sonyps4.ru

На что влияет частота обновления экрана монитора. Что такое частота обновления экрана

У частоты обновления экрана есть также и другие названия: кадровая частота, частота развертки, частота кадров. Если следовать техническим терминам, то правильно называть данный процесс разверткой с N Герц. Согласитесь, название намного длиннее, и поэтому произносить его не особенно удобно.

История

Для большей наглядности стоит вспомнить старые телевизоры с электронно-лучевой трубкой. Кадровая частота тогда составляла 50-60 Гц. Что это значит? За одну секунду экран показывает 50-60 кадров. Если рассматривать данный процесс с технической зрения, то электронный луч как бы рисует изображение на покрытии кинескопа построчно. И в таких случаях используется черезстрочная развертка. Изображение передается полукадрами, которые состоят из четных или нечетных строк.

От этого картинка мерцает. Мерцание становится более заметным при большой диагонали экрана в связи с высокой чувствительностью периферийного зрения.

При использовании режим 100 Гц в телевизорах с кинескопами кадры показываются повторно. Соответственно, кадровая частота увеличивается в два раза, и мерцание становится незаметным.

Если же кадры повторять три раза, то частота от изначальной (50-60 Гц) увеличится в три раза и составит 150-180 Гц.

Современные телевизоры

Телевизоры с жидкокристаллической матрицей основаны на других физических принципах. Особенности их устройства таковы, что изначально нет мерцания. И у высокой кадровой частоты появляется другой смысл. Современные ЖК-телевизоры производятся для того, чтобы воспроизводить, например, фильмы с высоким разрешением и игры с серьезной графикой. И тогда, если показывать динамично меняющееся изображение с частотой 50 Гц, то оно будет казаться размытым, движения же быстро перемещающихся объектов - дергаными.

И чтобы такого не было, производители увеличивают кадровую частоту. Увеличить ее в два раза до 100 Гц для ЖК-телевизора достаточно просто. Устройство благодаря встроенным алгоритмам анализирует два последовательных кадра и дополнительно создает один промежуточный, после чего вставляет его между двумя первоначальными кадрами. Чтобы увеличивать и дальше частоту, нужно просто вставлять дополнительный промежуточные кадры.

При этом важно учитывать время отклика пикселей, которым надо успеть поменять свое положение с нужной скоростью. Если они не успевают за сменой изображения, то телевизор не будет достигать заявленной кадровой скорости.

Также скорость обновления экрана можно увеличить с помощью мерцающей с высокой частотой подсветки. Однако качество картинки будет хуже.

Помимо ЖК-телевизоров существуют также плазменные панели, у которых переключение состояний пикселей намного быстрее, чем у ЖК-телевизоров. В связи с этим у плазменных панелей нет проблем с размытым изображением.


Человеческий глаз - удивительный орган: он может моментально сфокусироваться на любом предмете, будь он в полуметре от глаз, или в сотне метров. Он может различить даже небольшое движение на периферии зрения. Но при этом он, увы, инертен, и поэтому, если показывать человеку ряд картинок с определенной частотой, то начиная с определенного количества картинок в секунду нам будет казаться, что это уже не статичные изображения, а движение. Но вот вопрос - начиная с какой частоты так происходит?

Начнем немного издалека - с «технического устройства» глаза. В нем есть два типа чувствительных к свету клеток (фоторецепторов): это палочки и колбочки. Палочки отвечают за черно-белое зрение, но при этом у них низкая инертность. Колбочки же отвечают за цветное зрение, и их инертность выше. В человеческом глазу в центральной части много колбочек и мало палочек, а на периферии наоборот - превалируют палочки. Это разумно - менее инертные палочки могут заметить даже небольшое движение на границе зрения, ну а потом мы поворачиваем голову и смотрим, что же это за движение уже центральной частью, где много колбочек, и видим затаившегося льва в кустах. Но вот мониторов или телевизоров, которые полностью охватывают весь угол зрения, нет, поэтому мы в основном смотрим на него прямо, то есть в основном используются более инертные колбочки. Но вот насколько они инертны?

Первое мнение - 24 кадра в секунду хватит всем, и его очень любят киношники: ведь это позволяет им экономить пленку. Получился такой результат чисто экспериментально - это минимальный fps в видео, при котором оно все еще кажется нам видео, а не слайд-шоу. Но тогда почему 24 кадра в компьютерной игре кажется нам мало? Ответ прост - один кадр, снятый камерой, является суперпозицией всего происходящего, пока был открыт затвор. Иными словами, гоночная машина, при снятии ее камерой, выглядит так:

А вот в игре, где каждый кадр - это четко просчитанная видеокартой картина в каждый момент времени, любой скриншот будет выглядеть четко (если, конечно, размытие не сделано програмно).

Поэтому 24 fps в видео достаточно, так как каждый кадр имеет в себе информацию, позволяющую склеить его и с предыдущим, и с последующим. А вот в играх это не так, и 24 кадра в секунду там мало. Но сколько нужно fps в играх? Экспериментаторы решили пойти другим путем - не показывать человеку игру, постепенно увеличивая fps и спрашивая, стала ли она плавной. Они решили определить инертность глаза, то есть время, которое нужно ему для обработки информации об одном кадре. И оно оказалось около 20 мс, отсюда легко получается, что глазу для плавности достаточно 50 fps. И тут многие делают несколько неправильный вывод - ну если 50 fps достаточно, то возьму-ка я монитор с частотой в 60 Гц (с небольшим запасом) и буду любоваться плавной картинкой.

В чем же их ошибка? А ошибка в том, что fps и Гц это не одно и тоже - первое это кадры, которые отображает матрица, а второе - это количество поступающих на нее сигналов в секунду. Казалось бы, даже по определению это одно и то же. Но мы забываем про то, что у мониторов есть время отклика. К примеру, нам нужно изменить цвет с серого на темно-серый, и если мы подключим осциллограф, то увидим, что матрица «въезжает» в цвет аж 34 мс:


Но ведь если мы хотим получить 50 fps, то задержка должна быть не более 20 мс, а тут в полтора раза больше. Что это означает? А это означает то, что в динамических сценах мы никогда не увидим правильные цвета, потому что матрица банально не успеет в них «попасть» - кадры сменяются быстрее. Поэтому мы видим различные артефакты картинки в виде шлейфов и некорректных цветов.

Но что если мы возьмем матрицу с частотой в 120 Гц и сравним с 60 Гц матрицей? Картина будет такая (кадры сделаны раз в 8.3 мс, что соответствует 120 Гц):


Хорошо видно, что белые шлейфы за объектами на 120 Гц значительно меньше. Более того - непопадания в цвет так же будут исчезать значительно быстрее, да и сами промахи цветопередачи будут меньше, так как теперь изменение яркости будет происходить не в один шаг, а в два, а чем меньше шаг - тем меньше промах. В итоге картинка на 120 Гц будет действительно казаться плавнее, но не из-за того, что человеческий глаз может воспринимать 120 fps, а из-за того, что на такой матрице будет гораздо меньше артефактов, и она быстрее реагирует на изменение картинки.

Имеет ли смысл повышать частоту еще выше - до 240 Гц к примеру? Имеет - это еще сильнее уменьшит шлейфы и промахи в цвете. Но на сегодняшний день системы, которые могут выдавать в современных играх в FHD 240 кадров в секунду стоят очень дорого, поэтому пока что такие мониторы не нужны. А вот 120 fps уже способна выдать не самая дорогая из современных видеокарт Nvidia GTX 1080, так что если у вас она есть - можно купить монитор с частотой обновления в 120 Гц - картинка в играх станет приятнее.

Что означают цифры рядом со значком «Гц»? Специализированный журнал What Hi-Fi поможет разобраться.

Частота обновления - это количество герц?

Точно. Технический термин «герц» (Гц) широко распространен, но не все понимают его значение. Сегодня почти каждый большой ТВ может похвастаться матрицей в 1920×1080 пикселов; чтобы их различать, смотрят на другой рекламируемый параметр - частоту обновления экрана: 100 Гц, 200 Гц, у некоторых моделей - еще выше.

Чем больше герц, тем лучше телевизор?

В целом - да, но есть нюансы. Давайте вспомним основы технологии. Движущееся изображение на экране состоит из серии неподвижных картинок, или «кадров»; на базе этой серии наш мозг формирует иллюзию движения. Чем больше кадров вы видите в каждый отрезок времени, тем легче становится задача мозгу и тем более слаженной оказывается картинка; поэтому ТВ стараются выдавать кадры на высокой скорости. Количество кадров в секунду выражается в единицах частоты - Гц.

Значит, все-таки ТВ с разверткой 200 Гц лучше, чем стогерцовый?

В теории это так, но частота обновления - еще не все. Частота посылаемых телевизору кадров достаточно низка. Видео с 2D-Blu-ray-дисков состоит из 24 кадров в секунду; 3D-диски, сохраняя эту частоту, передают два изображения (свое для каждого глаза), чередуя их на высокой скорости. Эфирный сигнал в системе PAL (Европа) имеет 25 кадров/с; формат NTSC (США) - 30 кадров/с. Некоторые компьютерные игры идут на еще более высокой частоте, но для большинства владельцев телевизоров 60 кадров/с некоторых игр с PS3 более чем достаточно.

Кроме того, всегда лучше по возможности сохранять исходное состояние материала источника. Конечно, вы можете преобразовать Blu-ray-сигнал с 24 кадров/с в 25 или 30 кадров/с (лучше второе) для ТВ, не имеющего режима 24 кадра/с, однако полученное видео часто страдает дрожанием. Лучше купить модель, способную работать с форматом 24 кадра/с.

Для чего тогда нужны 200-герцовые ТВ?

В сущности, только для одного: используя такие технологии, как интерполяция или алгоритм оценки и компенсации движения, телевизор может обманывать ваш мозг иллюзией более плавного движения.

Создание дополнительных кадров, высококачественное масштабирование и панель с быстрым откликом теоретически способны обеспечить плавное движение даже в эфирных телепередачах. Таким образом, сигнал с частотой 25 кадров/с естественно «вписывается» в ТВ с разверткой 100 Гц (он принимает сигнал 50 Гц и создает второй кадр для дополнения исходного) и 200 Гц (он создает три кадра для одного исходного). Сигнал с Blu-ray лучше всего воспроизводится на частотах, кратных 24; старые ТВ могут работать на частоте 72 Гц, тогда как в США все популярнее становится частота 240 Гц. Для Британии теоретически идеальной разверткой будет 600 Гц (это число нацело делится на 24, 25 и 30) - вот почему создатели плазменных ТВ гордо заявляют о поддержке 600-герцовой развертки (даже если на деле они не работают в таком режиме).

Однако и здесь не обходится без «да, но». Прежде всего, не всем нравится сглаживающий эффект, свойственный ТВ с разверткой 200 Гц и более. Мы долго привыкали к этому, и многие зрители считают «расширенную» версию эфирных передач слишком неестественной. К тому же качество обработки у разных ТВ сильно отличается. Генерация дополнительных кадров требует от любого ТВ работы на пределе. Таким образом, хотя в теории высокая частота обновления - это плюс, решение принимать вам; у нее много горячих приверженцев и немало идейных противников.

Как насчет 100-герцовых ТВ?

Технология 100 Гц применялась еще в катодно-лучевых трубках, однако целью ее было снижение мерцания у больших ТВ. Передачи стандартного разрешения имеют чересстрочную развертку, в которой два сигнала 25 кадров/с «сшиты» вместе. По мере увеличения экранов разница в интенсивности света становилась все заметнее даже на частоте 50 Гц. Решением проблемы стала развертка экрана на удвоенной скорости и повторение каждого кадра (в отличие от создания нового в современной версии).

Три основных источника разной частоты кадров

Эфирные телепередачи

При просмотре телепрограмм и других SD-источников вы получаете сигнал в 50 Гц и 25 кадров/с. Со старых источников, включая VHS и DVD, его обычно требуется предварительно конвертировать. Однако DVD 1-го региона (США) может давать сигнал с частотой 60 Гц, если ваш ТВ его поддерживает.

Blu-ray

В отличие от DVD, где частота кадров зависит от региона, большинство Blu-ray-дисков записаны в стандартном формате 24 кадра/с. Этот подход снимает проблему преобразования частоты кадров, однако усложняет задачу ТВ, который должен обеспечивать поддержку кратных 24 частот либо конвертировать видео с 24 кадров/с в другой формат в реальном времени.

Игры

Компьютеры способны работать на очень высоких частотах, однако игровые консоли ограничиваются 30 или 60 кадрами/с. Второй режим обеспечивает более плавное движение в самых сложных играх. Однако при переходе на трехмерные игры PS3 приходится снижать частоту: в 3D ее 60 кадров/с превращаются в 30 кадров/с.

Частота обновления экрана (screen refresh rate — eng.) – характеристика обозначающая количество возможных изменений изображения в секунду (кадров). Измеряется в Герцах (Гц ).

Для доступа на панель управления частотой обновления экрана в среде Windows 7 , достаточно кликнуть на рабочем столе правой кнопкой мыши и выбрать «разрешение экрана «, далее нажать «дополнительные параметры » и выбрать вкладку «монитор «. В среде Windows XP нужно кликнуть правой кнопкой по рабочему столу и выбрать «свойства «, далее во вкладку «экран «, кнопка дополнительно и в открывшемся окне — вкладку «монитор «.

Влияние на качество изображения.

На качество изображения влияет только на ЭЛТ (электронная лучевая трубка) системах. При увеличении частоты на ЭЛТ , изображение становится более чётким и увеличивается реализм из-за уменьшения видимого мерцания.

Так как на жидкокристаллических панелях , изображение меняется только там, где идёт его изменение и лампы работают на частотах выше 150Гц , эта характеристика не так важна . И всё же плавность движения на 120 Гц жидкокристаллическом мониторе, значительно лучше чем на 60 Гц ЖК мониторе, но не во всех случаях. Для достижения данного эффекта, должна выдавать те самые 120 Гц с запасом.

Влияние частоты на зрение.

Для ЭЛТ кинескопов лучше выставлять максимально возможное значение . Таким образом можно свести усталость глаз к минимуму.

По причине того что свет в ЭЛТ мониторе возникает посредством самих пикселов (ударов заряженных частиц), частота их обновления чрезвычайно важна. Усталость глаз, главным образом идёт от мерцания с частотой <75Гц . Зона комфорта начинается с частоты 72Гц .

Причина мерцания – высокая скорость затухания пикселов, а при частоте <75Гц , данный эффект вызывает явный дискомфорт, вплоть до приступов у людей со склонностью к эпилептическим припадкам.

В ЖК мониторах , свет возникает в лампах подсветки, которые в любом случае имеют частоту выше 150 Гц . Для LCD мониторов хоть и указывается частота обновления, она означает скорость смены картинки самой TFT матрицы , а не количество световых импульсов в секунду как это было с ЭЛТ .

* ЖК мониторы с подсветкой, в частности дешёвые, для регуляции яркости используют — изменение частоты мерцания диодов посредством , что иногда приводит к видимому морганию. Это вызывает дополнительную усталость для глаз. Тут 2 варианта – либо увеличивать яркость в большую сторону, нагружая глаза, либо уменьшать, тоже нагружая глаза морганием. Лучше выбрать золотую середину — максимальное, комфортное значение яркости.

Для 3 D .

Для активных затворных 3D очков и некоторых пассивных, используются ЖК матрицы с частотой обновления ~120Гц , по 60Гц для каждого глаза. Данные мониторы/TV можно использовать на частоте 120 Гц и без очков, что идеально подойдёт игровым энтузиастам, так как количество реальных кадров в секунду будет в два раза выше стандартных 60 к/c . Также в них используются специальные лампы или диоды с повышенной частотой работы , что значительно меньше нагружает глаза. Встретить мерцание на данных мониторах — практически невозможно, но и запас яркости ламп подсветки они имеют значительный.

Это один из показателей, характеризующий качество динамического изображения на экране телевизора. Он показывает, с какой скоростью меняются кадры на телеэкране, и измеряется в герцах (Гц). Если частота обновления недостаточна, то пользователь телевизора наблюдает мерцание изображения, сильно утомляющее глаза. Этот недостаток хорошо знаком владельцам устаревших телевизоров с электронно-лучевой трубкой (ЭЛТ).

С широким распространением жидкокристаллических моделей, стандартом частоты обновления стало 50 кадров в секунду, или 50 Гц. Однако в современных моделях это считается недостаточным.

Проблема в том, что пиксели жидкокристаллической матрицы переключаются не мгновенно. Как ни мала инерция переключения, в сценах, насыщенных быстрыми движениями, она становится заметной - изображение «размазывается», появляются разрывы и кометные шлейфы. Чтобы избавиться от этих нежелательных эффектов, следует увеличить скорость смены кадров. Производители добиваются этого при помощи специальных программных решений. Наиболее популярным является вставка промежуточного кадра между двумя основными.

Мощный процессор анализирует и сопоставляет два соседних кадра и на основе этого анализа создаёт переходный между ними. За счёт такой вклейки, частота обновления кадров увеличивается вдвое - с 50 до 100 Гц. А если вставить несколько промежуточных картинок, частота ещё более увеличится. Таким образом, можно поднять скорость обновления до 200 Гц. Используются и другие технологические новации, например, локальное затемнение, мерцающая задняя подсветка, разнообразные алгоритмы сглаживания. Все эти меры позволяют уменьшить нечёткость изображений быстро движущихся объектов.

Стоит добавить, что в чистом виде прорисовка дополнительных кадров в настоящее время не применяется. Дело в том, что если для игр и спортивных трансляций она подходит хорошо, то у фильмов, обработанных с применением этой технологии, появляется нежелательный эффект неестественности, называемый «эффектом мыльной оперы».

Поэтому, чтобы просмотр телевизора не вызывал раздражения зрителей, производители используют сложные комплексы алгоритмов, которые каждая крупная компания разрабатывает самостоятельно и держит в секрете от конкурентов.

Сегодня производители анонсируют совершенно невероятные показатели частоты обновления изображения - 1000 и более герц. Но это не реальная скорость смены кадров, а маркетинговый параметр, изобретённый для оценки эффективности применяемых технологий.

Вы можете купить телевизор в нашем интернет-магазине по низкой цене с доставкой на дом или самовывозом в Москве.



Загрузка...