sonyps4.ru

Квантовый компьютер. Квантовый компьютер — его ждут и боятся

Передовые суперкомпьютеры уже способны выполнять десятки квадриллионов операций в секунду. Но есть целый ряд задач, которые они решить не могут. Приведем пример.

Нас всюду окружают криптографические технологии: они используются в мессенджерах или операциях с банковскими картами, криптовалютах, при безопасном хранении данных и так далее. Информация постоянно шифруется на этапе ее отправки и дешифруется после получения, чтобы ее могли прочитать только те, для кого она предназначена. Есть различные системы шифрования (AES, RSA), но все они так или иначе строятся на использовании факторизации (разложения на простые множители).

Как вы думаете, какие именно простые числа мы перемножили, чтобы получить число ниже, представляющее собой 2048-битный ключ шифрования (такими ключами, сгенерированными по алгоритму RSA, адресаты обмениваются, чтобы подписывать с их помощью секретные сообщения)?

Не трудитесь: узнать, из каких простых чисел они сделаны - сложнейшая задача. Но трудна она не только для вас, но и для классического компьютера. Если мы используем все вычислительные мощности в мире, то ее решение займет миллиард лет! А вот квантовый компьютер смог бы решить ее за 100 секунд. Сделать это позволит его бешеная скорость.

Столь серьезное увеличение в скорости решения задач, кстати, повлечет за собой перестройку всей мировой финансовой системы, ведь без надежного шифрования она просто не сможет функционировать (шутка ли - каждый, у кого будет квантовый компьютер, сможет подделать информацию о том, что владеет любой суммой денег).

Если изобретение квантового компьютера повлечет за собой такие масштабные изменения, может быть, лучше обойтись вовсе без него? Едва ли, ведь пользы от таких машин несравнимо больше, чем хлопот. Существующие двоичные суперкомпьютеры очень мощны, однако, несмотря на впечатляющие характеристики, они вряд ли будут способны решить все задачи, которые планирует поставить перед ними человек.

Сегодня, к примеру, порядка 35% времени суперкомпьютеров уходит на решение задач в области квантовой химии и материаловедения: чтобы просчитывать поведение отдельных молекул, требуются колоссальные затраты вычислительных ресурсов (и речь только о тех задачах, способ решения которых нам известен уже сейчас).

В дополнение к этому есть целый ряд задач, решение которых займет у классических компьютеров миллионы лет или которые пока невозможно решить совсем, даже теоретически. Так, чтобы точно понять, как, к примеру, пойдет та или иная химическая реакция, нужно учитывать задействованные в ней квантовые процессы, а сделать это можно только при помощи квантового компьютера. В случае успеха это даст людям возможность досконально изучить (а значит, и повторить) такие явление, как, например, фотосинтез.

Почему же квантовые компьютеры такие мощные? Главное, что отличает их от классических двоичных, - использование кубитов, которые, в отличие от битов, способны одновременно принимать два значения: 0 и 1. Такая «двойственность» обеспечивает параллельность квантовых вычислений, ведь больше не нужно перебирать все возможные состояния системы. Набор всего из 30 кубитов может сформировать 2 30 (то есть более миллиарда) двоичных последовательностей - именно такое количество битов потребуется на их одновременную обработку. Просто космическая экономия места, энергии и времени!

На квантовом компьютере мощностью 100-200 кубит мы могли бы строить точные симуляции сложных химических процессов: таких, как, например, азотная фиксация - превращение содержащегося в атмосфере азота в азотосодержащие соединения. Эта реакция широго используется для получения аммиака, необходимого для производства удобрений, критически важных для обеспечения едой постоянно растущего населения планеты. Промышленный процесс получения аммиака практически не изменился за последнее столетие и отличается большой энергоемкостью: на производство его уходит от 1% до 3% мировых запасов природного газа. На достаточно мощном квантовом компьютере путем симуляции ученые могли бы подобрать более эффективные катализаторы, которые помогут сделать реакцию менее энергозатратной.

Благодаря квантовому компьютеру могут быть решены и такие задачи, как поиск разумной жизни во Вселенной, разработка новых способов передачи энергии на основе сверхпроводников, диагностирование рака на более ранних стадиях, моделирование молекул ДНК и создание веществ, которые помогут очистить воздух от вредных загрязнений. Высокая вычислительная мощность квантовых компьютеров может серьезно помочь и в создании новых эффективных лекарств.

Обнадеживает то, что человечество все ближе подбирается к созданию полноценного квантового компьютера - мировые корпорации уже давно инвестируют в эту область. В частности, системы топологических кубитов, созданные в Microsoft, уже показали способность сохранять квантовое состояние в течение длительного времени без дополнительных ухищрений, а также масштабироваться до размеров полноценного компьютера. А в конце прошлого года компания представила язык программирования для квантового компьютера.

Идея, еще 30 лет назад казавшаяся чистой фантастикой, сегодня приобрела реальные очертания. Кто знает, может, уже в следующем десятилетии мы станем свидетелями новой эры цифровых технологий и квантовый компьютер преобразит наш мир до неузнаваемости, предоставив человеку возможности, о которых ранее он мог лишь мечтать.

Квантовый компьютер - вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Полноценный универсальный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; разработки в данной области связаны с новейшими открытиями и достижениями современной физики. На настоящий момент были практически реализованы лишь единичные экспериментальные системы, исполняющие фиксированный алгоритм небольшой сложности.

Ученые из Московского физико-технического института, вместе с коллегами из и Швейцарии провели эксперименты, в которых успешно заставили квантовый компьютер вернуться в состояние прошлого. Краткие выводы исследования, в которых описывается возможность проявления этого эффекта, сообщает пресс-релиз, опубликованный на сайте Phys.org. Подробности исследования международной команды физиков в журнале Scientific Reports.

Многие эксперты уверены, что с появлением полноценных квантовых компьютеров эра криптовалют и блокчейна подойдёт к своему логическому концу — системы криптографии, на которых основаны криптовалюты, будут моментально взломаны, а сами криптовалюты обесценятся, ведь первое, что сделает владелец квантового компьютера, — намайнит оставшиеся Биткоины, Эфиры и другие популярные «монеты». Именно так считает Алекс Бит, канадский физик, предсказавший безрадостное криптовалютное будущее в квантовой эре.

Квантовый компьютер — это не просто компьютер будущего поколения, это нечто гораздо большее. Не только с точки зрения применения новейших технологий, но и с точки зрения его неограниченных, невероятных, фантастических возможностей, способных не только изменить мир людей, но даже … создавать иную реальность.

Как известно, современные компьютеры используют память, представленную в двоичном коде: 0 и 1. Точно так же как в азбуке Морзе — точка и титре. С помощью двух знаков можно зашифровать любую информацию, путем варьирования их сочетаний.

В памяти современного компьютера миллиарды этих битов. Но каждый из них может быть в одном из двух состояний — либо ноль, либо один. Как лампочка: либо включена, либо выключена.

Квантовый бит (кубит) — наименьший элемент хранения информации в компьютере будущего. Единицей информации в квантовом компьютере теперь может быть не только нуль или единица, а то и другое одновременно .

Одна ячейка выполняет два действия, две -четыре, четыре — шестнадцать и т. д. Именно поэтому квантовые системы могут работать в два раза быстрее и с большими объемами информации, чем современные.

Впервые «измерили» кубит (Q-bit) ученые Российского квантового центра (РКЦ) и Лаборатории сверхпроводящих мета материалов.

С технической стороны, кубит, — это диаметром в несколько микрон металлическое кольцо с разрезами, напылённое на полупроводник. Кольцо охлаждается до сверхнизких температур для того, что бы оно стало сверхпроводником. Допускаем, что ток, протекающий по кольцу, идет по часовой стрелке — это 1. Против — 0. То есть два обычных состояния.

Через кольцо пропустили микроволновое излучение. На выходе из кольца этого излучения, измеряли сдвиг тока по фазе. Оказалось, что вся эта система может находиться как в двух основных, так и смешанном состоянии: тем и другим одновременно!!! В науке это называется принципом суперпозиции.

Эксперимент русских ученых (аналогичный провели и ученые других стран), доказал, что кубит имеет право на жизнь. Создание кубита подвело к идее и приблизило ученых к мечте по созданию оптического квантового компьютера. Осталось его только сконструировать и создать. Но не все так просто…

Сложности, проблемы в создании квантового компьютера

Если требуется, к примеру, обсчитать миллиард вариантов в современном компьютере, то ему нужно «прокрутить» миллиард подобных циклов. На квантовом компьютере имеется принципиальное отличие, он может просчитывать все эти варианты одновременно.
Один из главных принципов, на которых будет работать квантовый компьютер, — это принцип суперпозиции и иначе, как магическим, его не назовешь!
Он означает, что один и тот же человек может находится в разных местах в одно и то же время. Физики шутят: » Если вас не шокирует квантовая теория, значит вы ее не поняли».

Внешний вид создаваемых сейчас квантовых компьютеров разительно отличается от классических. Они похожи… на самогонный аппарат:

Такая конструкция, сотоящая из медных и золотых частей, змеевиков-охладителей и пр. характерных деталей, разумеется не устраивает его создателей. Одна из основных задач ученых сделать ее компактной и дешевой. Что бы это произошло, нужно решить несколько проблем.

Проблема первая — неустойчивость суперпозиций

Все эти квантовые суперпозиции очень «нежные». Как только на них начинаешь смотреть, как только они начинают взаимодействовать с другими объектами, так они сразу разрушаются. Становятся, как бы классическими. Это одна из самых важных проблем в создании квантового компьютера.

Проблема вторая — требуется сильное охлаждение

Второе препятствие — для достижения стабильной работы квантового компьютера. в том виде, какой имеем на сегодня, требуется его сильное охлаждение. Сильное, это создание аппаратуры, в которой поддерживается температура близкая к абсолютному нулю — минус 273 градуса по Цельсию! Поэтому сейчас прототипы таких компьютеров, со своими криогенно-вакуумными установками, выглядят очень громоздко:

Однако ученые уверены, что вскоре все технические проблемы будут решены и однажды квантовые компьютеры, обладающие огромной вычислительной мощью, заменят современные.

Некоторые технические решения в решении проблем

К настоящему времени, ученые нашли ряд существенных решений в решении вышеизложенных проблем. Эти технологические находки, результат сложной, а иногда и длительной, напряженной работы ученых, заслуживает всяческого уважения.

Лучший путь к совершенствованию работы кубита… бриллианты

Все очень похоже на известную песню о девушках и бриллиантах. Главное, над чем сейчас работают ученые -поднять время жизни кубита, а так же «заставить» работать квантовый компьютер при обычных температурах . Да, для связи между квантовыми компьютерами нужны бриллианты! Для всего этого пришлось создавать и использовать искусственные алмазы сверх высокой прозрачности. С их помощью смогли продлить жизнь кубита до двух секунд. Эти скромные достижения: две секунды жизни кубита и работа компьютера при комнатной температуре, на самом деле революция в науке.

Суть эксперимента французского ученого Сержа Ароша основана на том, что он сумел показать всему миру, что свет (квантовый поток фотонов), проходящий между двумя специально созданными им зеркалами, не теряет квантового состояния.

Заставив свет пройти 40 000 км между этими зеркалами, он определил, все происходит без потери квантового состояния. Свет состоит из фотонов и до сих пор никто не мог выяснить, теряют ли они свое квантовое состояние при прохождении определенного расстояния. Лауреат Нобелевской премии Серж Арош: «Один фотон находится в нескольких местах одновременно , нам удалось это зафиксировать.» На самом деле это и есть принцип суперпозиции . «В нашем большом мире такое невозможно. А в микро-мире — другие законы.», — говорит Арош.


Внутри резонатора находились классические атомы, которые можно измерить. По поведению атомов физик научился определять и измерять неуловимые квантовые частицы. До экспериментов Ароша считалось, что наблюдение за квантами невозможно. После эксперимента — заговорили о покорении фотонов, то есть о приближении эры квантовых компьютеров.

Почему многие с нетерпением ждут создания полноценного квантового генератора, а другие его боятся

Квантовый компьютер подарит человечеству огромные возможности

Квантовый компьютер откроет перед человечеством необозримые возможности. Например, поможет создать искусственный разум, о котором столько времени бредят фантасты. Или смоделировать вселенную. Целиком. По самым скромным прогнозам он позволит заглянуть за грани возможного. Давайте представим мир, где можно смоделировать абсолютно все, что пожелаешь: спроектировать молекулу, сверхпрочный металл, быстро разлагающийся пластик, придумать лекарства от неизлечимых болезней. Машина смоделирует весь наш мир, целиком, до последнего атома. Можно даже смоделировать другой мир, пусть даже виртуальный.

Квантовый компьютер сможет стать орудием Апокалипсиса

Многие люди, вникнув в суть квантовой технологии, боятся ее по разным причинам. Уже сейчас компьютеризация и все околокомпьютерные технологии, пугают обывателя. Достаточно вспомнить скандалы о том, как специальные службы с помощью встроенных программ в ПК и даже бытовые приборы, организуют слежку и сбор данных об их потребителях. Например во многих странах запретили всем известные очки — ведь они являются идеальным средством для скрытой съемки и слежки. Уже сейчас, наверняка, каждый житель любой страны, а тем более пользователь в Сети, занесен в какую-нибудь базу данных. Более того и вполне реально, определенные службы могут просчитывать каждое его действие в интернете.

Но для квантовых компьютеров не будет тайн! Вообще никаких. Вся компьютерная безопасность держится на очень длинных числах-паролях. Что бы получить подобрать ключ к коду, обычному компьютеру понадобиться миллион лет. Но с помощью квантового это сможет сделать любой и мгновенно. Получается, что в мире станет совершенно небезопасно: ведь в современном мире все контролируется с помощью компьютеров: банковские переводы, полеты самолетов, фондовые биржи, ракетно-ядерное оружие! Вот и получается: кто владеет информацией, тот владеет Миром. Кто первый — тот и бог. Квантовый компьютер станет сильнее любого комплекса вооружений . На Земле может начаться (или уже началась) новая гонка вооружений, только теперь не ядерная, а компьютерная.

Дай нам Бог выйти из нее благополучно…

Вы все привыкли к нашим компьютерам: утром читаем новости со смартфона, днем работаем с ноутбуком, а вечером смотрим фильмы на планшете. Все эти девайсы объединяет одно - кремниевый процессор, состоящий из миллиардов транзисторов. Принцип работы таких транзисторов достаточно прост - в зависимости от подведенного напряжения мы получаем на выходе другое напряжение, которое интерпретируется или как логический 0, или как логическая 1. Для того, чтобы проводить операции деления, есть битовый сдвиг - если у нас, к примеру, было число 1101, то после сдвига на 1 бит влево будет 01101, а если теперь сдвинуть его на 1 бит вправо - будет 01110. И основная проблема кроется в том, что для все того же деления может понадобиться несколько десятков таких операций. Да, с учетом того, что транзисторов миллиарды, такая операция занимает наносекунды, но вот если операций много - мы теряем на эти вычисления время.

Принцип работы квантовых компьютеров

Квантовый компьютер же предлагает совершенно другой способ вычислений. Начнем с определения:

Квантовый компьютер - вычислительное устройство , которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных.

Понятнее явно не стало. Квантовая суперпозиция говорит нам о том, что система с какой-то долей вероятности существует во всех возможных для нее состояниях (при этом сумма всех вероятностей, разумеется, равна 100% или 1). Разберем это на примере. Информация в квантовых компьютерах хранится в кубитах - если обычные биты могут иметь состояние 0 или 1, то кубит может иметь состояние 0, 1, и 0 и 1 одновременно. Поэтому если мы имеем 3 кубита, к примеру 110, то это выражение в битах равносильно 000, 001, 010, 011, 100, 101, 110, 111.

Что это нам дает? Да все! К примеру, у нас есть циферный пароль из 4 символов. Как будет его взламывать обычный процессор? Простым перебором от 0000 до 9999. 9999 в двоичной системе имеет вид 10011100001111, то есть для его записи нам нужно 14 бит. Поэтому если мы имеем квантовый ПК с 14 кубитами - мы уже знаем пароль: ведь одно из возможных состояний такой системы и есть пароль! В результате все задачи, которые сейчас сутками считают даже суперкомпьютеры, на квантовых системах будут решаться моментально: нужно найти вещество с определенными свойствами? Не проблема, сделайте систему с таким же количеством кубитов, сколько у вас требований к веществу - и ответ уже будет у вас в кармане. Нужно создать ИИ (искусственный интеллект? Проще некуда: пока обычный ПК будет перебирать все комбинации, квантовый компьютер сработает молниеносно, выбрав лучший ответ.


Казалось бы, все здорово, но есть одна важная проблема - как нам узнать результат вычислений? С обычным ПК все просто - мы можем взять и считать его, напрямую подключившись к процессору: логические 0 и 1 там совершенно определенно интерпретируются как отсутствие и наличие заряда. Но вот с кубитами такое не пройдет - ведь в каждый момент времени он находится в произвольном состоянии. И тут нам на помощь приходит квантовая запутанность. Ее суть заключается в том, что можно получить пару частиц, которые связаны друг с другом (говоря научным языком - если, к примеру, проекция спина одной запутанной частицы отрицательна, то другой обязательно будет положительной). Как это выглядит на пальцах? Допустим, у нас есть две коробки, в которых лежит по бумажке. Мы разносим коробки на любое расстояние, открываем одну из них и видим, что бумажка в ней в горизонтальную полоску. Это автоматически означает, что другая бумажка будет в вертикальную полоску. Но вот проблема в том, что как только мы узнали состояние одной бумажки (или частицы), квантовая система рушится - неопределенность исчезает, кубиты превращаются в обычный биты.

Поэтому вычисления на квантовых компьютерах по сути одноразовы: мы создаем систему, которая состоит из запутанных частиц (где находятся их вторые «половинки» мы знаем). Мы проводим вычисления, и после этого «открываем коробку с бумажкой» - узнаем состояние запутанных частиц, а значит и состояние частиц в квантовом компьютере, а значит и результат вычислений. Так что для новых вычислений нужно снова создавать кубиты - просто «закрыть коробку с бумажкой» не получится - мы ведь уже знаем, что нарисовано на бумажке.

Возникает вопрос - раз квантовый компьютер может моментально подбирать любые пароли - как защитить информацию? Неужели с приходом таких устройств исчезнет конфиденциальность? Конечно же нет. На помощь приходит так называемое квантовое шифрование: оно основано на том, что при попытке «прочесть» квантовое состояние оно разрушается, что делает любой взлом невозможным.

Домашний квантовый компьютер

Ну и последний вопрос - раз квантовые компьютеры такие классные, мощные и не взламываемые - почему мы ими не пользуемся? Проблема банальна - невозможность реализовать квантовую систему в обычных домашних условиях. Для того, чтобы кубит мог существовать в состоянии суперпозиции бесконечно долго, нужны крайне специфические условия: это полный вакуум (отсутствие других частиц), температура, максимально близкая к нулю по Кельвину (для сверхпроводимости), и полное отсутствие электромагнитного излучения (для отсутствия влияния на квантовую систему). Согласитесь, создать такие условия дома мягко говоря трудновато, а ведь малейшее отклонение приведет к тому, что состояние суперпозиции исчезнет, и результаты вычислений будут неверными. Вторая проблема - это заставить кубиты взаимодействовать друг с другом - при взаимодействии их время жизни катастрофически уменьшается. В итоге самый максимум на данный день - это квантовые компьютеры с парой десятков кубитов.

Однако, есть квантовые компьютеры от D-Wave, которые имеют 1000 кубитов, но, вообще говоря, настоящими квантовыми компьютерами они не являются, ибо не используют принципы квантовой запутанности, поэтому они не могут работать по классическим квантовым алгоритмам:


Но все же такие устройства оказываются ощутимо (в тысячи раз) мощнее обычных ПК, что можно считать прорывом. Однако заменят пользовательские устройства они ох как не скоро - для начала нам нужно или научиться создавать условия для работы таких устройств дома, или же наоборот, «заставить» работать такие устройства в привычных нам условиях. Шаги во втором направлении уже были сделаны - в 2013 году был создан первый двухкубитный квантовый компьютер на алмазе с примесями, работающий при комнатной температуре. Однако увы - это всего лишь опытный образец, да и 2 кубита - маловато для вычислений. Так что ждать квантовых ПК еще очень и очень долго.



Загрузка...