sonyps4.ru

Методы линейного программирования.

15. Аналитические методы. Методы линейного программирования.

15.1. Аналитические методы

На протяжении всей своей эволюции человек, совершая те или иные деяния, стремился вести себя таким образом, чтобы результат, достигаемый как следствие некоторого поступка, оказался в определенном смысле наилучшим. Двигаясь из одного пункта в другой, он стремился найти кратчайший среди возможных путь. Строя жилище, он искал такую его геометрию, которая при наименьшем расходе топлива, обеспечивала приемлемо комфортные условия существования. Занимаясь строительством кораблей, он пытался придать им такую форму, при которой вода оказывала бы наименьшее сопротивление. Можно легко продолжить перечень подобных примеров.

Наилучшие в определенном смысле решения задач принято называть оптимальными . Без использования принципов оптимизации в настоящее время не решается ни одна более или менее сложная проблема. При постановке и решении задач оптимизации возникают два вопроса: что и как оптимизировать?

Ответ на первый вопрос получается как результат глубокого изучения проблемы, которую предстоит решить. Выявляется тот параметр, который определяет степень совершенства решения возникшей проблемы. Этот параметр обычно называют целевой функцией иликритерием качества . Далее устанавливается совокупность величин, которые определяют целевую функцию. Наконец, формулируются все ограничения, которые должны учитываться при решении задачи. После этого строится математическая модель, заключающаяся в установлении аналитической зависимости целевой функции от всех аргументов и аналитической формулировки сопутствующих задаче ограничений. Далее приступают к поиску ответа на второй вопрос.

Итак, пусть в результате формализации прикладной задачи установлено, что целевая функция , где множество Х – обобщение ограничений, его называют множеством допустимых решений. Существо проблемы оптимизации заключается в поиске на множестве Х – множестве допустимых решений такого решения
, при котором целевая функцияf достигает наименьшего или наибольшего значения.

Составной частью методов оптимизации является линейное программирование.

15.2. Основные понятия линейного программирования

Первое упоминание (1938 г.) о математических методах в эффективном управлении производством принадлежит советскому математику Л. В. Канторовичу. Год спустя,в 1939 г., Л. В. Канторович опубликовал работу «Математические методы организации и планирования производства» и практически применил полученные результаты. Термин «линейное программирование» ввели американские математики Дж. Данциг и Т. Купманс в конце 40-х годов. Дж. Данциг разработал математический аппарат симплексного метода решения задач линейного программирования (1951 г.). Симплексный метод находит применение для решения широкого круга задач линейного программирования и до настоящего времени является одним из основных методов.

Линейное программирование - это раздел математики, ориентированный на нахождение экстремума (максимума или минимума) в задачах, которые описываются линейными уравнениями. Причем линейными уравнениями описывается как сама целевая функция, так и входные параметры (переменные) условия ограничений на входные параметры. Необходимым условием задач линейного программирования является обязательное наличие ограничений на ресурсы (сырье, материалы, финансы, спрос произведенной продукции и т.д.). Другим важным условием решения задачи является выбор критерия останова алгоритма, т. е. целевая функция должна быть оптимальна в некотором смысле. Оптимальность целевой функции должна быть выражена количественно. Если целевая функция представлена одним или двумя уравнениями, то на практике такие задачи решаются достаточно легко. Критерий останова алгоритма (или критерий оптимальности) должен удовлетворять следующим требованиям:

    быть единственным для данной задачи;

    измеряться в единицах количества;

    линейно зависеть от входных параметров.

Исходя из вышесказанного, можно сформулировать задачу линейного программирования в общем виде:

найти экстремум целевой функции

при ограничениях в виде равенств:

(2.2)

при ограничениях в виде неравенств:

(2.3)

и условиях неотрицательности входных параметров:

В краткой форме задача линейного программирования может быть записана так:

(2.5)

при условии

где
- входные переменные;

Числа положительные, отрицательные и равные нулю.

В матричной форме эта задача может быть записана так:

Задачи линейного программирования можно решить аналитически и графически.

15.3. Каноническая задача линейного программирования

, i=1,…,m,

, j=1,…,n.

Основные вычислительные методы решения задач линейного программирования разработаны именно для канонической задачи.

15.4. Общая задача линейного программирования

Необходимо максимизировать (минимизировать) линейную функцию от n переменных.

при ограничениях

, i =1,…, k ,

, i =1+ k ,…, m ,

, …,

Здесь k m , r n . Стандартная задача получается как частный случай общей приk = m , r = n ; каноническая – приk =0, r = n .

Пример.

Кондитерская фабрика производит несколько сортов конфет. Назовем их условно "A", "B" и "C". Известно, что реализация десяти килограмм конфет "А" дает прибыль 90 рублей, "В" - 100 рублей и "С" - 160 рублей. Конфеты можно производить в любых количествах (сбыт обеспечен), но запасы сырья ограничены. Необходимо определить, каких конфет и сколько десятков килограмм необходимо произвести, чтобы общая прибыль от реализации была максимальной. Нормы расхода сырья на производство 10 кг конфет каждого вида приведены в таблице 1.

Таблица 1. Нормы расходов сырья

на производство

Экономико-математическая формулировка задачи имеет вид

Найти такие значения переменных Х=(х1, х2, х3) , чтобы

целевая функция

при условиях-ограничениях:

Назначение сервиса . Онлайн-калькулятор предназначен для решения задач линейного программирования симплексным методом путем перехода к КЗЛП и СЗЛП . При этом задача на минимум целевой функции сводятся к задаче на поиск максимума через преобразование целевой функции F*(X) = -F(X) . Также имеется возможность составить двойственную задачу .

Решение происходит в три этапа:

  1. Переход к КЗЛП. Любая ЗЛП вида ax ≤ b , ax ≥ b , ax = b (F(X) → extr) сводится к виду ax = b , F(X) → max ;
  2. Переход к СЗЛП. КЗЛП вида ax = b сводится к виду ax ≤ b , F(X) → max ;
  3. Решение симплексным методом;

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 1 2 3 4 5 6 7 8 9 10

Переход от задачи минимизации целевой функции к задаче максимизации

Задача минимизации целевой функции F(X) легко может быть сведена к задаче максимизации функции F*(X) при тех же ограничениях путем введения функции: F*(X) = -F(X) . Обе задачи имеют одно и то же решение X*, и при этом min(F(X)) = -max(F*(X)) .
Проиллюстрируем этот факт графически:
F(x) → min
F(x) → max
Для оптимизации функции цели используем следующие понятия и методы.
Опорный план – план с определёнными через свободные базисными переменными.
Базисный план – опорный план с нулевыми базисными переменными.
Оптимальный план – базисный план, удовлетворяющий оптимальной функции цели (ФЦ).

Ведущий (разрешающий) элемент – коэффициент свободной неизвестной, которая становится базисной, а сам коэффициент преобразуется в единицу.
Направляющая строка – строка ведущего элемента, в которой расположена с единичным коэффициентом базисная неизвестная, исключаемая при преобразовании (строка с минимальным предельным коэффициентом, см. далее).
Направляющий столбец – столбец ведущего элемента, свободная неизвестная которого переводится в базисную (столбец с максимальной выгодой, см. далее).

Переменные x 1 , …, x m , входящие с единичными коэффициентами только в одно уравнение системы, с нулевыми - в остальные, называются базисными или зависимыми . В канонической системе каждому уравнению соответствует ровно одна базисная переменная. Переход осуществляется с помощью метода Гаусса-Жордана . Основная идея этого метода состоит в сведении системы m уравнений с n неизвестными к каноническому виду при помощи элементарных операций над строками.
Остальные n-m переменных (x m +1 ,…, x n) называются небазисными или независимыми переменными .

Базисное решение называется допустимым базисным решением , если значения входящих в него базисных переменных x j ≥0, что эквивалентно условию неотрицательности b j ≥0.
Допустимое базисное решение является угловой точкой допустимого множества S задачи линейного программирования и называется иногда опорным планом .
Если среди неотрицательных чисел b j есть равные нулю, то допустимое базисное решение называется вырожденным (вырожденной угловой точкой) и соответствующая задача линейного программирования называется вырожденной .

Пример №1 . Свести задачу линейного программирования к стандартной ЗЛП.
F(X) = x 1 + 2x 2 - 2x 3 → min при ограничениях:
4x 1 + 3x 2 - x 3 ≤10
- 2x 2 + 5x 3 ≥3
x 1 + 2x 3 =9
Для приведения ЗЛП к канонической форме необходимо:
1. Поменять знак у целевой функции. Сведем задачу F(X) → min к задаче F(X) → max. Для этого умножаем F(X) на (-1). В первом неравенстве смысла (≤) вводим базисную переменную x 4 ; во втором неравенстве смысла (≥) вводим базисную переменную x 5 со знаком минус.
4x 1 + 3x 2 -1x 3 + 1x 4 + 0x 5 = 10
0x 1 -2x 2 + 5x 3 + 0x 4 -1x 5 = 3
1x 1 + 0x 2 + 2x 3 + 0x 4 + 0x 5 = 9
F(X) = - x 1 - 2x 2 + 2x 3
Переход к СЗЛП .
Расширенная матрица системы ограничений-равенств данной задачи:

4 3 -1 1 0 10
0 -2 5 0 -1 3
1 0 2 0 0 9

Приведем систему к единичной матрице методом жордановских преобразований.
1. В качестве базовой переменной можно выбрать x 4 .
2. В качестве базовой переменной выбираем x 2 .
Разрешающий элемент РЭ=-2. Строка, соответствующая переменной x 2 , получена в результате деления всех элементов строки x 2 на разрешающий элемент РЭ=-2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 2 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(0 3):-2 3-(-2 3):-2 -1-(5 3):-2 1-(0 3):-2 0-(-1 3):-2 10-(3 3):-2
0: -2 -2: -2 5: -2 0: -2 -1: -2 3: -2
1-(0 0):-2 0-(-2 0):-2 2-(5 0):-2 0-(0 0):-2 0-(-1 0):-2 9-(3 0):-2

Получаем новую матрицу:
4 0 6 1 / 2 1 -1 1 / 2 14 1 / 2
0 1 -2 1 / 2 0 1 / 2 -1 1 / 2
1 0 2 0 0 9

3. В качестве базовой переменной выбираем x 3 .
Разрешающий элемент РЭ=2. Строка, соответствующая переменной x 3 , получена в результате деления всех элементов строки x 3 на разрешающий элемент РЭ=2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 3 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(1 6 1 / 2):2 0-(0 6 1 / 2):2 6 1 / 2 -(2 6 1 / 2):2 1-(0 6 1 / 2):2 -1 1 / 2 -(0 6 1 / 2):2 14 1 / 2 -(9 6 1 / 2):2
0-(1 -2 1 / 2):2 1-(0 -2 1 / 2):2 -2 1 / 2 -(2 -2 1 / 2):2 0-(0 -2 1 / 2):2 1 / 2 -(0 -2 1 / 2):2 -1 1 / 2 -(9 -2 1 / 2):2
1: 2 0: 2 2: 2 0: 2 0: 2 9: 2

Получаем новую матрицу:
3 / 4 0 0 1 -1 1 / 2 -14 3 / 4
1 1 / 4 1 0 0 1 / 2 9 3 / 4
1 / 2 0 1 0 0 4 1 / 2

Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (4,2,3).
Соответствующие уравнения имеют вид:
3 / 4 x 1 + x 4 - 1 1 / 2 x 5 = -14 3 / 4
1 1 / 4 x 1 + x 2 + 1 / 2 x 5 = 9 3 / 4
1 / 2 x 1 + x 3 = 4 1 / 2
Выразим базисные переменные через остальные:
x 4 = - 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4
x 2 = - 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4
x 3 = - 1 / 2 x 1 +4 1 / 2
Подставим их в целевую функцию:
F(X) = - x 1 - 2(- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4) + 2(- 1 / 2 x 1 +4 1 / 2)
или

Система неравенств:
- 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4 ≥ 0
- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4 ≥ 0
- 1 / 2 x 1 +4 1 / 2 ≥ 0
Приводим систему неравенств к следующему виду:
3 / 4 x 1 - 1 1 / 2 x 5 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 5 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 5 -10 1 / 2 → max
Упростим систему.
3 / 4 x 1 - 1 1 / 2 x 2 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 2 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 2 -10 1 / 2 → max

Пример №2 . Найдите сначала графическим методом, а затем симплекс-методом решение задачи
F(X) = x 1 + x 2 - x 3 + x 5 +15 → max (min) при ограничениях:
-3x 1 + x 2 + x 3 =3
4x 1 + 2x 2 - x 4 =12
2x 1 - x 2 + x 5 =2
x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0, x 4 ≥ 0, x 5 ≥ 0

Линейное программирование представляет собой один из наиболее значимых разделов математики, где осуществляется изучение теоретических и методических основ решения определенных задач. Данная математическая дисциплина широко используется в последние годы в разнообразных экономических и технических областях, где не последняя роль отведена математическому планированию и использованию автоматических систем вычисления. Этот раздел науки посвящен изучению линейных оптимизационных моделей. То есть линейное программирование посвящено числам. Впервые данный термин был предложен Т. Купмансом в 1951 году. Оптимальный план каждой линейной программы необходимо автоматически связывать с оптимальным уровнем цен, то есть с объективно обусловленными оценками.

Линейное программирование: методы

При помощи методики удается решить немалое количество экстремальных задач, что связаны с экономикой. В данном случае обычно требуется найти крайние значения некоторых функций переменной величины. В качестве основы линейного программирования выражено решение системы преобразуемых в уравнения и неравенства. Данный вид программирования характеризуется математической формулировкой переменных величин, последовательностью и определенным порядком расчетов, а также логическим анализом. Это применимо:

Если имеется математическая определенность и количественная ограниченность между изучаемыми факторами и переменными величинами;

Если имеется взаимозаменяемость факторов благодаря последовательности расчетов;

В случае если математическая логика совмещена с пониманием сущности явлений, которые изучаются.

Линейное программирование в способствует исчислению оптимальной производительности всех машин, поточных линий, агрегатов, а также решению задач рационального применения имеющихся материалов.

В сельском хозяйстве при помощи данного метода определяется минимальная стоимость рациона кормежки с учетом имеющегося количества корма. При этом учитываются виды и содержание в них определенных полезных веществ.

В литейном производстве данная методика позволяет найти решение транспортной задачи и задачи о смесях, которые входят в состав металлургической шихты. Суть транспортной задачи в данном случае подразумевает оптимальное прикрепление потребляющих предприятий к предприятиям, которые заняты производством продукции.

Линейное программирование: задачи

Отличительной чертой всех экономических задач, которые решаются посредством методики линейного программирования, является выбор определенных вариантов решения, а также ограничивающих условий. Благодаря решению такой задачи удается найти оптимальное решение из всех альтернативных вариантов.

Значительной ценностью использования методики линейного программирования в экономике служит выбор самого оптимального варианта из большого количества всех вариантов, которые считаются допустимо возможными. Подобные задачи почти нереально решить иными способами, так как только они позволяют найти степень рациональности применения При помощи линейного программирования разрешается такая основная задача, как транспортная, которая должна минимизировать грузооборот продукции широкого потребления в процессе их доставки от производителя.

Линейное программирование в Excel

В процессе решения таких задач для начала необходимо составить модель, что подразумевает формулировку условий на математическом языке. После этого этапа можно найти решение посредством графического метода. Для этого в программе Excel существует специальная функция «Поиск решения».

Как уже понятно из вышесказанного, линейное программирование имеет весьма обширную сферу применения.

Линейное программирование рассматривается как революционное достижение, давшее человеку способность формулировать общие цели и находить посредством симплекс-метода оптимальные решения для широкого класса практических задач принятия решений большой сложности.

Линейное программирование – математическая дисциплина, посвящённая теории и методам решения задач об экстремумах линейных функций на множествах n -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Можно сказать, что линейное программирование применимо для решения математических моделей тех процессов и систем, в основу которых может быть положена гипотеза линейного представления реального мира.

Задача линейного программирования (ЛП), состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Линейное программирование применяется при решении следующих экономических задач:

1. Задача управления и планирования производства.

2. Задач определения оптимального размещения оборудования на морских судах, в цехах.

3. Задача определения оптимального плана перевозок груза (транспортная задача).

4. Задача оптимального распределения кадров.

5. Задач о смесях, диете (планирование состава продукции) и т.д.

3. МОДЕЛЬ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ, ЕЁ ПРЕДСТАВЛЕНИЕ В ЭЛЕКТРОННЫХ ТАБЛИЦАХ MS EXCEL.

Традиционно наукой управления называют построение детально разработанных моделей, в результате анализа которых принимаются управленческие решения. Сегодня миллионы менеджеров для анализа деловых задач применяют электронные таблицы. Современные электронные таблицы имеют много мощных средств, которые можно использовать для более точного анализа моделей, в результате чего могут приниматься более взвешенные и близкие к оптимальным решения. С учетом все более широкого применения электронных таблиц в процессе управления будущим специалистам необходимо владеть профессиональными навыкам разработки моделей – как «спланировать» чистый рабочий лист так, чтобы получить полезную и практическую модель деловой ситуации, не углубляясь в алгоритмические и математические тонкости расчетов.

Основные этапы создания модели линейного программирования в Excel:

1. Написание и проверка символической модели линейного программирования. Модель записывается на бумаге в математическом виде.

2. Создание и отладка табличной модели линейного программирования. На основе символической модели ЛП создается ее представление в Excel.

3. Попытка оптимизации модели с помощью надстройки ПОИСК РЕШЕНИЯ.

4. ИСПОЛЬЗОВАНИЕ НАДСТРОЙКИ ПОИСК РЕШЕНИЯ .

С помощью электронных таблиц можно моделировать реальные ситуации и оценивать полученные результаты. Другими словами с помощью электронных таблиц можно делать анализ результатов деятельности и прогнозирования будущих перспектив предприятия. Эти задачи в среде MS Excel дает возможность решать надстройка Поиск решения.


Поиск решения – это надстройка, которая предназначена для оптимизации моделей при наличии ограничений. Она состоит из двух программных компонентов: программы написанной на языке Visual Basic, который транслирует представленную на рабочем письме информацию для внутреннего представления, которая используется другой программой. Вторая программа находится в памяти компьютера в виде отдельного программного модуля. Она выполняет оптимизацию и возвращает найденное решение первой программе, которая возобновляет данные на рабочем листе. С помощью ее можно найти оптимальное значение формулы, которая сохраняется в целевой ячейке. Эта процедура работает с группой ячеек, которые непосредственно связанные с формулой в целевой ячейке. Чтобы получить результат по формуле в целевой ячейке, процедура изменяет значение в ячейках, которые влияют на поиск. Для того, чтобы уменьшить множественное число значений, которые используются в модели задачи, применяют ограничение. Эти ограничения могут содержать ссылку на другие ячейки, которые влияют на поиск.

Общий алгоритм работы с надстройкой Поиск решения.

  1. В меню Сервис выбрать команду Поиск решения .
  2. В поле Установит целевую ячейку введите адрес ячейки, в которй находится формула, для оптимизации модели.
  3. Для того, чтобы максимизировать значение целевой ячейки путем изменения значений влияющих ячеек, установите переключатель в положение Максимальному значению . Для того, чтобы минимизировать значение целевой ячейки путем изменения значений влияющих ячеек, установите переключатель в положение Минимальному значению . Для того, чтобы целевая ячейка приобретала значение конкретного числа, установите переключатель в положение Значение и введите соответствующее число.
  4. В поле Изменяя ячейки введите адреса ячеек, которые изменяют свои значения, разделяя их запятыми. Изменяемые ячейки должны быть прямо или непрямо связанные с целевой ячейкой. Допускается установка до 200 изменяемых ячеек.
  5. В поле Ограничения введите все ограничения, которые налагаются на поиск решения.
  6. Нажмите кнопку Выполнить .
  7. Для сохранения найденного решения установите переключатель в диалоговом окне Результаты поиска решения в положение Сохранить найденное решение . Для возобновления входных данных установите переключатель в положение Восстановить исходные значения.
  8. Для того, чтобы прервать поиск решения, нажмите клавишу Еsс . MS Excel пересчитает лист с учетом найденных значений ячеек, которые влияют на результат.

Алгоритм роботи з надбудовою Поиск решения.

5. РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ПРИ ПОМОЩИ ПРОГРАММЫ MS EXCEL.

Пример. Кондитерский цех для изготовления трех видов карамели А, В, С использует три основных вида сырья: сахар, патоку и фруктовое пюре. Нормы затрат сахара на изготовление 1кг карамели каждого вида соответственно уровни: 0,8кг; 0,5кг; 0,6кг; патоки – 04кг; 0,4кг; 0,3кг; фруктового пюре – 0кг; 0,1кг; 0,1кг. Конфеты можно производить в любых количествах (реализация обеспечена), но запас сырья ограниченный: запасы сахара – 80кг, патоки – 60кг, фруктового пюре – 12кг. Прибыль от реализации 1кг карамели вида А составляет 10грн., вида В – 11грн., вида С – 12грн.

Таблица 1

Определить план производства карамели, которая обеспечивает максимальную прибыль от деятельности кондитерского цеха.

Аннотация: Данная лекция раскрывает ряд вопросов, посвященных линейному программированию как одному из разделов математического программирования; в частности, формулирует основные виды задач линейного программирования, раскрывает отличия данных задач от классических задач математического анализа; знакомит с различными формами записи данных задач, осуществляет их постановку и исследование структуры. Наиболее полно раскрыт вопрос о решении задач линейного программирования симплекс-методом.

1. Понятие математического программирования

– это математическая дисциплина, в которой разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями.

Наличие ограничений делает задачи принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах математического программирования оказываются непригодными.

Для решения задач математического программирования разработаны и разрабатываются специальные методы и теории. Так как при решении этих задач приходится выполнять значительный объем вычислений, то при сравнительной оценке методов большое значение придается эффективности и удобству их реализации на ЭВМ.

Можно рассматривать как совокупность самостоятельных разделов, занимающихся изучением и разработкой методов решения определенных классов задач.

В зависимости от свойств целевой функции и функции ограничений все задачи математического программирования делятся на два основных класса:

  • задачи линейного программирования,
  • задачи нелинейного программирования .

Если целевая функция и функции ограничений – линейные функции, то соответствующая задача поиска экстремума является задачей линейного программирования. Если хотя бы одна из указанных функций нелинейна, то соответствующая задача поиска экстремума является задачей нелинейного программирования .

2. Понятие линейного программирования. Виды задач линейного программирования

Линейное программирование (ЛП) – один из первых и наиболее подробно изученных разделов математического программирования . Именно линейное программирование явилось тем разделом, с которого и начала развиваться сама дисциплина " математическое программирование ". Термин "программирование" в названии дисциплины ничего общего с термином "программирование (т.е. составление программы) для ЭВМ" не имеет, т.к. дисциплина " линейное программирование " возникла еще до того времени, когда ЭВМ стали широко применяться для решения математических, инженерных, экономических и др. задач.

Термин " линейное программирование " возник в результате неточного перевода английского " linear programming ". Одно из значений слова "programming" - составление планов, планирование. Следовательно, правильным переводом английского " linear programming " было бы не " линейное программирование ", а "линейное планирование", что более точно отражает содержание дисциплины. Однако, термины линейное программирование , нелинейное программирование, математическое программирование и т.д. в нашей литературе стали общепринятыми и поэтому будут сохранены.

Итак, линейное программирование возникло после второй мировой войны и стало быстро развиваться, привлекая внимание математиков, экономистов и инженеров благодаря возможности широкого практического применения, а также математической стройности.

Можно сказать, что линейное программирование применимо для решения математических моделей тех процессов и систем, в основу которых может быть положена гипотеза линейного представления реального мира.

Линейное программирование применяется при решении экономических задач, в таких задачах как управление и планирование производства; в задачах определения оптимального размещения оборудования на морских судах, в цехах; в задачах определения оптимального плана перевозок груза (транспортная задача); в задачах оптимального распределения кадров и т.д.

Задача линейного программирования (ЛП), как уже ясно из сказанного выше, состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Общая форма задачи имеет вид: найти при условиях

Наряду с общей формой широко используются также каноническая и стандартная формы. Как в канонической, так и в стандартной форме

Т.е. все переменные в любом допустимом решении задачи должны принимать неотрицательные значения (такие переменные принято называть неотрицательные в отличие от так называемых свободных переменных, на область значений которых подобное ограничение не накладывается). Отличие же между этими формами состоит в том, что в одном случае I 2 = 0 , а в другом - I 1 = 0 .

Задача ЛП в канонической форме.



Загрузка...