sonyps4.ru

На что влияет скорость озу. Частота оперативной памяти

В данном обзоре будет изучено влияние частоты оперативной памяти DDR3 на производительность актуальных процессоров.

Для этого были взяты следующие модели ЦП:

  • Core i7-3770К;
  • Core i3-3240;
  • FX-8320;
  • A10-5800K.

Работать они будут в связке с оперативной памятью, функционирующей на следующих частотах:

  • DDR3 2133 МГц;
  • DDR3 1866 МГц;
  • DDR3 1600 МГц;
  • DDR3 1333 МГц;
  • DDR3 1066 МГц.

В графическую подсистему вошли видеокарты GeForce GTX 780 3072 Мбайт и Radeon R9 290X 4096 Мбайт. Сделано это для того, чтобы наиболее полно изучить поставленную цель материала.

Тестовая конфигурация

Тесты проводились на следующем стенде:

  • Материнская плата №1: GigaByte GA-Z77X-UD5H, LGA 1155, BIOS F14;
  • Материнская плата №2: GigaByte GA-990FXA-UD5, АМ3+, BIOS F12;
  • Материнская плата №3: ASRock FM2A85X Extreme4, FM2, BIOS 1.70;
  • Видеокарта №1: GeForce GTX 780 3072 Мбайт - 863/6008 МГц (Palit);
  • Видеокарта №2: Radeon R9 290X 4096 Мбайт - 1000/5000 Мбайт (Sapphire);
  • Система охлаждения CPU: Corsair Hydro Series H100 (~1300 об/мин);
  • Оперативная память: 2 x 4096 Мбайт DDR3 Geil BLACK DRAGON GB38GB2133C10ADC (Spec: 2133 МГц / 10-11-11-30-1t / 1.5 В) , X.M.P. - off;
  • Дисковая подсистема: 64 Гбайта, SSD ADATA SX900;
  • Блок питания: Corsair HX850 850 Ватт (штатный вентилятор: 140 мм на вдув);
  • Корпус: открытый тестовый стенд;
  • Монитор: 27" ASUS PB278Q BK (Wide LCD, 2560x1440 / 60 Гц).

Процессоры:

  • Core i7-3770К @ 4600 МГц;
  • Core i3-3240 @ 3400 МГц;

  • FX-8350 BE @ 4600 МГц;
  • A10-5800K @ 4500 МГц.

Программное обеспечение:

  • Операционная система: Windows 7 x64 SP1;
  • Драйверы видеокарты: NVIDIA GeForce 335.23 WHQL и AMD Catalyst 14.3 Beta.
  • Утилиты: FRAPS 3.5.9 Build 15586, AutoHotkey v1.0.48.05, MSI Afterburner 3.0.0 Beta 19.

Инструментарий и методика тестирования

Для более наглядного сравнения процессоров все игры, используемые в качестве тестовых приложений, запускались в разрешении 1280х1024.

В качестве средств измерения быстродействия применялись встроенные бенчмарки, утилиты FRAPS 3.5.9 Build 15586 и AutoHotkey v1.0.48.05. Список игровых приложений:

  • Assassin"s Creed 3 (Бостонский порт).
  • Batman Arkham City (Бенчмарк).
  • Call of Duty: Black Ops 2 (Ангола).
  • Crysis 3 (Добро пожаловать в джунгли).
  • Far Cry 3 (Глава 2. Охотники).
  • Formula 1 2012 (Бенчмарк).
  • Hard Reset (Бенчмарк).
  • Hitman: Absolution (Бенчмарк).
  • Medal of Honor: Warfighter (Сомали).
  • Saints Row IV (Начало игры).
  • Sleeping Dogs (Бенчмарк).
  • The Elder Scrolls V: Skyrim (Солитьюд).

Во всех играх замерялись минимальные и средние значения FPS. В тестах, в которых отсутствовала возможность замера минимального FPS , это значение измерялось утилитой FRAPS. VSync при проведении тестов был отключен.

Разгон процессоров

Процессоры разгонялись следующим образом. Стабильность разгона проверялась утилитой ОССТ 3.1.0 «Perestroika» путем получасового прогона ЦП на максимальной матрице с принудительной 100% нагрузкой. Соглашусь с тем, что разгон тестируемых CPU не является абсолютно стабильным, но для любой современной игры он подходит на все сто.

При максимальном разгоне у всех процессоров AMD частота контроллера памяти была поднята до 2400-2800 МГц.

Core i7-3770К

Процессор разогнан до частоты 4600 МГц. Для этого множитель был поднят до 46 (100х46), напряжение питания – до 1.2 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – выключен, Hyper Threading – выключен.

Core i3-3240

Штатный режим. Тактовая частота 3400 МГц, базовая частота 100 МГц (100х34), напряжение питания 1.1 В, напряжение питания DDR3 – 1.5 В, Hyper Threading – включен.

  • Частота DDR3 – 2133 МГц (100х21.33);
  • Частота DDR3 – 1866 МГц (100х18.66);
  • Частота DDR3 – 1600 МГц (100х16.0);
  • Частота DDR3 – 1333 МГц (100х13.33);
  • Частота DDR3 – 1066 МГц (100х10.66).

FX-8320 BE

Процессор разогнан до частоты 4600 МГц. Для этого множитель процессора был поднят до значения 23 (200х23), напряжение питания ядра – до 1.53 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – выключены.

  • Частота DDR3 – 2133 МГц (200х10.66);
  • Частота DDR3 – 1866 МГц (200х9.33);
  • Частота DDR3 – 1600 МГц (200х8.0);
  • Частота DDR3 – 1333 МГц (200х6.66);
  • Частота DDR3 – 1066 МГц (200х5.33).

A10-5800K

Процессор разогнан до частоты 4500 МГц. Для этого множитель процессора был поднят до значения 45 (100х45), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – выключены.

  • Частота DDR3 – 2133 МГц (100х21.33);
  • Частота DDR3 – 1866 МГц (100х18.66);
  • Частота DDR3 – 1600 МГц (100х16.0);
  • Частота DDR3 – 1333 МГц (100х13.33);
  • Частота DDR3 - 1066 МГц (100х10.66).

Перейдем непосредственно к тестам.

В данном исследовании мы попробуем найти ответ на следующий вопрос - что важнее для достижения максимальной производительности компьютера, высокая частота оперативной памяти или же ее низкие тайминги. А помогут нам в этом два комплекта оперативной памяти производства Super Talent. Давайте посмотрим, как выглядят модули памяти внешне, и какими характеристиками обладают.

⇡ Super Talent X58

Данный комплект производитель "посвятил" платформе Intel X58, о чем свидетельствует надпись на наклейке. Однако здесь сразу же возникает несколько вопросов. Как всем хорошо известно, для достижения максимальной производительности на платформе Intel X58 настоятельно рекомендуется использовать трехканальный режим работы оперативной памяти. Несмотря на это, данный комплект памяти Super Talent состоит лишь из двух модулей. Конечно, у ортодоксальных сборщиков систем такой подход может вызвать недоумение, однако рациональное зерно в этом все же есть. Дело в том, что сегмент топовых платформ относительно невелик, и большинство персональных компьютеров используют оперативную память в двухканальном режиме. В этой связи покупка комплекта из трех модулей памяти обычному пользователю может показаться неоправданной, а если необходимо действительно много оперативной памяти, можно приобрести три комплекта по два модуля в каждом. Производитель указывает, что память Super Talent WA1600UB2G6 может работать на частоте 1600 МГц DDR при таймингах 6-7-6-18. Теперь давайте посмотрим, какая информация зашита в SPD профиле этих модулей.

И опять наблюдается некоторое несоответствие реальных и заявленных характеристик. Максимальный профиль JEDEC предполагает работу модулей на частоте 1333 МГц DDR при таймингах 9-9-9-24. Впрочем, присутствует расширенный профиль XMP, частота которого совпадает с заявленной - 800 МГц (1600 МГц DDR), но тайминги несколько отличаются, причем в худшую сторону - 6-8-6-20, вместо 6-7-6-18, которые указаны на наклейке. Тем не менее, данный комплект оперативной памяти без проблем работал в заявленном режиме - 1600 МГц DDR при таймингах 6-7-6-18 и напряжении 1,65 В. Что касается разгона, то более высокие частоты модулям не покорились, несмотря на установку повышенных таймингов и увеличение напряжения питания. Более того, при увеличении напряжения Vmem до уровня 1,9 В наблюдалась нестабильность работы и в исходном режиме. К сожалению, радиаторы очень прочно приклеены к чипам памяти, поэтому мы не рискнули их снимать, опасаясь повредить модули памяти. А жаль, тип используемых микросхем мог бы пролить свет на такое поведение модулей.

⇡ Super Talent P55

Второй комплект оперативной памяти, который мы рассмотрим сегодня, производитель позиционирует как решение для платформы Intel P55. Модули оснащены низкопрофильными радиаторами черного цвета. Максимальный заявленный режим предполагает работу данных модулей на частоте 2000 МГц DDR при таймингах 9-9-9-24 и напряжении 1,65 В. Теперь посмотрим на зашитые в SPD профили.

Наиболее производительный профиль JEDEC предполагает работу модулей на частоте 800 МГц (1600 МГц DDR) при таймингах 9-9-9-24 и напряжении 1,5 В, а профили XMP в данном случае отсутствуют. Что касается разгона, то при небольшом повышении таймингов данные модули памяти оказались способны работать на частоте 2400 МГц DDR, о чем свидетельствует скриншот ниже.

Более того, система загружалась и при частоте модулей 2600 МГц DDR, однако запуск тестовых приложений приводил к зависанию или перезагрузке. Как и в случае с предыдущим комплектом памяти Super Talent, данные модули никак не реагировали на повышение напряжения питания. Как оказалось, лучшему разгону памяти и стабильности работы системы более способствовало увеличение напряжения контроллера памяти, встроенного в процессор. Впрочем, поиск максимально возможных частот и параметров, при которых достигается стабильность работы в таких экстремальных режимах, оставим энтузиастам. Далее мы сосредоточимся на изучении следующего вопроса - в какой степени частота работы оперативной памяти и ее тайминги влияют на общую производительность компьютера. В частности, мы попробуем выяснить, что лучше - установить скоростную оперативную память, работающую с высокими таймингами, или же предпочтительнее использовать как можно более низкие тайминги, пусть и не при максимальных рабочих частотах.

⇡ Условия тестирования

Тестирование проводилось на стенде следующей конфигурации. Во всех тестах процессор работал на частоте 3,2 ГГц, причины этого будут объяснены ниже, а мощная видеокарта была необходима для тестов в игре Crysis.

Как уже говорилось выше, мы попробуем выяснить, как частота работы оперативной памяти и ее тайминги влияют на общую производительность компьютера. Конечно, данные параметры можно просто задать в BIOS и провести тесты. Но, как оказалось, при частоте Bclk равной 133 МГц, диапазон рабочих частот оперативной памяти в использованной нами материнской плате составляет 800 - 1600 МГЦ DDR. Этого оказывается недостаточно, ведь один из рассматриваемых сегодня комплектов памяти Super Talent поддерживает режим DDR3-2000. Да и вообще, скоростных модулей памяти выпускается все больше, производители уверяют нас в их небывалой производительности, так что выяснить их реальную производительность определенно не помешает. Для того, чтобы установить частоту памяти, скажем, 2000 МГц DDR, необходимо увеличить частоту шины Bclk. Однако при этом изменятся частоты как ядра процессора, так и его кэш-памяти третьего уровня, которая работает с той же частотой, что и шина QPI. Разумеется, сравнивать результаты, полученные в таких разных условиях, некорректно. Кроме того, степень влияния частоты CPU на результаты тестирования может оказаться куда значительнее таймингов и частоты оперативной памяти. Возникает вопрос - нельзя ли как-то обойти эту проблему? Что касается частоты процессора, то в некоторых пределах ее можно изменять с помощью множителя. Однако при этом желательно выбирать такое значение частоты bclk, чтобы итоговая частота оперативной памяти была равна одному из стандартных значений 1333, 1600 или 2000. Как известно, в настоящее время базовая частота bclk в процессорах Intel Nehalem равна 133.3 МГц. Давайте посмотрим, какова будет частота оперативной памяти при разных значениях частоты шины bclk с учетом множителей, которые может выставить используемая нами материнская плата. Результаты приведены в таблице ниже.

Частота bclk, МГц
133.(3) 150 166.(6) 183.(3) 200
Множитель памяти Частота оперативной памяти, МГц DDR
6 800 900 1000 1100 1200
8 1066 1200 1333 1466 1600
10 1333 1500 1667 1833 2000
12 1600 1800 2000 2200 2400

Как видно из таблицы, при частоте bclk равной 166 МГц, для оперативной памяти можно получить частоты 1333 и 2000 МГц. Если частота bclk равна 200 МГц, то получаем совпадение частот оперативки при 1600 МГц, а также требуемые 2000 МГц. В остальных случаях совпадений со стандартными частотами памяти не наблюдается. Так какую же частоту bclk в итоге предпочесть - 166 или 200 МГц? Ответ на этот вопрос подскажет следующая таблица. Здесь приведены значения частоты CPU, в зависимости от множителя и частоты bclk. Для оценки влияния таймингов нам необходимы не только одинаковые частоты памяти, но и CPU, чтобы это не влияло на получаемые результаты.

Частота bclk, МГц
Множитель CPU 133.(3) 150.0 166.(6) 183.(3) 200.0
9 1200 1350 1500 1647 1800
10 1333 1500 1667 1830 2000
11 1467 1650 1833 2013 2200
12 1600 1800 2000 2196 2400
13 1733 1950 2167 2379 2600
14 1867 2100 2333 2562 2800
15 2000 2250 2500 2745 3000
16 2133 2400 2667 2928 3200
17 2267 2550 2833 3111 3400
18 2400 2700 3000 3294 3600
19 2533 2850 3167 3477 3800
20 2667 3000 3333 3660 4000
21 2800 3150 3500 3843 4200
22 2933 3300 3667 4026 4400
23 3067 3450 3833 4209 4600
24 3200 3600 4000 4392 4800

В качестве отправной точки мы брали максимальную частоту процессора (3200 МГц), которую он может показать при базовой частоте bclk равной 133 МГц. Из таблицы видно, что в данных условиях только при частоте bclk=200 МГц можно получить точно такую же частоту CPU. Остальные частоты хоть и близки к 3200 МГц, но не точно равны ей. Конечно, в качестве исходной можно было взять частоту CPU и поменьше, скажем - 2000 МГц, тогда можно было бы получить корректные результаты при всех трех значениях шины bclk - 133, 166 и 200 МГц. Тем не менее, мы отказались от этого варианта. И вот почему. Во-первых, настольных процессоров Intel c архитектурой Nehalem с такой частотой нет, и вряд ли они появятся. Во-вторых, снижение частоты CPU более чем в 1,5 раза может привести к тому, что он станет ограничивающим фактором, и разница в результатах практически не будет зависеть от режима работы оперативной памяти. Собственно, первые прикидки именно это и показывали. В-третьих, вряд ли тот пользователь, который покупает заведомо слабый и дешевый процессор, будет сильно озабочен вопросом выбора дорогой скоростной оперативной памяти. Итак, мы будем тестировать при значениях базовой частоты bclk - 133 и 200 МГц. Частота CPU в обоих случаях одинакова и равна 3200 МГц. Ниже приведены скриншоты утилиты CPU-Z в данных режимах.

Если вы обратили внимание, частота QPI-Link зависит от частоты bclk и, соответственно, они отличаются в 1,5 раза. Это, кстати, позволит выяснить, как влияет частота кэш-памяти третьего уровня в процессорах Nehalem на общую производительность. Итак, приступим к тестированию.

Частота оперативной памяти – чем выше частота, тем быстрее будет передана информация на обработку и тем выше будет производительность компьютера. Когда говорят о частоте оперативной памяти, имеют ввиду частоту передачи данных, а не тактовую частоту.

  1. DDR — 200/266/333/400 МГц (тактовые частота 100/133/166/200 МГц).
    DDR2 — 400/533/667/800/1066 МГц (200/266/333/400/533 МГц тактовая частота).
  2. DDR3 — 800/1066/1333/1600/1800/2000/2133/2200/2400 Мгц (400/533/667/800/1800/1000/1066/1100/1200 МГц тактовая частота). Но из-за высоких значений таймингов (задержек) одинаковые по частоте модули памяти проигрывают в производительности DDR2.
  3. DDR4 — 2133/2400/2666/2800/3000/3200/3333.

Частота передачи данных

Частота передачи данных (правильно ее называть — скорость передачи данных, Data rate) — количество операция по передачи данных в секунду через выбранный канал. Измеряется в гигатрансферах (GT/s) или мегатрансферах (MT/s). Для DDR3-1333 скорость передачи данных будет 1333 MT/s.

Нужно понимать, что это не тактовая частота. Реальной частотой будет половина от указанной, DDR (Double Data Rate) – это удвоенная скорость передачи данных. Поэтому память DDR-400 работает на частоте 200 МГц, DDR2-800 на частоте 400 МГц, а DDR3-1333 на 666 МГц.

Частота оперативной памяти, указанная на плате, это максимальная частота, с которой она сможет работать. Если установить 2 платы DDR3-2400 и DDR3-1333, то система будет работать на максимальной частоте самой слабой платы, т.е. на 1333. Таким образом, пропускная способность понизится, но снижение пропускной способности не единственная проблема, могут появится ошибки при загрузке операционной системе и критических ошибках в ходе работы. Если вы собрались покупать оперативную память, нужно учитывать частоту на которой она может работать. Эта частота должна соответствовать частоте, поддерживаемой материнской платой.

Максимальная скорость передачи данных

Второй параметр (на фото PC3-10666) — это максимальная скорость передачи данных измеряемая в Mb/s. Для DDR3-1333 PC3-10666 максимальная скорость передачи данных — 10,664 MB/s.

Тайминги и частота оперативной памяти

Многие материнские платы, при установке на них модулей памяти, устанавливают для них не максимальную тактовую частоту. Одна из причин – это отсутствие прироста производительности при повышении тактовой частоты, ведь при повышении частоты повышаются рабочие тайминги. Конечно, это может повысить производительность в некоторых приложениях, но и понизить в других, а может и вообще никак не повлиять на приложения, которые не зависят от задержек памяти или от пропускной способности.

Тайминг определяет время задержки памяти. Для примера, параметр CAS Latency (CL, или время доступа) определяет сколько тактовых циклов модуля памяти приведет к задержке в возврате данных, запрашиваемых процессором. Оперативная память с CL 9 задержит девять тактовых циклов, чтобы передать запрашиваемые данные, а память с CL 7 задержит семь тактовых циклов, чтобы передать их. Обе оперативки могут иметь одинаковые параметры частот и скорости передачи данных, но вторая оперативка будет передавать данные быстрее, чем первая. Эта проблема известна как «латентность».

Чем меньше параметр тайминга — тем быстрее память.

Для примера. Модуль памяти Corsair установленный на материнскую плату M4A79 Deluxe будет иметь такие тайминги: 5-5-5-18. Если увеличить тактовую частоту памяти до DDR2-1066, тайминги увеличатся и будут иметь следующие значения 5-7-7-24.

Модуль памяти Qimonda при работе на тактовой частоте DDR3-1066 имеет рабочие тайминги 7-7-7-20, при увеличения рабочей частоты до DDR3-1333 плата устанавливает тайминги 9-9-9-25. Как правило, тайминги прописаны в SPD и для разных модулей могут отличаться.

Ответить на вопрос, на что оказывает влияние оперативная память, даже легче, чем объяснить принцип её действия.

В первую очередь, вид, частота и объём ОЗУ оказывают влияние на скорость передачи данных – а, значит, и на то, насколько быстро будет работать приложение и, особенно, игра.

Недостаточный объём оперативной памяти может привести к невозможности работы программы, к зависанию компьютера и даже перезагрузке операционной системы.

Cодержание:

Влияние объёма ОЗУ

Операционная память (или ОЗУ, или RAM) представляет собой энергозависимую микросхему, с помощью которой совершается обмен данными.

При отключении питания вся хранящаяся в ней информация исчезает.

Передача данных между ОЗУ и процессором может осуществляться непосредственно и через так называемую память нулевого уровня или кэш.

Скорость обмена зависит от параметров оперативной – частоты и даже типа (от DDR до DDR4). Но одной из главных характеристик, на которые следует обратить внимание, является её объём.

На современных компьютерах он составляет, минимум, 2 гигабайта – вполне достаточно для запуска большинства приложений и даже не слишком новых игр (в основном, выпущенных в 2000-х годах).

Встретить меньшее значение объёма – например, 1 ГБ, 512 Мб – можно только на старых компьютерах.

Размер 4 Гб – вполне подходящий вариант для бюджетного домашнего компьютера , предназначенного для интернет-серфинга, просмотра видео с приличным качеством (хотя для этого понадобится ещё и соответствующая видеокарта) и прослушивания музыки. На компьютере с ней не получится поиграть в современные игры даже на средних настройках. Однако некоторые из них запустятся с минимальными параметрами.

Объёма 8 и 16 гигабайт более чем достаточно для любых задач, возлагаемых на свой компьютер средним пользователем. Особенно, если она идёт в комплекте с 4–8 Гб графической памяти GDDR5.

А 32 Гб вполне достаточно для того чтобы не беспокоиться о работе самых современных приложений на протяжении ещё нескольких лет.

Важно: Не стоит рассчитывать на резкое повышение скорости работы ПК после замены на вдвое больший по объёму вариант. Вместе с ней требуется модернизировать ещё и видео, и центральный процессор. А 32-битные операционные системы и вовсе поддерживают не больше 3 Гб RAM.

Влияние типа памяти

Скорость работы с приложениями и передачи данных также зависит и от типа. В компьютерах, собранный за последние несколько лет, можно найти три варианта:

  • DDR2 (с частотой до 1200 МГц) – использовалась на новых ПК несколько лет назад, но была практически полностью вытеснена новым поколением;
  • DDR3 (частота до 2400 МГц) – относительно новый вариант, устанавливаемый на большинстве современных компьютерах бюджетного и среднего уровня);
  • DDR4 (частота до 3200 МГц) – которая могла бы заменить DDR3, однако поддерживается далеко не всеми материнским платами и процессорами.

Установив на своём компьютере планку DDR4, можно повысить скорость передачи информации примерно в 1,5–2 раза. Однако для её установки придётся менять и материнскую плату, и процессор.

Такой вариант подходит далеко не всем пользователям, собирающимся частично модернизировать свой ПК.

И для них гораздо выгоднее будет поставить ОЗУ большего объёма или с лучшими показателями частоты.

Покупателю же нового (и, главное, игрового) компьютера, по возможности, следует выбрать DDR4 – и, желательно, предусмотреть возможность добавления новых планок.

Значение частоты

Показатель частоты имеет значение для . И современные модели практически не выпускается с величиной этого параметра меньше 1600 МГц.

Однако, решив заменить на своём ПК или ноутбуке планку, стоит обратить внимание ещё и на возможности материнской платы.

Если «материнка» поддерживает не больше 1333 МГц, а установленное имеет частоту 1833 МГц, скорость передачи данных будет ограничена меньшим значением.

Повышение эффективность работы

Иногда владелец компьютера с достаточно большим объёмом ОЗУ может столкнуться с замедлением работы приложений.

И может даже задуматься о необходимости добавить новую оперативную – или даже полностью модернизировать ПК. Однако устранить проблему можно и более простым способом:

  • проверив, насколько загружена она на данный момент (через «Диспетчер задач» );

Интересный факт: скорее всего, если Вас спросят о том, на что влияет частота оперативной памяти, Вы подумаете о тактовой частоте. Соответственно, Вы ответите, что она влияет на количество тактов и на скорость.

Это правильно лишь отчасти и сейчас мы во всем разберемся.

1. Страничка теории

Сразу стоит уточнить, что когда говорят о частоте оперативной памяти, а не процессора, то имеется в виду частота передачи данных. Она соответствует определенным значениям тактовой частоты.

Всего существует четыре типа частоты ОП:

  • DDR. Бывает 200, 266, 333 и 400 МГц (МТ/с). Соответствует значениям тактовой частоты 100, 133, 166 и 200 МГц соответственно.
  • DDR2. Бывает 400, 533, 667, 800 и 1066 МГц (МТ/с). Соответствует 200, 266, 333, 400 и 533 МГц тактовой частоты.
  • DDR3. Бывает 800, 1066, 1333, 1600, 1800, 2000, 2133, 2200 и 2400 МГц (МТ/с). Соответствует 400, 533, 667, 800, 1800, 1000, 1066, 1100 и 1200 МГц тактовой частоты.
  • DDR4. Бывает 2133, 2400, 2666, 2800, 3000, 3200 и 3333 МГц (МТ/с). Соответствует 1062, 1200, 1333, 1400, 1500, 1600 и 2666 МГц.

Несложно догадаться, что такое деление связано с поколениями. То есть выходили новые, более мощные модули оперативной памяти с более высокой частотой, причем как самой памяти, так и тактовой. В связи с этим придумывали новые поколения.

Это интересно: DDR3 нередко оказывается менее мощным, нежели DDR2. Связано это с высокими значениями задержек. Они в языке программистов называются таймингами.

А теперь переходим к самому главному.

2. Значение частоты оперативной памяти

Если сказать просто, чем выше частота ОП, тем быстрее будет передаваться информация. Соответственно, рассматриваемое нами понятие влияет, в первую очередь, на скорость работы.

Именно поэтому частоту оперативной памяти называют Data rate или скоростью передачи данных. Это важно запомнить!

Вот другое определение, которое дает более широкое понимание: Частота передачи данных – это число операций, связанных с передачей данных, за единицу времени. В качестве единицы времени чаще всего выбирается секунда.

Поэтому вышеупомянутые цифры в МГц выражают еще и количество операций по передаче данных в секунду.

Например, если мы говорим о DDR4-2133, это означает, что такой модуль может выполнять 2133 операции каждую секунду. Обычно эти цифры пишутся на самих модулях.

Это количество выражается в так называемых трансферах (с английского это слово означает «переход»). Как и в случае с битами, здесь есть Мегатрансферы, Гигатрансферы и так далее.

Причем деление то же самое – 1024 Мегатрансфера равны одному Гигатрансферу. Поэтому в списке, приведенном выше, рядом с обозначением «МГц» стоит «МТ/с» в скобках. Это и означает «Мегатрансфер в секунду».

Да и вообще, правильнее будет выражать данное значение именно в МТ/с или же ГТ/с (Гигатрансфер в секунду).

Если у Вас возникают вопросы, пишите их в комментариях ниже.

Существует очень простой метод перевода количества операций в секунду в тактовую частоту, то есть из МТ/с в МГц. Необходимо первое поделить на два, чтобы получилось второе.

То есть если мы, например, имеем дело с модулем DDR4-2400, то, чтобы получить тактовую частоту, необходимо 2400 поделить на 2. Получится 1200 МГц. Это, кстати, тоже можно было достаточно легко понять, если внимательно смотреть на тот список.

Запомните: Частота оперативной памяти – это количество выполняемых ею операций в секунду. Ее значение равно значению тактовой умноженной на 2. Этот параметр влияет на скорость работы ОП. Это главное.

3. Что еще важно понимать

Существует достаточно много заблуждений, связанных с рассматриваемым нами понятием.

Сейчас мы постараемся развеять некоторые их них. Вот список заблуждений:

  • Если поставить два модуля оперативной памяти, скорость работы компьютера увеличится. Это не так по той простой причине, что операционная система будет работать с тем модулем, который менее мощный. Почему это так, толком непонятно, но факт остается фактом. Поэтому лучше ставить один модуль, но мощный, а слабый убирать до лучших времен.
  • Даже если будет два модуля, система сможет с ними справиться. На самом деле, использование двух ОП очень опасно, так как влечет за собой ошибки в системе и даже критические прекращения работы компьютера. Так что лучше вообще отказаться от такой идеи.
  • Частота материнской платы никак не влияет на частоту оперативной памяти. Это вовсе не так, если частота материнки меньше того, что может выдавать ОП, память будет работать не на максимуме своих возможностей. То есть в ее мощности попросту не будет никакого смысла. Поэтому очень важно покупать оперативную память с такой частотой, которая не будет превышать максимальную в материнской платы.

Также при покупке обращайте внимание на значение таймингов.

Помните: чем меньше тайминг, тем быстрее работает компьютер.

Сравните несколько вариантов и выберете лучший в этом отношении.

Успехов в покупках и использовании оперативной памяти!



Загрузка...