсем бюджетные, так и процессоры среднего класса.

AMD AM3+ — устаревающие 4/6/8-ядерные процессоры (FX), старшие версии из которых можно использовать для монтажа видео.

AMD AM4 — современные многопоточные процессоры для профессиональных задач и игр.

AMD TR4 — топовые самые мощные и дорогие 8/12/16-ядерные процессоры для профессиональных ПК.

Рассматривать приобретение компьютера на более старых сокетах нецелесообразно. А вообще я бы рекомендовал ограничить выбор процессорами на сокетах 1151 и AM4, так как они наиболее современные и позволяют собрать достаточно мощный компьютер на любой бюджет.

6. Основные характеристики процессоров

Все процессоры, независимо от производителя, отличаются количеством ядер, потоков, частотой, объемом кэш-памяти, частотой поддерживаемой оперативной памяти, наличием встроенного видеоядра и некоторыми другими параметрами.

6.1. Количество ядер

Количество ядер оказывает наибольшее влияние на производительность процессора. Офисному или мультимедийному компьютеру необходим как минимум 2-ядерный процессор. Если компьютер предполагается использовать для современных игр, то ему нужен процессор минимум с 4 ядрами. Процессор с 6-8 ядрами подойдет для монтажа видео и тяжелых профессиональных приложений. Наиболее мощные процессоры могут иметь 10-18 ядер, но стоят они очень дорого и предназначены для сложных профессиональных задач.

6.2. Количество потоков

Технология гиперпоточности (Hyper-treading) позволяет каждому ядру процессора обрабатывать 2 потока данных, что значительно увеличивает производительность. Многопоточными процессорами являются Intel Core i7,i9, некоторые Core i3 и Pentium (G4560, G46xx), а также большинство AMD Ryzen.

Процессор с 2 ядрами и поддержкой Hyper-treading по производительности близок к 4-ядерному, а с 4 ядрами и Hyper-treading — к 8-ядерному. Например, Core i3-6100 (2 ядра / 4 потока) в два раза мощнее 2-ядерного Pentium без Hyper-treading, но все же несколько слабее честного 4-ядерника Core i5. Но процессоры Core i5 не поддерживают Hyper-treading, поэтому значительно уступают процессорам Core i7 (4 ядра / 8 потоков).

Процессоры Ryzen 5 и 7 имеют 4/6/8 ядер и соответственно 8/12/16 потоков, что делает их королями в таких задачах как монтаж видео. В новом семействе процессоров Ryzen Threadripper есть процессоры до 16 ядер и 32 потоков. Но есть младшие процессоры из серии Ryzen 3, которые не являются многопоточными.

Современные игры также научились использовать многопоточность, так что для мощного игрового ПК желательно брать Core i7 (на 8-12 потоков) или Ryzen (на 8-12 потоков). Также неплохим выбором по соотношению цена/производительность будут новые 6-ядерные процессоры Core-i5.

6.3. Частота процессора

Производительность процессора также сильно зависит от его частоты, на которой работают все ядра процессора.

Простому компьютеру для набора текста и доступа в интернет в принципе хватит процессора с частотой около 2 ГГц. Но есть много процессоров с частотой около 3 ГГц, которые стоят примерно столько же, поэтому экономить здесь нецелесообразно.

Мультимедийному или игровому компьютеру среднего класса подойдет процессор с частотой около 3.5 ГГц.

Для мощного игрового или профессионального компьютера требуется процессор с частотой ближе к 4 ГГц.

В любом случае чем выше частота процессора, тем лучше, а там смотрите по финансовым возможностям.

6.4. Turbo Boost и Turbo Core

У современных процессоров существует понятие базовой частоты, которая указывается в характеристиках просто как частота процессора. Об этой частоте мы и говорили выше.

У процессоров Intel Core i5,i7,i9 есть также понятие максимальной частоты в Turbo Boost. Это технология, которая автоматически увеличивает частоту ядер процессора при высокой нагрузке для увеличения производительности. Чем меньше ядер использует программа или игра, тем больше увеличивается их частота.

Например, у процессора Core i5-2500 базовая частота 3.3 ГГц, а максимальная частота в Turbo Boost 3.7 ГГц. Под нагрузкой, в зависимости от количества используемых ядер, частота будет увеличиваться до следующих значений:

  • 4 активных ядра — 3.4 ГГц
  • 3 активных ядра — 3.5 ГГц
  • 2 активных ядра — 3.6 ГГц
  • 1 активное ядро — 3.7 ГГц

У процессоров AMD серий A, FX и Ryzen есть аналогичная технология автоматического разгона процессора, называемая Turbo Core. Например, у процессора FX-8150 базовая частота 3.6 ГГц, а максимальная частота в Turbo Core 4.2 ГГц.

Для того, чтобы технологии Turbo Boost и Turbo Core работали, нужно чтобы процессору хватало питания и он не перегревался. Иначе процессор не будет поднимать частоту ядер. Значит блок питания, материнская плата и кулер должны быть достаточно мощными. Также работе этих технологий не должны препятствовать настройки BIOS материнской платы и настройки электропитания в Windows.

В современных программах и играх используются все ядра процессора и прибавка производительности от технологий Turbo Boost и Turbo Core будет небольшая. Поэтому при выборе процессора лучше ориентироваться на базовую частоту.

6.5. Кэш-память

Кэш-памятью называется внутренняя память процессора, необходимая ему для более быстрого выполнения вычислений. Объем кэш-памяти так же оказывает влияние на производительность процессора, но в гораздо меньшей мере чем количество ядер и частота процессора. В разных программах это влияние может варьироваться в диапазоне 5-15%. Но процессоры с большим объемом кэш-памяти стоят значительно дороже (в 1,5-2 раза). Поэтому такое приобретение не всегда экономически целесообразно.

Кэш-память бывает 4-х уровней:

Кэш 1-го уровня имеет маленький размер и при выборе процессора на него обычно не обращают внимания.

Кэш 2-го уровня является самым главным. В слабых процессорах типичным является наличие 256 килобайт (Кб) кэш-памяти 2-го уровня на ядро. Процессоры, предназначенные для компьютеров средней производительности, имеют 512 Кб кэш-памяти 2-го уровня на ядро. Процессоры для мощных профессиональных и игровых компьютеров должны оснащаться не менее 1 мегабайта (Мб) кэш-памяти 2-го уровня на каждое ядро.

Кэш 3-го уровня имеют не все процессоры. Самые слабые процессоры для офисных задач могут иметь до 2 Мб кэша 3-го уровня, либо вообще его не имеют. Процессоры для современных домашних мультимедийных компьютеров должны иметь 3-4 Мб кэш-памяти 3-го уровня. Мощные процессоры для профессиональных и игровых компьютеров должны иметь 6-8 Мб кэш-памяти 3-го уровня.

Кэш 4-го уровня имеют только некоторые процессоры и если он есть, то это хорошо, но в принципе не обязательно.

Если процессор имеет кэш 3 или 4 уровня, то на размер кэша 2-го уровня можно не обращать внимания.

6.6. Тип и частота поддерживаемой оперативной памяти

Разные процессоры могут поддерживать разные типы и частоту оперативной памяти. Это нужно учитывать в дальнейшем при выборе оперативки.

Устаревающие процессоры могут поддерживать оперативную память DDR3 с максимальной частотой 1333, 1600 или 1866 МГц.

Современные процессоры поддерживают память DDR4 с максимальной частотой 2133, 2400, 2666 МГц или более и часто для совместимости память DDR3L, которая отличается от обычной DDR3 пониженным напряжением с 1.5 до 1.35 В. Такие процессоры смогут работать и с обычной памятью DDR3, если у вас она уже есть, но производители процессоров это не рекомендуют из-за повышенной деградации контроллеров памяти, рассчитанных на DDR4 с еще более низким напряжением 1.2 В. Кроме того, под старую память нужна еще и старая материнка со слотами DDR3. Так что лучший вариант это продать старую память DDR3 и переходить на новую DDR4.

На сегодня самой оптимальной по соотношению цена/производительность является память DDR4 с частотой 2400 МГц, которую поддерживают все современные процессоры. Иногда не на много дороже можно купить память с частотой 2666 МГц. Ну а память на 3000 МГц будет стоить уже значительно дороже. Кроме того, процессоры не всегда стабильно работают с высокочастотной памятью.

Также нужно учитывать какую максимальную частоту памяти поддерживает материнская плата. Но частота памяти оказывает сравнительно небольшое влияние на общую производительность и гнаться за этим особо не стоит.

Часто у пользователей, которые начинают разбираться в компьютерных комплектующих, возникает вопрос относительно наличия в продаже модулей памяти с гораздо более высокой частотой, чем официально поддерживает процессор (2666-3600 МГц). Для работы памяти на такой частоте нужно, чтобы материнская плата имела поддержку технологии XMP (Extreme Memory Profile). XMP автоматически повышает частоту шины, чтобы память работала на более высокой частоте.

6.7. Встроенное видеоядро

Процессор может иметь встроенное видеоядро, что позволяет сэкономить на покупке отдельной видеокарты для офисного или мультимедийного ПК (просмотр видео, простейшие игры). Но для игрового компьютера и монтажа видео нужна отдельная (дискретная) видеокарта.

Чем дороже процессор, тем мощнее встроенное видеоядро. Среди процессоров Intel cамое мощное встроенное видео у Core i7, затем i5, i3, Pentium G и Celeron G.

У процессоров AMD A-серии на сокете FM2+ встроенное видеоядро мощнее, чем у процессоров Intel. Самое мощное у A10, затем A8, A6 и A4.

У процессоров FX на сокете AM3+ нет встроенного видеоядра и на их основе раньше собирали недорогие игровые ПК с дискретной видеокартой среднего класса.

Также нет встроенного видеоядра у большинства процессоров AMD серий Athlon и Phenom, а те у которых оно есть на очень старом сокете AM1.

У процессоров Ryzen с индексом G есть встроенное видеоядро Vega, которое в два раза мощнее, чем видеоядро процессоров прошлого поколения из серий A8, A10.

Если вы не собираетесь покупать дискретную видеокарту, но все-таки хотите время от времени поиграть в нетребовательные игры, то лучше отдать предпочтение процессорам Ryzen G. Но не рассчитывайте, что встроенная графика потянет требовательные современные игры. Максимум на что она способна это онлайн игры и некоторые хорошо оптимизированные игры на низких или средних настройках графики в разрешении HD (1280×720), в некоторых случаях Full HD (1920×1080). Посмотрите тесты нужного вам процессора на Youtube и поймете подходит ли он вам.

7. Другие характеристики процессоров

Также процессоры характеризуются такими параметрами как техпроцесс изготовления, энергопотребление и тепловыделение.

7.1. Техпроцесс изготовления

Техпроцессом называется технология, по которой производятся процессоры. Чем современнее оборудование и технология производства, тем техпроцесс тоньше. От техпроцесса, по которому изготовлен процессор, сильно зависит его энергопотребление и тепловыделение. Чем техпроцесс тоньше, тем процессор будет экономичнее и холоднее.

Современные процессоры изготавливаются по технологическому процессу от 10 до 45 нанометров (нм). Чем меньше это значение, тем лучше. Но в первую очередь ориентируйтесь на энергопотребление и связанное с ним тепловыделение процессора, о чем пойдет речь дальше.

7.2. Энергопотребление процессора

Чем больше количество ядер и частота процессора, тем больше его энергопотребление. Так же энергопотребление сильно зависит от техпроцесса изготовления. Чем техпроцесс тоньше, тем энергопотребление ниже. Главное, что нужно учесть это то, что мощный процессор нельзя устанавливать на слабую материнскую плату и ему потребуется более мощный блок питания.

Современные процессоры потребляют от 25 до 220 Ватт. Этот параметр можно прочесть на их упаковке или на сайте производителя. В параметрах материнской платы так же указывается на какое энергопотребление процессора она рассчитана.

7.3. Тепловыделение процессора

Тепловыделение процессора принято считать равным его максимальному энергопотреблению. Оно так же измеряется в Ваттах и называется температурным пакетом «Thermal Design Power» (TDP). Современные процессоры обладают TDP в диапазоне 25-220 Ватт. Старайтесь выбирать процессор с более низким TDP. Оптимальный диапазон TDP 45-95 Вт.

8. Как узнать характеристики процессоров

Все основные характеристики процессора, такие как количество ядер, частота и объем кэш-памяти обычно указываются в прайсах продавцов.

Все параметры того или иного процессора можно уточнить на официальных сайтах производителей (Intel и AMD):

По номеру модели или серийному номеру очень легко найти все характеристики любого процессора на сайте:

Или просто введите номер модели в поисковой системе Google или Яндекс (например, «Ryzen 7 1800X»).

9. Модели процессоров

Модели процессоров меняются ежегодно, поэтому здесь я не буду их все приводить, а приведу только серии (линейки) процессоров, которые меняются реже и по которым вы легко сможете ориентироваться.

Я рекомендую приобретать процессоры более современных серий, так как они производительнее и поддерживают новые технологии. Номер модели, который идет после названия серии, тем выше, чем больше частота процессора.

9.1. Линейки процессоров Intel

Старые серии:

  • Celeron – для офисных задач (2 ядра)
  • Pentium – для мультимедийных и игровых ПК начального класса (2 ядра)

Современные серии:

  • Celeron G – для офисных задач (2 ядра)
  • Pentium G – для мультимедийных и игровых ПК начального класса (2 ядра)
  • Core i3 – для мультимедийных и игровых ПК начального класса (2-4 ядра)
  • Core i5 – для игровых ПК среднего класса (4-6 ядер)
  • Core i7 – для мощных игровых и профессиональных ПК (4-10 ядер)
  • Core i9 – для сверхмощных профессиональных ПК (12-18 ядер)

Все процессоры Core i7, i9, некоторые Core i3 и Pentium поддерживают технологию Hyper-threading, что значительно увеличивает производительность.

9.2. Линейки процессоров AMD

Старые серии:

  • Sempron – для офисных задач (2 ядра)
  • Athlon – для мультимедийных и игровых ПК начального класса (2 ядра)
  • Phenom – для мультимедийных и игровых ПК среднего класса (2-4 ядра)

Устаревающие серии:

  • A4, А6 – для офисных задач (2 ядра)
  • A8, A10 – для офисных задач и простых игр (4 ядра)
  • FX – для монтажа видео и не очень тяжелых игр (4-8 ядер)

Современные серии:

  • Ryzen 3 – для мультимедийных и игровых ПК начального класса (4 ядра)
  • Ryzen 5 – для монтажа видео и игровых ПК среднего класса (4-6 ядер)
  • Ryzen 7 – для мощных игровых и профессиональных ПК (4-8 ядер)
  • Ryzen Threadripper – для мощных профессиональных ПК (8-16 ядер)

Процессоры Ryzen 5, 7 и Threadripper являются многопоточными, что при большом количестве ядер делает их отличным выбором для монтажа видео. Кроме того есть модели с индексом «X» в конце маркировки, которые имеют более высокую частоту.

9.3. Перезапуск серий

Стоит так же отметить, что иногда производители делают перезапуск старых серий на новые сокеты. Например, у Intel сейчас это Celeron G и Pentium G со встроенной графикой, у AMD обновленные линейки процессоров Athlon II и Phenom II. Эти процессоры немного уступают своим более современным собратьям в производительности, но значительно выигрывают в цене.

9.4. Ядро и поколение процессоров

Вместе со сменой сокетов обычно меняется и поколение процессоров. Например, на сокете 1150 были процессоры 4-го поколения Core i7-4xxx, на сокете 2011-3 — 5-го поколения Core i7-5xxx. При переходе на сокет 1151 появились процессоры 6-го поколения Core i7-6xxx.

Также бывает, что поколение процессора меняется без смены сокета. Например, на сокете 1151 вышли процессоры 7-го поколения Core i7-7xxx.

Смена поколений вызвана усовершенствованием электронной архитектуры процессора, называемой также ядром. Например, процессоры Core i7-6xxx построены на ядре с кодовым названием Skylake, а пришедшие к ним на смену Core i7-7xxx на ядре Kaby Lake.

Ядра могут иметь различные отличия от довольно весомых, до чисто косметических. Например, Kaby Lake отличается от предыдущего Skylake обновленной встроенной графикой и блокировкой разгона по шине процессоров без индекса K.

Аналогичным образом происходит смена ядер и поколений процессоров AMD. Например, процессоры FX-9xxx пришли на смену процессорам FX-8xxx. Основное их отличие это значительно возросшая частота и как следствие тепловыделение. А вот сокет не поменялся, а остался старый AM3+.

У процессоров AMD FX было множество ядер, последние из которых Zambezi и Vishera, но на смену им пришли новые значительно более совершенные и производительные процессоры Ryzen (ядро Zen) на сокете AM4 и Ryzen (ядро Threadripper) на сокете TR4.

10. Разгон процессора

Процессоры Intel Core с индексом «K» в конце маркировки имеют более высокую базовую частоту и разблокированный множитель. Их легко разгонять (повышать частоту) для увеличения производительности, но потребуется более дорогая материнская плата на чипсете Z-серии.

Все процессоры AMD FX и Ryzen можно разгонять путем изменения множителя, но разгонный потенциал у них поскромнее. Разгон процессоров Ryzen поддерживают материнские платы на чипсетах B350, X370.

В целом возможность разгона делает процессор более перспективным, так как в будущем при небольшой нехватке производительности его можно будет не менять, а просто разогнать.

11. Упаковка и кулер

Процессоры, в конце маркировки которых присутствует слово «BOX», упакованы в качественную коробку и могут продаваться в комплекте с кулером.

Но некоторые более дорогие боксовые процессоры могут не иметь кулера в комплекте.

Если в конце маркировки написано «Tray» или «ОЕМ», это значит, что процессор упакован в маленький пластиковый лоточек и кулера в комплекте нет.

Процессоры начального класса типа Pentium проще и дешевле приобрести в комплекте с кулером. А вот процессор среднего или высокого класса часто выгоднее купить без кулера и отдельно подобрать для него подходящий кулер. По стоимости выйдет примерно столько же, а по охлаждению и уровню шума будет значительно лучше.

12. Настройка фильтров в интернет-магазине

  1. Зайдите в раздел «Процессоры» на сайте продавца.
  2. Выберете производителя (Intel или AMD).
  3. Выберите сокет (1151, AM4).
  4. Выберите линейку процессоров (Pentium, i3, i5, i7, Ryzen).
  5. Отсортируйте выборку по цене.
  6. Просматривайте процессоры, начиная с более дешевых.
  7. Покупайте процессор с максимально возможным количеством потоков и частотой, устраивающий вас по цене.

Таким образом, вы получите оптимальный по соотношению цена/производительность процессор, удовлетворяющий вашим требованиям за минимально возможную стоимость.

13. Ссылки

Процессор Intel Core i7 8700
Процессор Intel Core i5 8600K
Процессор Intel Pentium G4600



Загрузка...