sonyps4.ru

Кто изобрел процессор. История процессоров

Сейчас, даже более мене продвинутые мобильные телефоны не обходятся без микропроцессора, что уже говорить о планшетных, переносных и настольных персональных компьютерах. Что же такое микропроцессор и как развивалась история его создания? Если говорить на понятном языке, то микропроцессор – это более сложная и многофункциональная интегральная схема.

История микросхемы (интегральной схемы) начинается с 1958 года , когда сотрудник американской фирмы Texas Instruments Джек Килби изобрел некое полупроводниковое устройство, содержащее в одном корпусе несколько транзисторов, соединенных между собой проводниками. Первая микросхема – прародительница микропроцессора – содержала всего лишь 6 транзисторов и представляла собой тонкую пластину из германия с нанесёнными на неё дорожками, выполненными из золота, Расположено всё это было на стеклянной подложке. Для сравнения, сегодня счет идет на единицы и даже десятки миллионов полупроводниковых элементов.

К 1970 году достаточно много производителей занимались разработкой и созданием интегральных схем различной емкости и разной функциональной направленности. Но именно этот год можно считать датой рождения первого микропроцессора. Именно в этом году фирма Intel создает микросхему памяти емкостью всего лишь 1 Кбит – ничтожно мало для современных процессоров, но невероятно велико для того времени. На то время это было огромнейшее достижение – микросхема памяти способна была хранить до 128 байт информации – намного выше подобных аналогов. Кроме этого примерно в тоже время японский производитель калькуляторов Busicom заказала той же Intel 12 микросхем различной функциональной направленности. Специалистам Intel удалось реализовать все 12 функциональных направленностей в одной микросхеме. Более того, созданная микросхема оказалась многофункциональной, поскольку позволяла программно менять свои функции, не меняя при этом физической структуры. Микросхема выполняла определенные функции в зависимости от подаваемых на ее управляющие выводы команд.

Уже через год в 1971 Intel выпускает первый 4-разрядный микропроцессор под кодовым именем 4004. По сравнению с первой микросхемой в 6 транзисторов, он содержал аж 2,3 тыс. полупроводниковых элементов и выполнял 60 тыс. операций в секунду. На то время – это был огромнейший прорыв в области микроэлектроники. 4-разрядный означало то, что 4004 мог обрабатывать сразу 4-х битные данные. Еще через два года в 1973 фирма выпускает 8-ми разрядный процессор 8008, который работал уже с 8-ми битными данными. Начиная с 1976 года , компания начинает разрабатывать уже 16-разрадную версию микропроцессора 8086. Именно он начал применяться в первых персональных компьютерах IBM и, по сути заложил один из кирпичиков в историю ЭВМ.

Типы микропроцессоров

По характеру исполняемого кода и организации устройства управления выделяется несколько типов архитектур:

    Процессор со сложным набором инструкций. Эту архитектуру характеризует большое количество сложных инструкций, и как следствие сложное устройство управления. В ранних вариантах CISC-процессоров и процессоров для встроенных приложений характерны большие времена исполнения инструкций (от нескольких тактов до сотни), определяемые микрокодом устройства управления. Для высокопроизводительных суперскалярных процессоров свойственны глубокий анализ программы, внеочередное исполнение операций.

    Процессор с упрощённым набором инструкций. В этой архитектуре значительно более простое устройство управления. Большинство инструкций RISC-процессора сожержат одинаковое малое число операций (1, иногда 2-3), а сами командные слова в подавляющем числе случаев имеют одинаковую ширину (PowerPC, ARM), хотя бывают исключения (Coldfire). У суперскалярных процессоров - простейшая группировка инструкций без изменения порядка исполнения.

    Процессор с явным параллелизмом. Отличается от прочих прежде всего тем, что последовательность и параллельность исполнения операций и их распределение по функциональным устройствам явно определены программой. Такие процессоры могут обладать большим количеством функциональных устройств без особого усложнения устройства управления и потерь эффективности. Обычно такие процессоры используют широкое командное слово, состоящее из нескольких слогов, определяющих поведение каждого функционального устройства в течение такта.

    Процессор с минимальным набором инструкций. Эта архитектура определяется прежде всего свехмалым количеством инструкций (несколько десятков), и почти все они нуль-операндные. Такой подход даёт возможность очень плотно упаковать код, выделив под одну инструкцию от 5 до 8 бит. Промежуточные данные в таком процессоре обычно хранятся на внутреннем стеке, и операции производятся над значениям на вершине стека. Эта архитектура тесно связана с идеологией программирования на языке Forth и обычно используется для исполнения программ, написанных на этом языке.

    Процессор с изменяемым набором инструкций. Архитектура, позволяющая перепрограммировать себя, изменяя набор инструкций, подстраивая его под решаемую задачу.

    Транспорт-управляемый процессор. Архитектура изначально ответвилась от EPIC, но принципиально отличающаяся от остальных тем, что инструкции такого процессора кодируют функциональные операции, а так называемые транспорты - пересылки данных между функциональными устройствами и памятью в произвольном порядке.

По способу хранения программ выделяется две архитектуры:

    Архитектура фон Неймана . В процессорах этой архитектуры используется одна шина и одно устройство ввода-вывода для обращения к программе и данным.

    Гарвардская архитектура. В процессорах этой архитектуры для выборки программ и обмена данным существуют отдельные шины и устройства ввода-вывода. Во встроенных микропроцессорах, микроконтроллерах и ПЦОС это также определяет существование двух независимых запоминающих устройств для хранения программ и данных. В центральных процессорах это определяет существование отдельного кэша инструкций и данных. За кэшем шины могут быть объединены в одну посредством мультиплексирования.

История развития процессоров

Характеристики МП

Контрольные вопросы

История развития процессоров с 1971 года до наших дней

Интересен тот факт, что первый процессор был выпущен на 10 лет раньше первого ком­пьютера IBM PC. Компания Intel создала свой первый процессор в 1971 году, а компания IBM свой первый ПК - в 1981 году. Но даже теперь, спустя более четверти века, мы продол­жаем использовать системы, в той или иной мере сходные по архитектуре с первым ПК. Про­цессоры, установленные в наших компьютерах сегодня, большей частью имеют обратную совместимость с процессором 8088, который компания IBM выбрала для своего первого персо­нального компьютера в 1981 году.

15 ноября 2001 года микропроцессор отпраздновал свое 30-летие. За эти годы его быстро­действие увеличилось более чем в 18500 раз (с 0,108 МГц до 2 ГГц). Процессор 4004 был представлен 15 ноября 1971 года; он работал на частоте 108 кГц (108000 тактов в секунду, или всего 0,1 МГц). Про­цессор 4004 содержал 2300 транзисторов и производился с использованием 10-микронной технологии. Это означает, что все линии, дорожки и транзисторы располагались от других элементов на расстоянии около 10 микрон (миллионная часть метра). Данные передавались блоками по 4 бит за такт, а максимальный адресуемый объем памяти составлял 640 байт. Процессор 4004 предназначался для использования в калькуляторах, однако в конечном ито­ге нашел и другие применения в связи с широкими возможностями программирования. На­пример, процессор 4004 использовался для управления светофорами, при анализе крови и даже в исследовательской ракете Pioneer 10, запущенной NASA!

В апреле 1972 года Intel выпустила процессор 8008, который работал на частоте 200 кГц. Он содержал 3500 транзисторов и производился все по той же 10-микронной технологии. Шина данных была 8-разрядной, что позволяло адресовать 16 Кбайт памяти. Этот процессор предназначался для использования в терминалах и программируемых калькуляторах.

Следующая модель процессора, 8080, была анонсирована в апреле 1974 года. Этот процессор содержал 6000 транзисторов и мог адресовать уже 64 Кбайт памяти. На нем был собран первый персональный компьютер (не PC) Altair 8800. В этом компьютере использовалась операционная система CP/M, а Microsoft разработала для него интерпретатор языка BASIC. Это была первая массовая модель компьютера, для которого были написаны тысячи программ.

Со временем процессор 8080 стал настолько известен, что его начали копировать. В конце 1975 года несколько бывших инженеров Intel, занимавшихся разработкой процессора 8080, создали компанию Zilog. В июле 1976 года эта компания выпустила процессор Z-80, который представлял собой значительно улучшенную версию 8080. Этот процессор был несовместим с 8080 по контактным выводам, но сочетал в себе множество различных функций, например интерфейс памяти и схему обновления ОЗУ (RAM), что давало возможность разрабатывать более дешевые и простые компьютеры. В Z-80 был также включен расширенный набор ко­манд процессора 8080, позволяющий использовать его программное обеспечение. В этот про­цессор вошли новые команды и внутренние регистры, поэтому программное обеспечение, разработанное для Z-80, могло использоваться практически со всеми версиями 8080. Перво­начально процессор Z-80 работал на частоте 2,5 МГц (более поздние версии работали уже на частоте 10 МГц), содержал 8500 транзисторов и мог адресовать 64 Кбайт памяти.


Компания Intel не остановилась на достигнутом, и в марте 1976 года выпустила процессор 8085, который содержал 6500 транзисторов, работал на частоте 5 МГц и производился по 3-микронной технологии. Несмотря на то что он обогнал процессор Z-80 на несколько меся­цев, ему так и не удалось достичь популярности последнего. Он использовался в основном в качестве управляющей микросхемы различных компьютеризованных устройств.

В этом же году компания MOS Technologies выпустила процессор 6502, который был аб­солютно не похож на процессоры Intel. Он был разработан группой инженеров компании Mo­torola. Эта же группа работала над созданием процессора 6800, который в будущем трансфор­мировался в семейство процессоров 68000. Цена первой версии процессора 8080 достигала 300 долларов, в то время как 8-разрядный процессор 6502 стоил всего около 25 долларов. Та­кая цена была вполне приемлема для Стива Возняка (Steve Wozniak), и он встроил процессор- 6502 в новые модели Apple I и Apple II. Процессор 6502 использовался также в системах, соз­данных компанией Commodore и другими производителями. Этот процессор и его преемники с успехом работали в игровых компьютерных системах, в число которых вошла приставка Nintendo Entertainment System (NES). Компания Motorola продолжила работу над созданием серии процессоров 68000, которые впоследствии были использованы в компьютерах Apple Macintosh. Второе поколение компьютеров Mac использовало процессор PowerPC, являю­щийся преемником 68000. Сегодня компьютеры Mac снова перешли на архитектуру PC и ис­пользуют с ними одни процессоры, микросхемы системной логики и прочие компоненты.

В июне 1978 года Intel выпустила процессор 8086, который содержал набор команд под ко­довым названием х86. Этот же набор команд до сих пор поддерживается в самых современных процессорах Core 2 и AMD Athlon 64 X2. Процессор 8086 был полностью 16-разрядным - внут­ренние регистры и шина данных. Он содержал 29000 транзисторов и работал на частоте 5 МГц. Благодаря 20-разрядной шине адреса он мог адресовать 1 Мбайт памяти. При создании про­цессора 8086 обратная совместимость с 8080 не предусматривалась. Но в то же время значи­тельное сходство их команд и языка позволили использовать более ранние версии программ­ного обеспечения. Это свойство впоследствии сыграло важную роль для быстрого перевода программ системы CP/M (8080) на рельсы PC.

Несмотря на высокую эффективность процессора 8086 его цена была все же слишком вы­сока по меркам того времени и, что гораздо важнее, для его работы требовалась дорогая мик­росхема поддержки 16-разрядной шины данных. Чтобы уменьшить себестоимость процессо­ра, в 1979 году Intel выпустила процессор 8088 - упрощенную версию 8086. Процессор 8088 использовал те же внутреннее ядро и 16-разрядные регистры, что и 8086, мог адресовать 1 Мбайт памяти, но в отличие от предыдущей версии использовал внешнюю 8-разрядную шину данных. Это позволило обеспечить обратную совместимость с ранее разработанным 8-разрядным процессором 8085 и тем самым значительно снизить стоимость создаваемых системных плат и компьютеров. Именно поэтому IBM выбрала для своего первого ПК "урезанный" процессор 8088, а не 8086.

Это решение имело далеко идущие последствия для всей компьютерной индустрии. Про­цессор 8088 был полностью программно-совместимым с 8086, что позволяло использовать 16-разрядное программное обеспечение. В процессорах 8085 и 8080 использовался очень по­хожий набор команд, поэтому программы, написанные для процессоров предыдущих версий, можно было легко преобразовать для процессора 8088. Это, в свою очередь, позволяло разра­батывать разнообразные программы для IBM РС, что явилось залогом его будущего успеха. Не желая останавливаться на полпути, Intel была вынуждена обеспечить поддержку обратной совместимости 8088/8086 с большинством процессоров, выпущенных в то время.

В те годы еще поддерживалась обратная совместимость процессоров, что ничуть не меша­ло вводить различные новшества и дополнительные возможности. Одним из основных изме­нений стал переход от 16-разрядной внутренней архитектуры процессора 286 и более ранних версий к 32-разрядной внутренней архитектуре 386-го и последующих процессоров, относя­щихся к категории IA-32 (32-разрядная архитектура Intel). Эта архитектура была представ­лена в 1985 году, однако потребовалось еще 10 лет, чтобы на рынке появились такие операци­онные системы, как Windows 95 (частично 32-разрядные) и Windows NT (требующие ис­пользования исключительно 32-разрядных драйверов). И только еще через шесть лет появилась операционная система Windows XP, которая была 32-разрядной как на уровне драйверов, так и на уровне всех компонентов. Итак, на адаптацию 32-разрядных вычислений потребовалось 16 лет. Для компьютерной индустрии это довольно длительный срок.

Теперь наблюдается очередной "скачок" в развитии архитектуры ПК - компании Intel и AMD представили 64-разрядные расширения 32-разрядной архитектуры Intel IA-64 (Intel Archi­tecture, 64-bit - 64-разрядная архитектура Intel), выпустив процессоры Itanium и Itanium 2. Од­нако данная архитектура была абсолютно несовместима с существовавшей 32-разрядной. Архи­тектура IA-64 была анонсирована в 1994 году в рамках проекта по разработке компаниями Intel и HP нового процессора с кодовым именем Merced; первые технические детали были опубликованы в октябре 1997 года. В результате в 2001 году был выпущен процессор Itanium, поддерживающий архитектуру IA-64.

К сожалению, IA-64 не являлась расширением архитектуры IA-32, а была совершенно но­вой архитектурой. Это хорошо для рынка серверов (собственно, для этого IA-64 и разрабаты­валась), однако совершенно неприемлемо для мира ПК, который всегда требовал обратной совместимости. Хотя архитектура IA-64 и поддерживает эмуляцию IA-32, при этом обеспечи­вается очень низкая производительность.

Компания AMD пошла по другому пути и разработала 64-разрядные расширения для архи­тектуры IA-32. В результате появилась архитектура AMD64 (которая также называется x86-64). Через некоторое время Intel представила собственный набор 64-разрядных расширений, кото­рый назвала EM64T (IA-32e). Расширения Intel практически идентичны расширениям AMD, что означает их совместимость на программном уровне. В результате впервые в истории сложи­лась ситуация, когда Intel следовала за AMD в разработке архитектуры ПК, а не наоборот.

Для того чтобы 64-разрядные вычисления стали реальностью, необходимы 64-разрядные операционные системы и драйверы. В апреле 2005 года компания Microsoft начала распро­странять пробную версию Windows XP Professional x64 Edition, поддерживающую дополни­тельные инструкции AMD64 и EM64T. Основные производители компьютеров уже постав­ляют готовые системы с предустановленной Windows XP Professional x64 и с 64-разрядной системой Windows Vista; они также разработали 64-разрядные драйверы для достаточно со­временных моделей устройств. Выпускаются и 64-разрядные версии Linux, благодаря чему каких-либо серьезных препятствий для перехода к 64-разрядным вычислениям нет.

Последним достижением можно считать выпуск компаниями Intel и AMD двух- и четы-рехъядерных процессоров. Они содержат два или четыре полноценных ядра на одной под­ложке; в результате один процессор теоретически может выполнять работу двух или четырех процессоров. Хотя многоядерные процессоры не обеспечивают значительного увеличения быстродействия в играх (которые в основном предполагают выполнение данных в один по­ток), они просто незаменимы в многозадачной среде. Если вы когда-нибудь пытались одно­временно выполнять проверку компьютера на наличие вирусов, работать с электронной по­чтой, а также запускать какие-то другие приложения, то наверняка знаете, что такая нагрузка может "поставить на колени" даже самый быстрый одноядерный процессор. Поскольку двухъядерные процессоры сейчас выпускаются обеими компаниями, Intel и AMD, шансы на то, что вам удастся выполнить работу гораздо быстрее благодаря многозадачности, значи­тельно возрастают. Современные двухъядерные процессоры также поддерживают 64-разряд­ные расширения AMD64 или EM64T, что позволяет воспользоваться преимуществами как двухъядерности, так и 64-разрядных вычислений.

Персональные компьютеры прошли долгий путь развития. Первый используемый в ПК процессор 8088 содержал 29 тыс. транзисторов и работал с частотой 4,77 МГц. Процессор AMD Athlon 64 FX содержит больше 105 млн. транзисторов, процессор Pentium 4 670 (ядро Prescott) работает с частотой 3,8 ГГц и содержит 169 млн. транзисторов, преимущественно благодаря наличию кэш-памяти второго уровня L2 объемом 2 Мбайт. Двухъядерные процес­соры, содержащие два ядра и кэш-память на одной подложке, характеризуются еще большим количеством транзисторов. Процессор Intel Pentium D содержит 230 млн. транзисторов, а AMD Athlon 64 X2 - более 233 млн. Последние процессоры Core 2 Duo и Core 2 Quad содер­жат 291 и 582 млн. транзисторов соответственно; при этом в последний интегрирована кэш­память второго уровня объемом 8 Мбайт. Многоядерная архитектура и постоянно растущий объем кэш-памяти второго уровня приводят к постоянному росту количества транзисторов. Скоро эта отметка перевалит за один миллиард. Все это является практическим подтвержде­нием закона Мура, в соответствии с которым быстродействие процессоров и количество со­держащихся в них транзисторов удваивается каждые 1,5-2 года.

ПРИМЕЧАНИЕ В сфере выпуска микропроцессоров с фирмой Intel постоянно конкурирует фирма AMD. Микропроцессоры фирмы AMD выпуска 2003- 2004 годов (Athlon ХР, Athlon 64) мало в чем уступают процессорам Pentium 4, а в некоторых режимах работы даже превосходят последние по быстродействию. Но, как и прежде, МП AMD сильнее греются (их штатная температура - 55-80 °С, в то время, как у МП Pentium 30-60 °С), поэтому для них необходим мощный вентилятор и надежная система защиты от катастрофического перегрева. Все МП Pentium такой системой снабжены: у них имеется датчик, который при превышении температуры 120-130 °С мгновенно выключает МП, спасая его от «сгорания». У МП Pentium есть еще более совершенная система - Thermal Monitor, принудительно замедляющая работу микропроцессора при превышении допустимой температуры

Продолжая тему первой статьи - история эволюции процессоров с конца XX века по начала XXI века.

Во многих процессорах 80-х годов использовалась архитектура CISC (Complex instruction set computing). Чипы были довольно сложными и дорогими, а также не достаточно производительными. Возникла необходимость в модернизации производства и увеличения количества транзисторов.

Архитектура RISC

В 1980 году стартовал проект Berkeley RISC, которым руководили американские инженеры Дэвид Паттерсон и Карло Секвин. RISC (restricted instruction set computer) - архитектура процессора с увеличенным быстродействием благодаря упрощенным инструкциям.

Руководители проекта Berkeley RISC - Дэвид Паттерсон и Карло Секвин

После нескольких лет плодотворной работы, на рынке появилось несколько образцов процессоров с сокращенным набором команд. Каждая инструкция платформы RISC была простой и выполнялась за один такт. Также присутствовало намного больше регистров общего назначения. Кроме того использовалась конвейеризация с упрощенными командами, что позволяло эффективно наращивать тактовую частоту.

RISC I вышел в 1982 году и содержал более чем 44 420 транзисторов. Он имел всего 32 инструкции и работал на частоте 4 МГц. Следующий за ним RISC II насчитывал 40 760 транзисторов, использовал 39 инструкций и был более быстрым.

Процессор RISC II

Процессоры MIPS: R2000, R3000, R4000 и R4400

Архитектура процессоров MIPS (Microprocessor without Interlocked Pipeline Stages) предусматривала наличие вспомогательных блоков в составе кристалла. В MIPS использовался удлиненный конвейер.

В 1984 году группа исследователей во главе с американским ученым Джоном Хеннесси основала компанию, проектирующую микроэлектронные устройства. MIPS лицензировала микропроцессорную архитектуру и IP-ядра для устройств умного дома, сетевых и мобильных применений. В 1985 году вышел первый продукт компании - 32-битный R2000, который в 1988 году был доработан в R3000. У обновленной модели имелась поддержка многопроцессорности, кэш-памяти инструкций и данных. Процессор нашел применение в SG-сериях рабочих станций разных компаний. Также R3000 стал основой игровой консоли Sony PlayStation.

Процессор R3000

В 1991 году вышла линейка нового поколения R4000. Данный процессор обладал 64-битной архитектурой, встроенным сопроцессором и работал на тактовой частоте 100 МГц. Внутренняя кэш-память составляла 16 Кб (8 Кб кэш-команд и 8 Кб кэш-данных).

Через год вышла доработанная версия процессора - R4400. В этой модели увеличился кэш до 32 Кб (16 Кб кэш-команд и 16 Кб кэш-данных). Процессор мог работать на частоте 100 МГц - 250 МГц.

Процессоры MIPS: R8000 и R10000

В 1994 году появился первый процессор с суперскалярной реализацией архитектуры MIPS - R8000. Емкость кэш-памяти данных составляла 16 Кб. У этого CPU была высокая пропускная способность доступа к данным (до 1.2 Гб/с) в сочетании с высокой скоростью выполнения операций. Частота достигала 75 МГц - 90 МГц. Использовалось 6 схем: устройство для целочисленных команд, для команд с плавающей запятой, три вторичных дескриптора кэш-памяти ОЗУ и кэш-контроллер ASIC.

Процессор R8000

В 1996 году вышла доработанная версия - R10000. Процессор включал в себя 32 Кб первичной кэш-памяти данных и команд. Работал CPU на частоте 150 МГц - 250 МГц.

В конце 90-х компания MIPS занялась продажей лицензий на 32-битную и 64-битную архитектуры MIPS32 и MIPS64.

Процессоры SPARC

Ряды процессоров пополнили продукты компании Sun Microsystems, которая разработала масштабируемую архитектуру SPARC (Scalable Processor ARChitecture). Первый одноименный процессор вышел в конце 80-х и получил название SPARC V7. Его частота достигала 14.28 МГц - 40 МГц.

В 1992 году появилась следующая 32-битная версия под названием SPARC V8, на базе которой был создан процессор microSPARC. Тактовая частота составляла 40 МГц - 50 МГц.

Над созданием следующего поколения архитектуры SPARC V9 с компанией Sun Microsystems совместно работали Texas Instruments, Fujitsu, Philips и другие. Платформа расширилась до 64 бит и являлась суперскалярной с 9-стадийным конвейером. SPARC V9 предусматривала использование кэш-памяти первого уровня, разделенного на инструкции и данные (каждая объемом по 16 Кб), а также второго уровня емкостью 512 Кб - 1024 Кб.

Процессор UltraSPARC III

Процессоры StrongARM

В 1995 году стартовал проект по разработке семейства микропроцессоров StrongARM, реализовавших набор инструкций ARM V4. Эти CPU представляли собой классическую скалярную архитектуру с 5-стадийным конвейером, включая блоки управления памятью и поддерживая кэш-память инструкций и данных объемом по 16 Кб каждая.

StrongARM SA-110

И уже в 1996 году был выпущен первый процессор на базе StrongARM - SA-110. Он работал на тактовых частотах 100 МГц, 160 МГц или 200 МГц.

Также на рынок вышли модели SA-1100, SA-1110 и SA-1500.

Процессор SA-110 в Apple MessagePad 2000

Процессоры POWER, POWER2 и PowerPC

В 1985 году компания IBM начала разработку RISC-архитектуры следующего поколения в рамках проекта America Project. Разработка процессора POWER (Performance Optimization With Enhanced RISC) и набора инструкций для него длилась 5 лет. Он был весьма производительный, но состоял из 11 различных микросхем. И поэтому в 1992 году вышел другой вариант процессора, что умещался в одном чипе.

Чипсет POWER

В 1991 году совместными усилиями альянса компаний IBM, Apple и Motorola была разработана архитектура PowerPC (сокращенно PPC). Она состояла из базового набора функций платформы POWER, а также поддерживала работу в двух режимах и была обратно совместима с 32-битным режимом работы для 64-разрядной версии. Основным назначением являлись персональные компьютеры.

Процессор PowerPC 601 использовался в Macintosh.

Процессор PowerPC

В 1993 году был представлен POWER2 с расширенным набором команд. Тактовая частота процессора варьировалась от 55 МГц до 71.5 МГц, а кэш-память данных и инструкций была 128-256 Кб и 32 Кб. Микросхемы процессора (их было 8) содержали 23 миллиона транзисторов, а изготавливался он по 0.72-микрометровой CMOS-технологии.

В 1998 году IBM выпустила третью серию процессоров POWER3 на 64 бита, полностью совместимых со стандартом PowerPC.

В период с 2001 по 2010 вышли модели POWER4 (до восьми параллельно выполняющихся команд), двухядерные POWER5 и POWER6, четырех-восьми ядерный POWER7.

Процессоры Alpha 21064A

В 1992 году компания Digital Equipment Corporation (DEC) выпустила процессор Alpha 21064 (EV4). Это был 64-разрядный суперскалярный кристалл с конвейерной архитектурой и тактовой частотой 100 МГц - 200 МГц. Изготовлен по 0,75-мкм техпроцессу, со внешней 128-разрядной шиной процессора. Присутствовало 16 Кб кэш-памяти (8 Кб данных и 8 Кб инструкций).

Следующей моделью в серии стал процессор 21164 (EV5), который вышел в 1995 году. Он обладал двумя целочисленными блоками и насчитывал уже три уровня кэш-памяти (два в процессоре, третий - внешний). Кэш-память первого уровня разделялась на кэш данных и кэш инструкций объемом по 8 Кб каждый. Объем кэш-памяти второго уровня составлял 96 Кб. Тактовая частота процессора варьировалась от 266 МГц до 500 МГц.

DEC Alpha AXP 21064

В 1996 году вышли процессоры Alpha 21264 (EV6) с 15,2 миллионами транзисторов, изготовленные по 15,2-мкм техпроцессу. Их тактовая частота составляла от 450 МГц до 600 МГц. Целочисленные блоки и блоки загрузки/сохранения были объединены в единый модуль Ebox, а блоки вычислений с плавающей запятой - в модуль Fbox. Кэш первого уровня сохранил разделение на память для инструкций и для данных. Объем каждой части составлял 64 Кб. Объем кэш-памяти второго уровня был от 2 Мб до 8 Мб.

В 1999 году DEC купила компания Compaq. В результате чего большая часть производства продукции, использовавшей Alpha, была передана компании API NetWorks, Inc.

Процессоры Intel P5 и P54C

По макету Винода Дхама был разработан процессор пятого поколения под кодовым названием P5. В 1993 году CPU вышли в производство под названием Pentium.

Процессоры на ядре P5 производились с использованием 800-нанометрового техпроцесса по биполярной BiCMOS-технологии. Они содержали 3,1 миллиона транзисторов. У Pentium была 64-битная шина данных, суперскалярная архитектура. Имелось раздельное кэширование программного кода и данных. Использовалась кэш-память первого уровня объемом 16 Кб, разделенная на 2 сегмента (8 Кб для данных и 8 Кб для инструкций). Первые модели были с частотами 60 МГц - 66 МГц.

Процессор Intel Pentium

В том же году Intel запустила в продажу процессоры P54C. Производство новых процессоров было переведено на 0,6-мкм техпроцесс. Скорость работы процессоров составляла 75 МГц, а с 1994 года - 90 МГц и 100 МГц. Через год архитектура P54C (P54CS) была переведена на 350-нм техпроцесс и тактовая частота увеличилась до 200 МГц.

В 1997 году P5 получила последнее обновление - P55C (Pentium MMX). Появилась поддержка набора команд MMX (MultiMedia eXtension). Процессор состоял из 4,5 миллиона транзисторов и производится по усовершенствованной 280-нанометровой CMOS-технологии. Объем кэш-памяти первого уровня увеличился до 32 Кб (16 Кб для данных и 16 Кб для инструкций). Частота процессора достигла 233 МГц.

Процессоры AMD K5 и K6

В 1995 году компания AMD выпустила процессор K5. Архитектура представляла собой RISC-ядро, но работала со сложными CISC-инструкциями. Процессоры изготавливались с использованием 350- или 500-нанометрового техпроцесса, с 4,3 миллионами транзисторов. Все K5 имели пять целочисленных блоков и один блок вычислений с плавающей запятой. Объем кэш-памяти инструкций составлял 16 Кб, а данных - 8 Кб. Тактовая частота процессоров варьировалась от 75 МГц до 133 МГц.

Процессор AMD K5

Под маркой K5 выпускалось два варианта процессоров SSA/5 и 5k86. Первый работал на частотах от 75 МГц до 100 МГц. Процессор 5k86 работал на частотах от 90 МГц до 133 МГц.

В 1997 году компания представила процессор K6, архитектура которого существенно отличалась от K5. Процессоры изготавливались по 350-нанометровому техпроцессу, включали в себя 8,8 миллионов транзисторов, поддерживали изменение порядка выполнения инструкций, набор команд MMX и блок вычислений с плавающей запятой. Площадь кристалла составляла 162 мм². Объем кэш-памяти первого уровня насчитывал 64 Кб (32 Кб данные и 32 Кб инструкции). Работал процессор на частоте 166 МГц, 200 МГц и 233 МГц. Частота системной шины была 66 МГц.

В 1998 году AMD выпустила чипы с улучшенной архитектурой K6-2, с 9,3 миллионами транзисторов изготавливаемого по 250-нанометровому техпроцессу. Максимальная частота чипа составляла 550 МГц.

Процессор AMD K6

В 1999 году вышла третья генерация - архитектура K6-III. Кристалл сохранил все особенности K6-2, но при этом появилась встроенная кэш-память второго уровня объемом 256 Кб. Объем кэша первого уровня составлял 64 Кб.

Процессоры AMD K7

В том же 1999 году на смену К6 пришли процессоры К7. Они выпускались по 250-нм технологии с 22 миллионами транзисторов. У CPU присутствовал новый блок целочисленных вычислений (ALU). Системная шина EV6 обеспечивала передачу данных по обоим фронтам тактового сигнала, что давало возможность при физической частоте 100 МГц получить эффективную частоту 200 МГц. Объем кэш-памяти первого уровня составлял 128 Кб (64 Кб инструкций и 64 Кб данных). Кэш второго уровня достигал 512 Кб.

Процессор AMD K7

Несколько позже появились кристаллы, базировавшиеся на ядре Orion. Они производилось по 180-нм техпроцессу.

Выход ядра Thunderbird внес необычные изменения в процессоры. Кэш-память 2-го уровня была перенесена непосредственно в процессорное ядро и работала на одинаковой с ним частоте. Кэш был с эффективным объемом 384 Кб (128 Кб кэша первого уровня и 256 Кб кэша второго уровня). Увеличилась тактовая частота системной шины - теперь она функционировала с частотой 133 МГц.

Процессоры Intel P6

Архитектура P6 пришла на смену P5 в 1995 году. Процессор являлся суперскалярным и поддерживал изменения порядка выполнения операций. Процессоры использовали двойную независимую шину, которая значительно увеличила пропускную способность памяти.

В том же 1995 году были представлены процессоры следующего поколения Pentium Pro. Кристаллы работали на частоте 150 МГц - 200 МГц, имели 16 Кб кэш-памяти первого уровня и до 1 Мб кэша второго уровня.

Процессор Intel Pentium Pro

В 1999 году были представлены первые процессоры Pentium III. Они базировались на новой генерации ядра P6 под названием Katmai, которые являлись модифицированными версиями Deschutes. В ядро была добавлена поддержка инструкций SSE, а также улучшился механизм работы с памятью. Тактовая частота процессоров Katmai достигала 600 МГц.

В 2000 году вышли первые процессоры Pentium 4 с ядром Willamette. Эффективная частота системной шины составляла 400 МГц (физическая частота - 100 МГц). Кэш-данных первого уровня достигал объема 8 Кб, а кэш-память второго уровня - 256 Кб.

Следующим ядром линейки стало Northwood (2002 год). Процессоры содержали 55 миллионов транзисторов и производились по новой 130-нм КМОП-технологии с медными соединениями. Частота системной шины составляла 400 МГц, 533 МГц или 800 МГц.

Intel Pentium 4

В 2004 году производство процессоров вновь перевели на более тонкие технологические нормы - 90 нм. Вышли Pentium 4 на ядре Prescott. Кэш данных первого уровня увеличился до 16 Кб, а кэш второго уровня достиг 1 Мб. Тактовая частота составляла 2,4 ГГц - 3,8 ГГц, частота системной шины - 533 МГц или 800 МГц.

Последним ядром, которое использовалось в процессорах Pentium 4 стало одноядерное Cedar Mill. Выпускалось по новому техпроцессу - 65 нм. Существовало четыре модели: 631 (3 ГГц), 641 (3,2 ГГц), 651 (3,4 ГГц), 661 (3,6 ГГц).

Процессоры Athlon 64 и Athlon 64 X2

В конце 2003 года AMD выпустила новую 64-битную архитектуру K8, построенную по 130-нанометровому техпроцессу. В процессоре был встроенный контроллер памяти и шина HyperTransport. Она работала на частоте 200 МГц. Новые продукты AMD получили название Athlon 64. Процессоры поддерживали множество наборов команд, таких как MMX, 3DNow!, SSE, SSE2 и SSE3.

Процессор Athlon 64

В 2005 году на рынок вышли процессоры компании AMD под названием Athlon 64 X2. Это были первые двухъядерные процессоры для настольных компьютеров. В основе модели лежали два ядра, выполненных на одном кристалле. Они имели общий контроллер памяти, шину HyperTransport и очередь команд.

Процессор Athlon 64 X2

В течение 2005 и 2006 годов AMD выпустила четыре поколения двухъядерных чипов: три 90-нм ядра Manchester, Toledo и Windsor, а также 65-нм ядро Brisbane. Процессоры отличались объемом кэш-памяти второго уровня и энергопотреблением.

Процессоры Intel Core

Процессоры Pentium M обеспечивали большую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. И поэтому их архитектурные решения стали основой для микроархитектуры Core, которая вышла в 2006 году. Первым настольным четырехядерным процессором стал Intel Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 Мб кэш-памяти второго уровня.

Кодовое имя первого поколения мобильных процессоров компании Intel было Yonah. Они производились с использованием техпроцесса 65 нм, основанного на архитектуре Banias/Dothan Pentium M, с добавленной технологией защиты LaGrande. Процессор мог обрабатывать до четырех инструкций за такт. В Core был переработан алгоритм обработки 128-битных инструкций SSE, SSE2 и SSE3. Если раньше каждая команда обрабатывалась за два такта, то теперь для операции требовался лишь один такт.

Intel Core 2 Extreme QX6700

В 2007 году вышла 45-нм микроархитектура Penryn с использованием металлических затворов Hi-k без содержания свинца. Технология использовалась в семействе процессоров Intel Core 2 Duo. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мб до 6 Мб.

Процессор AMD Phenom II X6

В 2008 году вышла архитектура следующего поколения - Nehalem. Процессоры обзавелись встроенным контроллером памяти, поддерживающим 2 или 3 канала DDR3 SDRAM или 4 канала FB-DIMM. На смену шине FSB, пришла новая шина QPI. Объем кэш-памяти 2-го уровня уменьшился до 256 Кб на каждое ядро.

Intel Core i7

Вскоре Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere.
Первой моделью новой микроархитектуры стал Clarkdale, обладающий двумя ядрами и интегрированным графическим ядром, производимым по 45-нм техпроцессу.

Процессоры AMD K10

Компания AMD старалась не отставать от Intel. В 2007 году она выпустила поколение архитектуры микропроцессоров x86 - K10. Четыре ядра процессора были объединены на одном кристалле. В дополнение к кэшу 1-го и 2-го уровней модели K10 наконец получили L3 объемом 2 Мб. Объем кэша данных и инструкций 1-го уровня составлял 64 Кб каждый, а кэш-памяти 2-го уровня - 512 Кб. Также появилась перспективная поддержка контроллером памяти DDR3. В K10 использовалось два 64-битных контроллера. Каждое процессорное ядро имело 128-битный модуль вычислений с плавающей запятой. Вдобавок ко всему, новые процессоры работали через интерфейс HyperTransport 3.0.

В 2007 году с архитектурой K10 вышли многоядерные центральные процессоры Phenom фирмы AMD, предназначенные для использования в стационарных персональных компьютерах. Решения на базе K10 производились по 65- и 45-нм техпроцессу. В новой версии архитектуры (К10,5) контроллер памяти работал с памятью DDR2 и DDR3.

Процессор AMD Phenom

В 2011 году вышла новая архитектура Bulldozer. Каждый модуль содержал два ядра со своим блоком целочисленных вычислений и кэш-памятью 1-го уровня. Поддерживалась кэш-память 3-го уровня объемом 8 Мб, шины HyperTransport 3.1, технологии увеличения частоты ядер Turbo Core второго поколения и наборов инструкций AVX, SSE 4.1, SSE 4.2, AES. Также процессоры Bulldozer были наделены двухканальным контроллером памяти DDR3 с эффективной частотой 1866 МГц.

Процессор AMD Bulldozer

В 2013 году компания представила следующее поколение процессоров - Piledriver. Данная модель являлась улучшенной архитектурой Bulldozer. Были доработаны блоки предсказания ветвлений, возросла производительность модуля операций с плавающей запятой и целочисленных вычислений, а также тактовая частота.

Просматривая историю, можно проследить этапы развития процессоров, изменения в их архитектуре, усовершенствования технологий разработки и многое другое. Современные CPU отличаются от тех, которые выходили раньше, но при этом имеют и общие черты.

Федерико Фаджин присоединился к компании Intel, чтобы превратить видение Теда Хоффа в кремниевую реальность. Менее чем через год он и его команда создали микропроцессор 4004, который был представлен в ноябре 1971 г. Первой серьезной проблемой для Фаджина стала разработка методологии использования новой технологии кремниевых затворов. Это позволило по-другому создавать сложные схемы. Поскольку ничего подобного до этого никто не делал, пришлось все начинать с нуля. И Федерико Фаджину это удалось - он самостоятельно разработал чип всего за 9 месяцев 1970 г. Это фантастически короткий срок по сравнению с процессорами «Интел» следующих поколений. Например, для создания 32-разрядного чипа уже потребовалось 100 человеко-лет.

Конструктивное исполнение

Дизайн на основе кремниевых затворов, созданный Федерико Фаджином, сделал первый микропроцессор реальностью в 1971 г. Он был необычным, так как интеграция такой сложности никогда раньше не достигалась. Фаджин смог разработать процессор Intel 4004 только благодаря своим инновациям в МОП-технологии производства Начальная загрузка и скрытый контакт стали идеями, которые легли в основу впервые примененной им методологии проектирования, позволили спасти архитектуру Хоффа и реализовать ее в 1970 г. Без этого она была бы неосуществима, потому что результат был бы слишком медленным и дорогостоящим, чтобы иметь практическое применение. Таким образом, изобретение не заключалось в разработке модели простого ЦПУ, недостатка в которых в то время не было, но в создании и внедрении технологии, которая впервые позволила разместить на одном кристалле все функциональные блоки процессора.

Тед Хофф надеялся, что предложенная им архитектура и набор команд могут быть размещены на одном кристалле. Однако он не мог оценить осуществимость проекта или воплотить его, поскольку не являлся МОП-разработчиком. Именно Федерико Фаджин изобрел дизайн и компоновку 2300 транзисторов произвольной логики на кристалле размером всего 3х4 мм, недорогом, с 5-кратной скоростью работы и вдвое большей плотностью размещения элементов, чем у существовавшей в то время технологии МОП.

Методология Фаджина стала прорывом и использовалась во всех ранних микропроцессорах компании. Итальянский инженер привел проект к успешному завершению и сыграл роль в продвижении нового процессора Intel, продемонстрировав руководству компании, что чип может использоваться не только в калькуляторах.

Технические характеристики

Спецификации процессора Intel 4004 следующие:

  • Площадь кристалла: 12 мм 2 .
  • Максимальная тактовая частота: 740 кГц.
  • Время цикла: 10,8 мкс (8 тактов / цикл команды).
  • Время выполнения команды - 1 или 2 цикла команды (10,8 или 21,6 мкс), 46300-92600 команд в секунду.
  • Сложение двух 8-значных чисел (по 32 бита каждое) занимает 850 мкс, т. е. 79 циклов команд, около 10 циклов на десятичную цифру.
  • Раздельное хранение программ и данных. В отличие от дизайнов на основе использующих отдельные шины, в 4004 есть одна мультиплексированная 4-битная шина для передачи 12-разрядных адресов, 8-битных команд и 4-битных слов данных.
  • Прямая адресация 51220 бит (640 байт) ОЗУ, организованного в виде 1280 4-разрядных «символов», из которых 1024 представляют данные и 256 - состояние.
  • Прямая адресация 32768 бит ПЗУ (4096 байт).
  • Набор из 46 команд (из которых 41 шириной 8 бит и 5 - 16 бит).
  • 16 регистров по 4 бита.
  • Внутренний стек подпрограмм глубиной в 3 уровня.

Заказ Busicom

Компьютер с хранимой программой, использовавшийся в качестве калькулятора в 1950-х и 1960-х годах, был одним из лучших достижений послевоенной эпохи и был знаком всем инженерам, работающим в полупроводниковой промышленности.

В 1969 г. японский производитель калькуляторов Busicom обратился к компании Intel, чтобы воплотить в кремнии их логический дизайн для серии калькуляторов. Их подход повторял реализацию первого в мире настольного программируемого калькулятора Olivetti"s Programma 101, представленного на Всемирной ярмарке в Нью-Йорке в 1965 г. и поступившего в продажу в том же году. Programma 101 имел ЦПУ (центральное процессорное устройство) и с последовательным чтением и записью, которые были выполнены из дискретных компонентов. Компания Busicom предложила аналогичную архитектуру, предусматривавшую реализацию процессора на трех МОП-микросхемах, ПЗУ и регистра еще на двух, с двумя другими чипами ввода-вывода.

Архитектура MCS-4

Руководитель отдела прикладных исследований Тед Хофф признал, что сложность дизайна Busicom заключалась в использовании последовательной памяти, и поскольку Intel разрабатывала свое первое динамическое ОЗУ (оперативное запоминающее устройство), он видел, что конструкцию можно существенно упростить, используя традиционную и более универсальную компьютерную архитектуру, основанную на ОЗУ. С помощью Стэна Мазора и благодаря взаимодействию с инженерами Busicom, среди которых был Масатоши Сима, Хофф сформулировал архитектуру MCS-4, сократив дизайн с 7 до 4 чипов. Хофф полагал, что ЦПУ можно было бы реализовать в одном 4-битном микропроцессоре, но ни он, ни Мазор не были МОП-разработчиками, и у Intel не было специалистов, способных создавать сложные ИС с произвольной логической структурой. Поэтому предложение Хоффа простаивало около 6 месяцев, пока в апреле 1970 года не был принят на работу Федерико Фаджин, который и возглавил этот проект.

Инновационная технология

Федерико Фаджин перешел в Intel из Fairchild Semiconductor, где в 1968 г. он разработал МОП-технологию с кремниевыми затворами и создал на ее основе первую в мире коммерческую интегральную схему 3708. Технология была принята компанией Intel и впоследствии всей мировой полупроводниковой промышленностью, и в течение 40 лет являлась базовой структурой, использовавшейся почти во всех микросхемах. соучредитель компании «Интел», признал, что основным компонентом ее раннего успеха стал именно этот шаг. МОП-технология с кремниевыми затворами обеспечила конкурентоспособные характеристики Intel 4004: чип был примерно в 5 раз быстрее, имел в 100 раз меньшую утечку перехода и вмещал в 2 раза больше логических транзисторов произвольного типа по сравнению с чипом того же размера, изготовленного с алюминиевыми затворами, и рассеивал равную мощность. Это позволило создавать первые коммерчески успешные динамические ОЗУ, датчики изображения с ПЗС-матрицей (приборы с зарядовой связью), энергонезависимые запоминающие устройства и микропроцессоры. Впервые в истории процессор содержал все компоненты компьютера общего назначения.

Создание нового дизайна и макета

Тэд Хофф не был конструктором МОП-схем. Его роль заключалась в создании архитектуры и в дальнейшей поддержке продуктов. После определения набора команд проект был передан команде МОП-разработчиков, возглавляемой Федерико Фаджином. Работы велись очень быстро, и примерно за 9 месяцев были созданы 3 основных чипа. Последним из них в январе 1971 года появился микропроцессор Intel 4004.

По словам Стэна Мазора, заслуга Фаджина состояла в том то, что он осуществил инженерный дизайн, а Хоффа - в создании оригинальной концепции и архитектуры. Сам Мазор являлся своего рода посредником, который помогал, как мог, и делал то, что мог.

Федерико Фаджин разработал методологию проектирования МОП-структур с кремниевым затвором, используемых в произвольных логических схемах. Эта было необходимо, поскольку новая технология требовала другого дизайна, и особенно макета.

По словам Фаджина, он решил, что вместо того, чтобы отдельно проектировать логику, а затем схему, следует делать их вместе на одном листе. При этом необходимо учитывать расположение, насколько это возможно, чтобы проводники и транзисторы располагались как можно ближе к окончательной компоновке. Очевидно, для этого нужно было предварительно провести общее планирование чипа, чтобы знать размещение различных блоков. Именно тогда он и ​​уточнил методологию создания такого типа схем.

Проектирование нового процессора Intel и руководство проектом MCS-4 с начала разработки до производства мог осилить только тот, кто был способен внедрять инновации в технологию процесса, макетирование микросхем, схемотехнику, логический дизайн и компьютерную архитектуру. Фаджин приобрел такие навыки и знания через свое образование и опыт работы до того, как он присоединился к Intel. После окончания технического вуза в Виченце (Италия) он участвовал в разработке и создании небольшого транзисторного экспериментального компьютера с памятью на магнитных сердечниках в компании Olivetti в Борголомбардо (Италия) в возрасте 19 лет. Затем он с отличием окончил Университет Падуи и занялся разработкой технологии МОП, создав 2 коммерческие микросхемы, когда работал в SGS-Fairchild (теперь ST Micro). В 1968 г. он был направлен в Fairchild Semiconductor R&D в Пало-Альто (Калифорния), где создал технологию МОП с кремниевым затвором и др.

Реальные инновации

Концептуализация первого процессора, ставшая основным вкладом Хоффа в проект 4004, происходила и в других компаниях. К такому же выводу пришли несколько групп независимо друг от друга. Поэтому главным в изобретении микропроцессора было создание экономически обоснованного продукта. Только один человек в мире знал, как сделать следующий шаг и перевести архитектуру в рабочий дизайн. Это был Федерико Фаджин. Без него первый микропроцессор никогда бы не был построен. Еще в Fairchild он изобрел технологию, которая легла в основу будущих устройств. После начала работы в компании «Интел», он исправил ошибки отсутствующего Хоффа, а затем сделал первый чип Intel 4004, после чего возглавил разработку 8008 и являлся главным архитектором 8080.

В то время инженеры знали, как создавать небольшие компьютеры, делать логический дизайн ЦПУ и создавать программы. Идея о микропроцессоре, т. е. о размещении на одном кристалле универсального компьютера, тоже витала в воздухе. Некоторые архитектуры уже были реализованы на нескольких МОП-микросхемах. Тем не менее, никто не знал, как установить 2300 транзисторов произвольной логики - минимально необходимое количество для простого процессора - в микросхему достаточно маленького размера, чтобы производство было дешевым, скорость работы была высокой, а рассеиваемая мощность достаточной для размещения в существующих корпусах.

Таким образом, реальная инновация в микропроцессоре заключалась в его компоновке на одном кремниевом чипе, поскольку все остальное было сделано раньше. И это удалось Фаджину без какой-либо значимой помощи со стороны Теда Хоффа и Стэна Мазора.

Единственный, кто ему помогал, - это инженер Busicom Масатоши Сима. Он пришел в Intel, чтобы проверить прогресс выполнения заказа через пару дней после того, как Фаджин был нанят на работу. Он понял, что за предыдущие 6 месяцев не было достигнуто никакого прогресса. Учитывая задержку в проекте и отсутствие какого-либо инженера Intel, способного помочь, Симе было разрешено остаться на 6 месяцев, чтобы ускорить работу. Однако он мало знал об и, хотя он был очень полезным, все творческие решения принимал Фаджин. Начальник последнего, Лесли Вадаш, был так озабочен дизайном 1103 (первым 1024-битным динамическим ОЗУ, считавшегося будущим Intel), что не мог обеспечить технический контроль над проектом MCS-4. После успеха с 4004 Фаджин руководил внедрением 8008, а также задумал и определил архитектуры самых успешных из всех первых процессоров - 4040 и 8080.

Сомнения разработчиков

По словам Стэна Мазора, он и Тед Хофф полагали, что Intel 4004 был слишком агрессивным. Они не были уверены, что его можно сделать, поэтому начали с другого чипа, названного 4005. Это был совместный проект с MIL, который был партнером Intel в Канаде. Они определили намного более простую архитектуру, чем 4004. Канадская компания должна была разработать чип, а Intel - предоставить память. Оказалось, что она не смогла сделать 4005.

Хофф и Мазор в 1994 г. не были уверены в возможности реализации 4004. Вот почему через несколько месяцев после того, как Фаджин присоединился к Intel, они создали более простую архитектуру 4005 и отдали в канадскую компанию MIL для разработки. Но инженерам MIL микропроцессор сделать не удалось. Стало понятно, что даже создание простого чипа было далеко от рутинной работы. Кроме того, Хофф и Мазор сомневались, что 4004 может пригодиться для приложений, отличных от калькуляторов, кассовых аппаратов и т.п. Они думали, что только 1201, а позже и 8008 будут иметь достаточно универсальную архитектуру, чтобы использоваться в различных приложениях. После завершения проекта 4004 Фаджин продемонстрировал, что микропроцессор может применяться в различных системах управления и призвал руководство вывести Intel 4004 на рынок.

Неудачи с 8008

Другим примером, доказывающим то, насколько необходимой была методология Фаджина, является Intel 8008, архитектура которого первоначально разрабатывалась корпорацией Computer Terminal Corporation (CTC). Работа над чипом, первоначально названным 1201, началась до того, как Фаджин присоединился к Intel, но проект, назначенный разработчику процессоров с произвольной логикой, который перешел из General Instrument, далеко не продвинулся, потому что в то время отсутствовала какая-либо методология и библиотеки схем. Работы над 8008 были приостановлены и возобновились только в год выпуска Intel 4004.

Микропроцессор TI

Еще одним примером является первый одночиповый ЦПУ, который стал вторым источником для 8008, заказанных CTC у компании Texas Instruments. Объявленный в прессе в середине 1971 года, всего через несколько месяцев после успешного создания 4004, этот процессор так никогда и не заработал и никогда не продавался. Он был создан с использованием МОП-технологии с металлическим затвором компанией, которая имела многолетний опыт разработки ИС со сложной произвольной логикой. По сравнению с процессором «Интел-8008», размер чипа ТІ был вдвое больше, обеспечивая выполнение тех же функций. Скорость работы и рассеиваемая мощность никогда не обнародовались.

Пример для подражания

После того, как проект 4004 был завершен, другие инженеры, как внутри, так и вне компании Intel, смогли изучить методы, используемые Фаджином, исследовав дизайн под микроскопом. Этот же стиль использовался во всех других ранних микропроцессорах Intel и Zilog.

В заключение

4004 стал самым первым в истории процессором, сделанным по технологии кремниевого затвора. Это была самая передовая интегральная микросхема того времени. Ее создание требовало не только экстраординарных творческих способностей и навыков от дизайнера, но и глубокого знания новой технологии, которое мог иметь только ее разработчик. Кроме того, для успешного завершения проекта, который требовалось завершить за 10 месяцев из-за предыдущих невыполненных обязательств перед клиентом, были необходимы большое мужество, мотивация, навыки управления и устойчивая напряженная работа.

ИСТОРИЯ СОЗДАНИЯ И РАЗВИТИЯ
МИКРОПРОЦЕССОРНЫХ СРЕДСТВ АВТОМАТИЗАЦИИЇ

Современные решения в сфере автоматизации, роботизации и электропривода невозможно представить без использования микропроцессорных средств и систем. Весомый вклад в развитие полупроводниковой микросхемотехники внесла известная американская компания Intel, основанная в 1968 году. Это было время появления новых технологий, благодаря которым появилась возможность создавать миниатюрные полупроводниковые устройства – микросхемы. Их применение открывало новые перспективы во всех областях техники, в т. ч. и в автоматизации. Начиналась эра цифровой машинной обработки информации. Первый компьютер ENIAC, созданный в 1946 году, весил около 30 т и занимал большое помещение. В 1968 году в мире насчитывалось уже 30 тыс. компьютеров. Это были преимущественно большие универсальные ЭВМ (электронные вычислительные машины) и «мини-компьютеры» размером со шкаф. Неприятной особенностью этих ЭВМ были частые аварийные ситуации из-за перегрева ламп и большого числа разъемов. Поэтому появление интегральной электроники было обусловлено объективными причинами.


Рис. 1. Первый электронный цифровой компьютер общего назначения ENIAC (Electronic Numerical Integrator and Computer))


Основателями фирмы Intel были талантливые ученые и изобретатели Роберт Нойс, Гордон Мур и Эндрю Гроув. Именно Роберт Нойс в 1959 году изобрел интегральную микросхему. В середине 60 х годов Нойс работал менеджером американской компании Fairchild Semiconductor, известной своими разработками в сфере электронных технологий. Гордон Мур возглавлял научные исследования и конструкторские разработки в Fairchild Semiconductor, был одним из восьми основателей Fairchild. Энди Гроув, уроженец Венгрии, был специалистом по разработке технологических процессов. Он пришел в компанию Fairchild Semiconductor после того, как получил в университете Беркли степень доктора наук в области химических технологий.

В конце 60 х много талантливых инженеров увольнялись из Fairchild Semiconductor и создавали собственные фирмы. Роберт Нойс и Гордон Мур основали Intel и стали ее первыми сотрудниками. Со временем к ним присоединился и Энди Гроув. Стартовый капитал (2,5 млн. долларов) фирме предоставил финансист из Сан-Франциско Артур Рок.

Фирма Intel специализировалась на производстве полупроводниковых запоминающих устройств. Первым серийным устройством была микросхема «3101» 64 разрядной Шоттки-биполярной статической оперативной памяти. Особенное же место, которое заняла Intel в мире электроники, связано с другими устройствами – микропроцессорами. Именно они стали технической базой нынешней компьютерной научно-технической революции.

Толчком к созданию микропроцессора оказался контракт с японской фирмой Busicom, специализировавшейся на выпуске калькуляторов. Busicom заказала Intel разработку двенадцати специализированных микросхем, однако для выполнения такого крупного заказа Intel не имела достаточно человеческих, финансовых и производственных ресурсов. Тогда талантливый инженер Тед Хофф предложил вместо двенадцати специализированных микросхем создать одну универсальную, которая сможет их заменить. Р. Нойс и Г. Мур оценили утонченность предложенного Т. Хоффом решения. Идея удовлетворила и компанию Busicom, которая финансировала работу. Таким образом, Intel начала разработку универсальной микросхемы, которую можно запрограммировать на выполнение тех или иных команд. Впервые отпала необходимость в аппаратной реализации алгоритма работы устройства: все операции по обработке числовых данных теперь велись в соответствии с определенной программой, что обещало экономию средств и времени. Над реализацией задуманного Т. Хоффом работала группа инженеров и конструкторов Intel, которую возглавлял Федерико Феджин. Через 9 месяцев напряженного труда появился первый в мире микропроцессор «4004». Он насчитывал 2300 полупроводниковых транзисторов, но спокойно умещался на ладони. В производительности же новый процессор не уступал компьютеру ENIAC, занимавшему 85 кубических метров и состоявшему из 18000 вакуумных ламп. Тед Хофф разработал архитектуру первого процессора, Стен Мейзор – систему его команд, а Федерико Феджин спроектировал кристалл процессора.

Оценив преимущества использования микропроцессоров, руководство Intel пошло на переговоры с компанией Busicom, вследствие которых Intel приобрела все права на процессор «4004» за 60 тысяч долларов (следует отметить, что вскоре Busicom обанкротилась). После этого началась широкая рекламная компания, целью которой было донести инженерному сообществу большой потенциал программируемых устройств в разных сферах – от управления дорожным движением до автоматизации сложных производственных процессов. Intel проводила семинары для инженеров, публиковала рекламные материалы и справочные пособия по использованию микропроцессоров. В некоторые недели фирма продавала больше справочной документации, чем самих микропроцессоров. Через определенное время они получили очень широкое распространение.

Таким образом, микросхема «4004» стала первым микропроцессором. Приблизительно через полгода о появлении подобных устройств объявили еще несколько фирм. Эти микропроцессоры, исполненные по р-МОП технологии, были четырехразрядными, т. е. за один раз могли обрабатывать только 4 бита информации. Длина программы и набор команд были ограничены, первые процессоры не имели многих функций, обязательных для современных микропроцессоров. В 1972 году фирма Intel выпустила процессор «8008», который унаследовал основные черты «4004». Это был первый 8 разрядный процессор, который сегодня относят к процессорам первого поколения. Он уже имел аккумулятор, шесть регистров общего назначения, указатель стека, восемь регистров адреса и специальные команды для ввода/вывода данных, но и этот процессор не стал широкоупотребительным в коммерческих разработках.

В конце 1973 года фирмой Intel разрабатывается новый 8-разрядный микропроцессор «8080». Его архитектура и система команд оказались настолько удачными, что и сегодня он считается классическим.

Широкое применение микропроцессоров в технике началось именно с появлением чипа «8080», который принадлежал к процессорам третьего поколения, но был не единственным удачным 8 разрядным процессором. Спустя полгода появился микропроцессор «6800» американской фирмы Motorola, который составил жесткую конкуренцию интеловскому процессору. Как и «8080», микропроцессор «6800» был выполнен по n МОП технологии, требовал наличия отдельного тактового генератора, имел трехшинную структуру с 16 разрядной шиной адреса, хорошо развитую архитектуру и систему команд. Его главными преимуществами были более мощная, чем у «8080» система прерываний и одно (а не три, как у «8080») напряжение питания. Принципы внутренней архитектуры «6800» также значительно отличались от «8080» прежде всего отсутствием регистров общего назначения, в которых, в зависимости от поставленных задач, могла сохраняться как адресная информация, так и числовые данные. Вместо них в состав процессора добавился второй равноценный аккумулятор для обработки данных и специализированные 16 разрядные регистры, где хранилась только адресная информация. Данные для обработки выбирались из внешней памяти и туда же возвращались после обработки. Команды работы с памятью были проще и короче, но пересылка байта в память занимала больше времени, чем обмен между внутренними регистрами «8080». Архитектура ни одного из двух упомянутых процессоров не имела существенных преимуществ, и каждый из них стал родоначальником двух больших семейств микропроцессоров – Intel и Motorola, представители которых конкурируют по сей день.

В 1978 году на фирме Intel был изготовлен первый 16 разрядный микропроцессор «8086», использованный компанией International Business Machines (IBM) для создания персональных компьютеров, а 16 разрядный чип «68000» фирмы Motorola был применен в известных компьютерах Atari и Apple. Что касается «домашних» компьютеров, то они широко распространились с появлением модели ZX Spectrum (на базе процессора «Z80») английской фирмы Sinclair Research Ltd, основателем которой был талантливый инженер сэр Клайв Синклер. Идея применить телевизор вместо дорогого монитора и бытовой магнитофон для хранения программ и данных значительно удешевила домашний компьютер и сделала его доступным для среднего покупателя.

Intel 4004 – 4-битный микропроцессор, разработанный корпорацией Intel и выпущенный 15 октября 1971 года.

Эта микросхема считается первым в мире коммерчески доступным однокристальним микропроцессором.


Intel 8080 – 8-битный микропроцессор, выпущенный в 1974 году. Обеспечивал десятикратный прирост вычислительной производительности в сравнении с предыдущим процессором.

Это устройство, благодаря которому инженерное сообщество восприняло идею микропроцессоров. Этот чип спровоцировал бум персональных компьютеров.


Intel 8048 – первый в мире микроконтроллер, был выпущен в конце 70 х годов.

Это устройство получило широкое распространение благодаря использованию его в клавиатурах персональных компьютеров и в игровых приставках


Intel 8051 – микроконтроллер второго поколения, был выпущен в 1980 году.
Благодаря удачной архитектуре и системе команд стал фактически промышленным стандартом. Выпускается до сих пор известными корпорациями Америки, Кореи та Японии.

Современный многоядерный процессор

Вычислительная производительность современных микропроцессоров по результатам разных тестов приблизительно в десятки тысяч раз превышает производительность первого процессора.

Рис. 2. Линейка ключевых моделей микропроцессоров и микроконтроллеров


Через год после создания микропроцессора «8080» несколько инженеров Intel перешли в фирму Zilog и начали работать над созданием нового процессора, опираясь на свои предыдущие разработки. Вследствие этого в 1977 году появился микропроцессор «Z80», который стал лучшим представителем 8-разрядных процессоров. В сравнении с «8080» он требовал только одного напряжения питания, имел более мощную и гибкую систему прерываний, втрое более высокую тактовую частоту, два аккумулятора и двойной набор регистров общего назначения. Система команд «Z80» вмещала все 78 команд микропроцессора «8080» и почти такое же число дополнительных команд, поэтому программы, созданные для «8080», без каких либо изменений переносились на «Z80».

Позднее (середина 70-х) возникла еще одна тенденция в развитии микропроцессоров, имеющая непосредственное отношение к автоматизации и появлению процессоров для встраиваемых решений. Начало ей положил процессор «8085» фирмы Intel. Сначала он задумывался как продолжение чипа «8080», но через некоторое время появился «Z80» и новый микропроцессор «6809» фирмы Motorola. Оба они значительно превосходили «8085» в производительности, что побудило Intel взяться за разработку первого 16- разрядного микропроцессора «8086», но с разработкой периферийных микросхем «8156» и «8755» процессор «8085» получил новые перспективы. Первая микросхема содержала статическое ОЗУ (оперативное запоминающее устройство) объемом 256 байт, два 8 разрядных, побитно настраиваемых на ввод/вывод порта и программируемый таймер-счетчик. В состав второй входили три многоразрядных порта ввода/вывода и ПЗУ (постоянное запоминающее устройство) емкостью 2 Кбайта с ультрафиолетовым стиранием. Объединив соответствующим образом выводы этих трех микросхем, разработчики электронной аппаратуры получали функционально завершенный модуль – микроконтроллер, который можно встроить в любой прибор: вольтметр, частотомер, в разного рода усилительные устройства или преобразователи. Несколько фирм выпустили экономичные по питанию k МОП версии этого семейства. Это дало возможность создавать микропроцессорные приборы с автономным батарейным питанием. Наконец, в конце 70 х годов Intel «объединила» эти три микросхемы в один чип и создала однокристальную микро ЭВМ (микроконтроллер) «8048», в состав которой вошли ОЗУ и ПЗУ, арифметико-логическое устройство, встроенный тактовый генератор, таймер-счетчик, порты ввода/вывода. Далее были разработаны подобные сорок восьмому микроконтроллеры «8035» и «8748». Система команд однокристальных микроконтроллеров была значительно слабее, чем у процессора «8085», объем ОЗУ и ПЗУ, количество портов ввода/вывода также было меньшим, чем у выше упомянутого трехкорпусного модуля, но все это размещалось в одном чипе, что значительно упрощало разработку и производство новых устройств на базе однокристальных микро ЭВМ. Идея создания универсальных аппаратных средств с программной настройкой на конкретные задачи, которая стала толчком к появлению микропроцессоров, получила наивысшую степень реализации именно в однокристальных микроконтроллерах.

В начале 80 х годов Intel выпустила более мощный микроконтроллер «8051, а вскоре – и его модификации «8031» и «8751». Ядро микро ЭВМ этой серии стало классическим для микроконтроллеров. С точки зрения технологии микроконтроллер «8051» был для своего времени очень сложным устройством MCS 51 – безусловный лидер по числу разновидностей и компаний, выпускающих его модификации. На сегодняшний день существует более 200 модификаций микроконтроллеров MCS 51, которые выпускаются почти 20 ведущими фирмами-производителями электронных компонентов (Atmel, Infineon Technologies, Philips, Hyundai, Dallas Semiconductor, Temic, TDK, Oki, AMD, MHS, LG, Winbond, Silicon Labs, и др.). Получили свою нишу также и микроконтроллеры оригинальной архитектуры фирм Motorola, Zilog, Analog Devices, Microchip, Scenix, Holtec.

Боб Нойс (Bob Noyce)

Известен своими новаторскими взглядами на пути развития полупроводниковых технологий. Именно Роберт Нойс в 1959 году изобрел интегральную микросхему. В середине 60 х Нойс был менеджером влиятельной фирмы Fairchild Semiconductor. В дальнейшем – один из основателей фирмы Intel.

Гордон Мур (Gordon Moore)

Талантливый и трудолюбивый инженер, пользовавшийся большим авторитетом среди коллег. Один из основателей фирмы Intel.
«Мы – настоящие революционеры. Ведь эти новейшие до-стижения электроники изменяют мир значительно быстрее, чем всякие политические события».

Енді Гроув (Andy Grove)

Энергичный и предприимчивый Эндрю Гроув работал в фирме Fairchild Semiconductor специалистом по разработке технологических процессов. Гроув пришел в Fairchild после того, как получил в университете Беркли ученую степень доктора в области химических технологий. Один из основателей Intel.

Тед Хофф (Ted Hoff)

Тедди Хофф – один из изобретателей микропроцессора. Именно он предложил концепцию универсальной микро-схемы и разработал архитектуру первого процессора.
«Больше всего лично мне импонирует то, что, благодаря микропроцессорам, компьютеры стали массовым доступ-ным продуктом».

Рис. 3. Выдающиеся ученые-изобретатели, революционеры в области микроэлектроники


Создание микропроцессора признано одним из выдающихся достижений ХХ века. Ежегодно в мире продаются сотни миллионов микропроцессоров и миллиарды микроконтроллеров. По данным журнала «мир компьютерной автоматизации», средний американец на протяжении дня около 300 раз (!) имеет дело с микроконтроллерами, встроенными буквально повсюду – от стиральных машин, лифтов и телефонов до светофоров, автомобилей и промышленных станков.

Журнал «Обзор состояния дел в полупроводниковой промышленности и торговле» («Semiconductor Industry and Business Survey») считает: если бы автомобилестроение и авиационная промышленность развивались такими же темпами, как производство полупроводников на протяжении 30 лет, то автомобиль «Роллс-ройс» стоил бы 2 доллара 75 центов и, используя всего лишь один литр бензина, мог бы проехать почти полторы тысячи километров, а самолет «Боинг 767» стоил бы 500 долларов и мог бы облететь вокруг земного шара за 20 минут, истратив лишь канистру керосина. В 1996 году имена создателей микропроцессора доктора Тедда Хоффа, доктора Федерико Феджина и Стена Мейзора были занесены в Национальный зал славы изобретателей США (г. Эйкрон, Огайо) и встали в ряд с именами Томаса Эдисона, братьев Райт и Александра Белла.

Еще одно направление развития микропроцессорных систем зародилось в 1969 году, что было обусловлено необходимостью замены на промышленных предприятиях сложных, громоздких и ненадежных релейно-контакторных схем автоматического управления. Именно в этом году компания General Motors подготовила тендерный запрос на разработку универсального микропроцессорного устройства для нужд промышленного производства.

Тендер виграла компания Bedford Associates из штата Массачусетс, которую на то время возглавлял Ричард Морли. Они разработали микропроцессорное устройство (контроллер), которое позволяло коммутировать присоединенные к нему сигнальные провода в разных комбинациях. Эти комбинации задавались программой управления, которая составлялась на компьютере, а потом загружалась в память контроллера. Таким образом, с помощью одного микропроцессорного устройства с загруженной в него программой стало возможно реализовать систему управления, для разработки которой ранее приходилось коммутировать десятки или даже сотни разнообразных электромеханических компонентов, таких как реле, таймеры, счетчики, регуляторы и т. п. При этом один и тот же контроллер можно было бы использовать для управления разнообразными машинами и механизмами только лишь изменяя загруженную в него программу. Так в мире появился первый программируемый логический контроллер (ПЛК), который компания Bedford Associates окрестила «Проектом 084».

Компания стала развивать производство промышленных контроллеров и позднее была переименована в «Modicon» (сокращение от «Modular Digital Controller», т. е. модульный цифровой контроллер). В 1977 году бренд “Modicon” был продан компании Gold Electronics, позднее его выкупила известная немецкая фирма “AEG”. В итоге, бренд «Modicon» перешел в собственность французской компании “Schneider Electric ”, которая владеет им до сего дня. Следует отметить, что «Schneider Electric» является одним из мировых лидеров в сфере разработки, производства и внедрения технических средств электроснабжения, электропривода и автоматизации.

В тендере по заявке General Motors также принимала участие еще одна фирма, которая и сейчас занимает высокие позиции среди лидеров производителей компонентов для автоматизации. Речь идет про Allen Bradley. Хотя фирма и проиграла тендер, работы в этом направлении выполнялись дальше. Руководство Allen Bradley приобрело контрольные пакеты акций компании Information Instruments и корпорации Bunker-Ramo, которые на то время уже разработали контроллер «PDQ II» (сокращение от «Program Data Quantizer», программный модулятор данных). Эта модель контроллера оказалась слишком громоздкой и сложной в программировании. Однако Allen Bradley проявила настойчивость и в 1970 году на базе «PDQ II» был разработан контроллер «PMC» («Programmable Matrix Controller», или программируемый матричный контроллер). Однако и эта модель не слишком соответствовала требованиям заказчиков для управления технологическими агрегатами. После доработки на свет появилась модель, названная PLC 1 («Programmable Logic Controller», программируемый логический контроллер). Именно это название и аббревиатура PLC утвердились в сфере автоматизации и используются специалистами для обозначения такого класса устройств.

а) б)

В середине 70 х годов прошлого века рынок программируемых логических контроллеров начал стремительно расти и у Modicon и Allen Bradley появился ряд конкурентов, среди которых следует отметить General Electric, Siemens, Square D, Industrial Solid State Controls, и др.

Значительным шагом к упрощению применения программируемых логических контроллеров стало введение международного стандарта IEC 61131 3, который декларирует языки программирования для ПЛК. Благодаря этому инженер любого профиля (технолог, электрик, химик, и т. п.) может с легкостью создавать программы для управления технологическими установками даже без знания тонкостей программирования. Также обозначенные языки универсальны для ПЛК разных производителей.



Загрузка...