sonyps4.ru

Максимальное значение float. Типы данных в языке си

Для хранения вещественных чисел применяются типы данных float (с одинарной точностью) и double (с двойной точностью). Смысл знаков "+" и "-" для вещественных типов совпадает с целыми. Последние незначащие нули справа от десятичной точки игнорируются. Поэтому варианты записи +523.5, 523.5 и 523.500 представляют одно и то же значение.

Для представления вещественных чисел используются два формата:

с фиксированной точкой

[знак][целая часть].[дробная часть]

Например: –8.13; .168 (аналогично 0.168); 183. (аналогично 183.0).

с плавающей точкой (экспоненциальной форме) мантисса Е/е порядок

Например: 5.235e+02 (5.235 x 102 = 523.5); –3.4Е-03 (–3.4 x 10-03 = – 0.0034)

В большинстве случаев используется тип double, он обеспечивает более высокую точность, чем тип float. Максимальную точность и наибольший диапазон чисел достигается с помощью типа long double.

Величина с модификатором типа float занимает 4 байта. Из них 1 бит отводится для знака, 8 бит для избыточной экспоненты и 23 бита для мантиссы. Отметим, что старший бит мантиссы всегда равен 1, поэтому он не заполняется, в связи с этим диапазон модулей значений переменной с плавающей точкой приблизительно равен от 3.14E–38 до 3.14E+38.

Величина типа double занимает 8 байтов в памяти. Ее формат аналогичен формату float. Биты памяти распределяются следующим образом: 1 бит для знака, 11 бит для экспоненты и 52 бита для мантиссы. С учетом опущенного старшего бита мантиссы диапазон модулей значений переменной с двойной точностью равен от 1.7E–308 до 1.7E+308.

Величина типа long double аналогична типу double.

Например:

6. Символьный тип данных (тип char)

В стандарте C++ нет типа данных, который можно было бы считать действительно символьным. Для представления символьной информации есть два типа данных, пригодных для этой цели, – это типы char и wchar_t.

Переменная типа char рассчитана на хранение только одного символа (например, буквы или пробела). В памяти компьютера символы хранятся в виде целых чисел. Соответствие между символами и их кодами определяется таблицей кодировки, которая зависит от компьютера и операционной системы. Почти во всех таблицах кодировки есть прописные и строчные буквы латинского алфавита, цифры 0, ..., 9, и некоторые специальные символы. Самой распространенной таблицей кодировки является таблица символов ASCII (American Standard Code for Information Interchange – Американский стандартный код для обмена информацией).

Так как в памяти компьютера символы хранятся в виде целых чисел, то тип char на самом деле является подмножеством типа int.

Под величину символьного типа отводится 1 байт.

Тип char может использоваться со спецификаторами signed и unsigned. В данных типа signed char можно хранить значения в диапазоне от –128 до 127. При использовании типа unsigned char значения могут находиться в диапазоне от 0 до 255. Для кодировки используется код ASCII. Символы с кодами от 0 до 31 относятся к служебным и имеют самостоятельное значение только в операторах ввода-вывода.

Величины типа char также применяются для хранения чисел из указанных диапазонов.

Тип wchar_t предназначен для работы с набором символов, для кодировки которых недостаточно 1 байта, например в кодировке Unicode. Размер типа wchar_t равен 2 байтам. Если в программе необходимо использовать строковые константы типа wchar_t, то их записывают с префиксом L, например, L "Слово".

Например:

char r={"A","B","C","D","E","F","\0"};

Последнее обновление: 17.09.2017

Каждая переменная имеет определенный тип. И этот тип определяет, какие значения может иметь переменная, какие операции с ней можно производить и сколько байт в памяти она будет занимать. В языке C++ определены следующие базовые типы данных:

    bool : логический тип. Может принимать одну из двух значений true (истина) и false (ложь). Размер занимаемой памяти для этого типа точно не определен.

    char : представляет один символ в кодировке ASCII. Занимает в памяти 1 байт (8 бит). Может хранить любое значение из диапазона от -128 до 127, либо от 0 до 255

    signed char : представляет один символ. Занимает в памяти 1 байт (8 бит). Может хранить любой значение из диапазона от -128 до 127

    unsigned char : представляет один символ. Занимает в памяти 1 байт (8 бит). Может хранить любой значение из диапазона от 0 до 255

    wchar_t : представляет расширенный символ. На Windows занимает в памяти 2 байта (16 бит), на Linux - 4 байта (32 бита). Может хранить любой значение из диапазона от 0 до 65 535 (при 2 байтах), либо от 0 до 4 294 967 295 (для 4 байт)

    char16_t : представляет один символ в кодировке Unicode. Занимает в памяти 2 байта (16 бит). Может хранить любой значение из диапазона от 0 до 65 535

    char32_t : представляет один символ в кодировке Unicode. Занимает в памяти 4 байта (32 бита). Может хранить любой значение из диапазона от 0 до 4 294 967 295

    short : представляет целое число в диапазоне от –32768 до 32767. Занимает в памяти 2 байта (16 бит).

    Данный тип также имеет синонимы short int , signed short int , signed short .

    unsigned short : представляет целое число в диапазоне от 0 до 65535. Занимает в памяти 2 байта (16 бит).

    Данный тип также имеет синоним unsigned short int .

    int : представляет целое число. В зависимости от архитектуры процессора может занимать 2 байта (16 бит) или 4 байта (32 бита). Диапазон предельных значений соответственно также может варьироваться от –32768 до 32767 (при 2 байтах) или от −2 147 483 648 до 2 147 483 647 (при 4 байтах). Но в любом случае размер должен быть больше или равен размеру типа short и меньше или равен размеру типа long

    Данный тип имеет синонимы signed int и signed .

    unsigned int : представляет положительное целое число. В зависимости от архитектуры процессора может занимать 2 байта (16 бит) или 4 байта (32 бита), и из-за этого диапазон предельных значений может меняться: от 0 до 65535 (для 2 байт), либо от 0 до 4 294 967 295 (для 4 байт).

    В качестве синонима этого типа может использоваться unsigned

    long : представляет целое число в диапазоне от −2 147 483 648 до 2 147 483 647. Занимает в памяти 4 байта (32 бита).

    У данного типа также есть синонимы long int , signed long int и signed long

    unsigned long : представляет целое число в диапазоне от 0 до 4 294 967 295. Занимает в памяти 4 байта (32 бита).

    Имеет синоним unsigned long int .

    long long : представляет целое число в диапазоне от −9 223 372 036 854 775 808 до +9 223 372 036 854 775 807. Занимает в памяти, как правило, 8 байт (64 бита).

    Имеет синонимы long long int , signed long long int и signed long long .

    unsigned long long : представляет целое число в диапазоне от 0 до 18 446 744 073 709 551 615. Занимает в памяти, как правило, 8 байт (64 бита).

    Имеет синоним unsigned long long int .

    float : представляет вещественное число ординарной точности с плавающей точкой в диапазоне +/- 3.4E-38 до 3.4E+38. В памяти занимает 4 байта (32 бита)

    double : представляет вещественное число двойной точности с плавающей точкой в диапазоне +/- 1.7E-308 до 1.7E+308. В памяти занимает 8 байт (64 бита)

    long double : представляет вещественное число двойной точности с плавающей точкой не менее 8 байт (64 бит). В зависимости от размера занимаемой памяти может отличаться диапазон допустимых значений.

    void : тип без значения

Таким образом, все типы данных за исключением void могут быть разделены на три группы: символьные (char, wchar_t, char16_t, char32_t), целочисленные (short, int, long, long long) и типы чисел с плавающей точкой (float, double, long double).

Символьные типы

Для представления символов в приложении используются типы char , wchar_t , char16_t и char32_t .

Определим несколько переменных:

Char c ="d"; wchar_t d ="c";

Переменная типа char в качестве значения принимает один символ в одинарных кавычках: char c ="d" . Также можно присвоить число из указанного выше в списке диапазона: char c = 120 . В этом случае значением переменной c будет тот символ, который имеет код 120 в таблице символов ASCII.

Стоит учитывать, что для вывода на консоль символов wchar_t следует использовать не std::cout, а поток std::wcout :

#include int main() { char a = "H"; wchar_t b = "e"; std::wcout << a << b << "\n"; return 0; }

При этом поток std::wcout может работать как с char, так и с wchar_t. А поток std::cout для переменной wchar_t вместо символа будет выводить его числовой код.

В стандарте С++11 были добавлены типы char16_t и char32_t , которые ориентированы на использование Unicode. Однако на уровне ОС пока не реализованы потоки для работы с этими типами. Поэтому если потребуется вывести на консоль значения переменных этих типов, то необходимо преобразовать переменные к типам char или wchar_t:

#include int main() { char a = "H"; wchar_t b = "e"; char16_t c = "l"; char32_t d = "o"; std::cout << a << (char)b << (char)c << (char)d << "\n"; return 0; }

В данном случае при выводе перед переменными указывается операция приведения к типу char - (char) , благодаря чему значения переменных b, c и d преобразуются в тип char и могут быть выведены на консоль с помощью потока std::cout.

Целочисленные типы

Целочисленные типы представлены следующими типами: short , unsigned short , int , unsigned int , long , unsigned long , long long и unsigned long long :

Short a = -10; unsigned short b= 10; int c = -30; unsigned int d = 60; long e = -170; unsigned long f = 45; long long g = 89;

Типы чисел с плавающей точкой

Типы чисел с плавающей точкой иили дробные числа представлены такими типами как float , double и long double :

Float a = -10.45; double b = 0.00105; long double c = 30.890045;

Размеры типов данных

В выше приведенном списке для каждого типа указан размер, который он занимает в памяти. Однако стоит отметить, что предельные размеры для типов разработчики компиляторов могут выбирать самостоятельно, исходя из аппаратных возможностей компьютера. Стандарт устанавливает лишь минимальные значения, которые должны быть. Например, для типов int и short минимальное значение - 16 бит, для типа long - 32 бита, для типа long double. При этом размер типа long должен быть не меньше размера типа int, а размер типа int - не меньше размера типа short, а размер типа long double должен быть больше double. К примеру, компилятор g++ под Windows для long double использует 12 байт, а компилятор, встроенный в Visual Studio и также работающий под Windows, для long double использует 8 байт. То есть даже в рамках одной платформы разные компиляторы могут по разному подходить к размерам некоторых типов данных. Но в целом используются те размеры, которые указаны выше при описании типов данных.

Однако бывают ситуации, когда необходимо точно знать размер определенного типа. И для этого в С++ есть оператор sizeof() , который возвращает размер памяти в байтах, которую занимает переменная:

#include int main() { long double number = 2; std::cout << "sizeof(number) =" << sizeof(number); return 0; }

Консольный вывод при компиляции в g++:

sizeof(number) = 12

При этом при определении переменных важно понимать, что значение переменной не должно выходить за те пределы, которые очерчены для ее типа. Например:

Unsigned short number = -65535;

Компилятор G++ при компиляции программы с этой строкой выдаст ошибку о том, что значение -65535 не входит в диапазон допустимых значений для типа unsigned short и будет усечено.

В Visual Studio компиляция может пройти без ошибок, однако при этом переменная number получит значение 2 - результат преобразования числа -65535 к типу unsigned short. То есть опять же результат будет не совсем тот, который ожидается. Значение переменной - это всего лишь набор битов в памяти, которые интерпретируются в соответствии с определенным типом. И для разных типов один и тот же набор битов может интерпретироваться по разному. Поэтому важно учитывать диапазоны значений для того или иного типа при присвоении переменной значения.

Спецификатор auto

Иногда бывает трудно определить тип выражения. И согласно последним стандартам можно предоставить компилятору самому выводить тип объекта. И для этого применяется спецификатор auto . При этом если мы определяем переменную со спецификатором auto, эта переменная должна быть обязательно инициализирована каким-либо значением:

Auto number = 5;

На основании присвоенного значения компилятор выведет тип переменной. Неинициализированные переменные со спецификатором auto не допускаются.

Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям и способ реализации хранения значений и выполнения операций.

Процесс проверки и накладывания ограничений на типы используемых данных называется контролем типов или типизацией программных данных . Различают следующие виды типизации:

  • Статическая типизация - контроль типов осуществляется при компиляции.
  • Динамическая типизация - контроль типов осуществляется во время выполнения.

Язык Си поддерживает статическую типизацию, и типы всех используемых в программе данных должны быть указаны перед ее компиляцией.

Различают простые, составные и прочие типы данных.

Простые данные

Простые данные можно разделить на

  • целочисленные,
  • вещественные,
  • символьные
  • логические.

Составные (сложные) данные

  • Массив — индексированный набор элементов одного типа.
  • Строковый тип — массив, хранящий строку символов.
  • Структура — набор различных элементов (полей записи), хранимый как единое целое и предусматривающий доступ к отдельным полям структуры.

Другие типы данных

  • Указатель — хранит адрес в памяти компьютера, указывающий на какую-либо информацию, как правило - указатель на переменную.

Программа, написанная на языке Си, оперирует с данными различных типов. Все данные имеют имя и тип. Обращение к данным в программе осуществляется по их именам (идентификаторам).

Идентификатор - это последовательность, содержащая не более 32 символов, среди которых могут быть любые буквы латинского алфавита a — z, A — Z, цифры 0 — 9 и знак подчеркивания (_). Первый символ идентификатора не должен быть цифрой.

Несмотря на то, что допускается имя, имеющее до 32 символов, определяющее значение имеют только первые 8 символов. Помимо имени, все данные имеют тип. Указание типа необходимо для того, чтобы было известно, сколько места в оперативной памяти будет занимать данный объект.

Компилятор языка Си придерживается строгого соответствия прописных и строчных букв в именах идентификаторов и лексем.

Целочисленные данные

Целочисленные данные могут быть представлены в знаковой и беззнаковой форме.

Беззнаковые целые числа представляются в виде последовательности битов в диапазоне от 0 до 2 n -1, где n-количество занимаемых битов.

Знаковые целые числа представляются в диапазоне -2 n-1 …+2 n-1 -1. При этом старший бит данного отводится под знак числа (0 соответствует положительному числу, 1 – отрицательному).

Основные типы и размеры целочисленных данных:

Вещественные данные

Вещественный тип предназначен для представления действительных чисел. Вещественные числа представляются в разрядной сетке машины в нормированной форме.

Нормированная форма числа предполагает наличие одной значащей цифры (не 0) до разделения целой и дробной части. Такое представление умножается на основание системы счисления в соответствующей степени. Например, число 12345,678 в нормированной форме можно представить как

12345,678 = 1,2345678·10 4

Число 0,009876 в нормированной форме можно представить как

0,009876 = 9,876·10 -3

В двоичной системе счисления значащий разряд, стоящий перед разделителем целой и дробной части, может быть равен только 1. В случае если число нельзя представить в нормированной форме (например, число 0), значащий разряд перед разделителем целой и дробной части равен 0.

Значащие разряды числа, стоящие в нормированной форме после разделителя целой и дробной части, называются мантиссой числа .

В общем случае вещественное число в разрядной сетке вычислительной машины можно представить в виде 4 полей.

  • знак — бит, определяющий знак вещественного числа (0 для положительных чисел, 1 — для отрицательных).
  • степень — определяет степень 2, на которую требуется умножить число в нормированной форме. Поскольку степень 2 для числа в нормированной форме может быть как положительной, так и отрицательной, нулевой степени 2 в представлении вещественного числа соответствует величина сдвига, которая определяется как

    где n — количество разрядов, отводимых для представления степени числа.

  • целое — бит, который для нормированных чисел всегда равен 1, поэтому в некоторых представлениях типов этот бит опущен и принимается равным 1.
  • мантисса — значащие разряды представления числа, стоящие после разделителя целой и дробной части в нормированной форме.

Различают три основных типа представления вещественных чисел в языке Си:

Как видно из таблицы, бит целое у типов float и double отсутствует. При этом диапазон представления вещественного числа состоит из двух диапазонов, расположенных симметрично относительно нуля. Например, диапазон представления чисел типа float можно представить в виде:

Пример : представить число -178,125 в 32-разрядной сетке (тип float ).

Для представления числа в двоичной системе счисления преобразуем отдельно целую и дробную части:

178 10 = 10110010 2 .

0,125 10 = 0,001 2 .

178,125 10 = 10110010,001 2 =1,0110010001·2 111

Для преобразования в нормированную форму осуществляется сдвиг на 7 разрядов влево).

Для определения степени числа применяем сдвиг:

0111111+00000111 = 10000110 .

Таким образом, число -178,125 представится в разрядной сетке как

Символьный тип

Символьный тип хранит код символа и используется для отображения символов в различных кодировках. Символьные данные задаются в кодах и по сути представляют собой целочисленные значения. Для хранения кодов символов в языке Си используется тип char .

Логический тип

Логический тип имеет применяется в логических операциях, используется при алгоритмических проверках условий и в циклах и имеет два значения:

  • истина — true
  • ложь — — false

В программе должно быть дано объявление всех используемых данных с указанием их имени и типа. Описание данных должно предшествовать их использованию в программе.

Пример объявления объектов

int n; // Переменная n целого типа
double a; // Переменная a вещественного типа двойной точности

Типы данных

Типы данных имеют особенное значение в C#, поскольку это строго типизированный язык. Это означает, что все операции подвергаются строгому контролю со стороны компилятора на соответствие типов, причем недопустимые операции не компилируются. Следовательно, строгий контроль типов позволяет исключить ошибки и повысить надежность программ. Для обеспечения контроля типов все переменные, выражения и значения должны принадлежать к определенному типу. Такого понятия, как "бестиповая" переменная, в данном языке программирования вообще не существует. Более того, тип значения определяет те операции, которые разрешается выполнять над ним. Операция, разрешенная для одного типа данных, может оказаться недопустимой для другого.

В C# имеются две общие категории встроенных типов данных: типы значений и ссылочные типы . Они отличаются по содержимому переменной. Концептуально разница между ними состоит в том, что тип значения (value type) хранит данные непосредственно, в то время как ссылочный тип (reference type) хранит ссылку на значение.

Эти типы сохраняются в разных местах памяти: типы значений сохраняются в области, известной как стек , а ссылочные типы - в области, называемой управляемой кучей .

Давайте разберем типы значений.

Целочисленные типы

В C# определены девять целочисленных типов: char, byte, sbyte, short, ushort, int, uint, long и ulong . Но тип char применяется, главным образом, для представления символов и поэтому рассматривается отдельно. Остальные восемь целочисленных типов предназначены для числовых расчетов. Ниже представлены их диапазон представления чисел и разрядность в битах:

Целочисленные типы C#
Тип Тип CTS Разрядность в битах Диапазон
byte System.Byte 8 0:255
sbyte System.SByte 8 -128:127
short System.Int16 16 -32768: 32767
ushort System.UInt16 16 0: 65535
int System.Int32 32 -2147483648: 2147483647
uint System.UInt32 32 0: 4294967295
long System.Int64 64 -9223372036854775808: 9223372036854775807
ulong System.UInt64 64 0: 18446744073709551615

Как следует из приведенной выше таблицы, в C# определены оба варианта различных целочисленных типов: со знаком и без знака. Целочисленные типы со знаком отличаются от аналогичных типов без знака способом интерпретации старшего разряда целого числа. Так, если в программе указано целочисленное значение со знаком, то компилятор C# сгенерирует код, в котором старший разряд целого числа используется в качестве флага знака. Число считается положительным, если флаг знака равен 0, и отрицательным, если он равен 1.

Отрицательные числа практически всегда представляются методом дополнения до двух, в соответствии с которым все двоичные разряды отрицательного числа сначала инвертируются, а затем к этому числу добавляется 1.

Вероятно, самым распространенным в программировании целочисленным типом является тип int . Переменные типа int нередко используются для управления циклами, индексирования массивов и математических расчетов общего назначения. Когда же требуется целочисленное значение с большим диапазоном представления чисел, чем у типа int, то для этой цели имеется целый ряд других целочисленных типов.

Так, если значение нужно сохранить без знака, то для него можно выбрать тип uint , для больших значений со знаком - тип long , а для больших значений без знака - тип ulong . В качестве примера ниже приведена программа, вычисляющая расстояние от Земли до Солнца в сантиметрах. Для хранения столь большого значения в ней используется переменная типа long:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { long result; const long km = 149800000; // расстояние в км. result = km * 1000 * 100; Console.WriteLine(result); Console.ReadLine(); } } }

Всем целочисленным переменным значения могут присваиваться в десятичной или шестнадцатеричной системе обозначений. В последнем случае требуется префикс 0x:

Long x = 0x12ab;

Если возникает какая-то неопределенность относительно того, имеет ли целое значение тип int, uint, long или ulong, то по умолчанию принимается int. Чтобы явно специфицировать, какой другой целочисленный тип должно иметь значение, к числу можно добавлять следующие символы:

Uint ui = 1234U; long l = 1234L; ulong ul = 1234UL;

U и L можно также указывать в нижнем регистре, хотя строчную L легко зрительно спутать с цифрой 1 (единица).

Типы с плавающей точкой

Типы с плавающей точкой позволяют представлять числа с дробной частью. В C# имеются две разновидности типов данных с плавающей точкой: float и double . Они представляют числовые значения с одинарной и двойной точностью соответственно. Так, разрядность типа float составляет 32 бита, что приближенно соответствует диапазону представления чисел от 5E-45 до 3,4E+38. А разрядность типа double составляет 64 бита, что приближенно соответствует диапазону представления чисел от 5E-324 до 1,7Е+308.

Тип данных float предназначен для меньших значений с плавающей точкой, для которых требуется меньшая точность. Тип данных double больше, чем float, и предлагает более высокую степень точности (15 разрядов).

Если нецелочисленное значение жестко кодируется в исходном тексте (например, 12.3), то обычно компилятор предполагает, что подразумевается значение типа double. Если значение необходимо специфицировать как float, потребуется добавить к нему символ F (или f):

Float f = 12.3F;

Десятичный тип данных

Для представления чисел с плавающей точкой высокой точности предусмотрен также десятичный тип decimal , который предназначен для применения в финансовых расчетах. Этот тип имеет разрядность 128 бит для представления числовых значений в пределах от 1Е-28 до 7,9Е+28. Вам, вероятно, известно, что для обычных арифметических вычислений с плавающей точкой характерны ошибки округления десятичных значений. Эти ошибки исключаются при использовании типа decimal, который позволяет представить числа с точностью до 28 (а иногда и 29) десятичных разрядов. Благодаря тому что этот тип данных способен представлять десятичные значения без ошибок округления, он особенно удобен для расчетов, связанных с финансами:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { // *** Расчет стоимости капиталовложения с *** // *** фиксированной нормой прибыли*** decimal money, percent; int i; const byte years = 15; money = 1000.0m; percent = 0.045m; for (i = 1; i

Результатом работы данной программы будет:

Символы

В C# символы представлены не 8-разрядным кодом, как во многих других языках программирования, например С++ , а 16-разрядным кодом, который называется юникодом (Unicode) . В юникоде набор символов представлен настолько широко, что он охватывает символы практически из всех естественных языков на свете. Если для многих естественных языков, в том числе английского, французского и немецкого, характерны относительно небольшие алфавиты, то в ряде других языков, например китайском, употребляются довольно обширные наборы символов, которые нельзя представить 8-разрядным кодом. Для преодоления этого ограничения в C# определен тип char , представляющий 16-разрядные значения без знака в пределах от 0 до 65 535. При этом стандартный набор символов в 8-разрядном коде ASCII является подмножеством юникода в пределах от 0 до 127. Следовательно, символы в коде ASCII по-прежнему остаются действительными в C#.

Floating-point numbers use the IEEE (Institute of Electrical and Electronics Engineers) format. Single-precision values with float type have 4 bytes, consisting of a sign bit, an 8-bit excess-127 binary exponent, and a 23-bit mantissa. The mantissa represents a number between 1.0 and 2.0. Since the high-order bit of the mantissa is always 1, it is not stored in the number. This representation gives a range of approximately 3.4E-38 to 3.4E+38 for type float.

You can declare variables as float or double, depending on the needs of your application. The principal differences between the two types are the significance they can represent, the storage they require, and their range. The following table shows the relationship between significance and storage requirements.

Floating-Point Types

Type Significant digits Number of bytes
float 6 - 7 4
double 15 - 16 8

Floating-point variables are represented by a mantissa, which contains the value of the number, and an exponent, which contains the order of magnitude of the number.

The following table shows the number of bits allocated to the mantissa and the exponent for each floating-point type. The most significant bit of any float or double is always the sign bit. If it is 1, the number is considered negative; otherwise, it is considered a positive number.

Lengths of Exponents and Mantissas

Type Exponent length Mantissa length
float 8 bits 23 bits
double 11 bits 52 bits

Because exponents are stored in an unsigned form, the exponent is biased by half its possible value. For type float, the bias is 127; for type double, it is 1023. You can compute the actual exponent value by subtracting the bias value from the exponent value.

The mantissa is stored as a binary fraction greater than or equal to 1 and less than 2. For types float and double, there is an implied leading 1 in the mantissa in the most-significant bit position, so the mantissas are actually 24 and 53 bits long, respectively, even though the most-significant bit is never stored in memory.

Instead of the storage method just described, the floating-point package can store binary floating-point numbers as denormalized numbers. "Denormalized numbers" are nonzero floating-point numbers with reserved exponent values in which the most-significant bit of the mantissa is 0. By using the denormalized format, the range of a floating-point number can be extended at the cost of precision. You cannot control whether a floating-point number is represented in normalized or denormalized form; the floating-point package determines the representation. The floating-point package never uses a denormalized form unless the exponent becomes less than the minimum that can be represented in a normalized form.

The following table shows the minimum and maximum values you can store in variables of each floating-point type. The values listed in this table apply only to normalized floating-point numbers; denormalized floating-point numbers have a smaller minimum value. Note that numbers retained in 80x 87 registers are always represented in 80-bit normalized form; numbers can only be represented in denormalized form when stored in 32-bit or 64-bit floating-point variables (variables of type float and type long).

Range of Floating-Point Types

Type Minimum value Maximum value
float 1.175494351 E - 38 3.402823466 E + 38
double 2.2250738585072014 E - 308 1.7976931348623158 E + 308

If precision is less of a concern than storage, consider using type float for floating-point variables. Conversely, if precision is the most important criterion, use type double.

Floating-point variables can be promoted to a type of greater significance (from type float to type double). Promotion often occurs when you perform arithmetic on floating-point variables. This arithmetic is always done in as high a degree of precision as the variable with the highest degree of precision. For example, consider the following type declarations:

Float f_short; double f_long; long double f_longer; f_short = f_short * f_long;

In the preceding example, the variable f_short is promoted to type double and multiplied by f_long ; then the result is rounded to type float before being assigned to f_short .

In the following example (which uses the declarations from the preceding example), the arithmetic is done in float (32-bit) precision on the variables; the result is then promoted to type double:

F_longer = f_short * f_short;

See also

Feedback

We"d love to hear your thoughts. Choose the type you"d like to provide.



Загрузка...