sonyps4.ru

Код программы на языке pascal. Пример программ на Паскале

Абстрактный тип данных

Абстра́ктный тип да́нных (АТД) - это тип данных, который предоставляет для работы с элементами этого типа определённый набор функций , а также возможность создавать элементы этого типа при помощи специальных функций. Вся внутренняя структура такого типа спрятана от разработчика программного обеспечения - в этом и заключается суть абстракции . Абстрактный тип данных определяет набор независимых от конкретной реализации типа функций для оперирования его значениями. Конкретные реализации АТД называются структурами данных .

В программировании абстрактные типы данных обычно представляются в виде интерфейсов , которые скрывают соответствующие реализации типов. Программисты работают с абстрактными типами данных исключительно через их интерфейсы, поскольку реализация может в будущем измениться. Такой подход соответствует принципу инкапсуляции в объектно-ориентированном программировании . Сильной стороной этой методики является именно сокрытие реализации. Раз вовне опубликован только интерфейс, то пока структура данных поддерживает этот интерфейс, все программы, работающие с заданной структурой абстрактным типом данных, будут продолжать работать. Разработчики структур данных стараются, не меняя внешнего интерфейса и семантики функций, постепенно дорабатывать реализации, улучшая алгоритмы по скорости, надежности и используемой памяти.

Различие между абстрактными типами данных и структурами данных, которые реализуют абстрактные типы, можно пояснить на следующем примере. Абстрактный тип данных список может быть реализован при помощи массива или линейного списка, с использованием различных методов динамического выделения памяти. Однако каждая реализация определяет один и тот же набор функций, который должен работать одинаково (по результату, а не по скорости) для всех реализаций.

Абстрактные типы данных позволяют достичь модульности программных продуктов и иметь несколько альтернативных взаимозаменяемых реализаций отдельного модуля.

Примеры АТД

См. также

Ссылки

  • Лапшин В. А. Абстрактные типы данных в программировании

Wikimedia Foundation . 2010 .

Смотреть что такое "Абстрактный тип данных" в других словарях:

    абстрактный тип данных - Тип данных (абстрактный класс), определенный посредством перечисления его методов и свойств, без создания их конкретной реализации. Тематики информационные технологии в целом EN Abstract Data TypeADT … Справочник технического переводчика

    В теории программирования любой тип, значения которого являются значениями некоторых иных типов, «обёрнутыми» конструкторами алгебраического типа. Другими словами, алгебраический тип данных имеет набор конструкторов типа, каждый из которых… … Википедия

    Целое, целочисленный тип данных (англ. Integer), в информатике один из простейших и самых распространённых типов данных в языках программирования. Служит для представления целых чисел. Множество чисел этого типа представляет собой… … Википедия

    У этого термина существуют и другие значения, см. Множество (значения). Множество тип и структура данных в информатике, является реализацией математического объекта множество. Данные типа множество позволяют хранить ограниченное число значений… … Википедия

    Некоторые языки программирования предоставляют специальный тип данных для комплексных чисел. Наличие встроенного типа упрощает хранение комплексных величин и вычисления над ними. Содержание 1 Арифметика над комплексными 2 Поддержка в языках … Википедия

    У этого термина существуют и другие значения, см. Указатель. Диаграмма указателей Указатель (пойнтер, англ. pointer) переменная, диапазон значений которой состоит из адресов ячеек памяти и специального значения нулевого адреса.… … Википедия

    Один из видов алгебраических типов данных, который характеризуется тем, что его конструкторы могут возвращать значения не своего типа. Это понятие реализовано в нескольких языках программирования, в частности в языках ML и Haskell, причём в… … Википедия

    Типаж (англ. trait) это абстрактный тип, в информатике, используемый, как «простая концептуальная модель для структурирования объектно ориентированных программ». Типажи подобны mixins, но могут включать определения методов класса.… … Википедия

    Бинарное дерево, простой пример ветвящейся связной структуры данных. Структура данных (англ. data structure) программная единица, позволяющая хран … Википедия

    - (top type) в теории типов, часто обозначаемый как просто вершина или «закрепленным» символом (⊤), универсальный тип, то есть такой тип, который содержит в себе каждый возможный объект в нужной системе типов. Высший тип иногда именуется… … Википедия

Разработка абстрактных моделей для данных и способов обработки этих данных является важнейшим компонентом в процессе решения задач с помощью компьютера. Примеры этого мы видим и на низком уровне в повседневном программировании (например, при использовании массивов и связных списков, рассмотренных в ), и на высоком уровне при решении прикладных задач (как при решении задачи связности с помощью леса объединение-поиск в "Введение"). В настоящей лекции рассматриваются абстрактные типы данных ( abstract data type , в дальнейшем АТД), позволяющие создавать программы с использованием высокоуровневых абстракций. Абстрактные типы данных позволяют отделять абстрактные (концептуальные) преобразования, которые программы выполняют над данными, от любого конкретного представления структуры данных и любой конкретной реализации алгоритма.

Все вычислительные системы основаны на уровнях абстракции: определенные физические свойства кремния и других материалов позволяют принять абстрактную модель бита, который может принимать двоичные значения 0-1; затем на динамических свойствах значений определенного набора битов строится абстрактная модель машины; далее, на основе принципа работы машины под управлением программы на машинном языке строится абстрактная модель языка программирования; и, наконец, строится абстрактное понятие алгоритма, реализуемое в виде программы на языке C++. Абстрактные типы данных дают возможность продолжать этот процесс дальше и разрабатывать абстрактные механизмы для определенных вычислительных задач на более высоком уровне, чем это обеспечивается системой C++, разрабатывать абстрактные механизмы , ориентированные на конкретные приложения и подходящие для решения задач в многочисленных прикладных областях, а также создавать абстрактные механизмы более высокого уровня, в которых используются эти базовые конструкции. Абстрактные типы данных предоставляют в наше распоряжение расширяемый до бесконечности набор инструментальных средств для решения все новых и новых задач.

С одной стороны, применение абстрактных конструкций освобождает от забот по их детальной реализации; с другой стороны, когда производительность программы важна, необходимо знать затраты на выполнение базовых операций. Мы используем множество базовых абстракций, встроенных в аппаратные средства компьютера и служащих основой для машинных инструкций; реализуем другие абстракции в программном обеспечении; и используем дополнительные абстракции, предоставляемые написанным ранее системным программным обеспечением. Абстрактные конструкции высокого уровня часто создаются на основе более простых конструкций. На всех уровнях действует один и тот же основной принцип: необходимо найти наиболее важные операции в программах и наиболее важные характеристики данных, а затем точно определить те и другие на абстрактном уровне и разработать эффективные конкретные механизмы для их реализации. В настоящей лекции мы рассмотрим множество примеров применения этого принципа.

Для разработки нового уровня абстракции потребуется (1) определить абстрактные объекты, с которыми необходимо манипулировать, и операции , которые должны выполняться над ними; (2) представить данные в некоторой структуре данных и реализовать операции ; (3) и (самое главное) обеспечить, чтобы эти объекты было удобно использовать для решения прикладных задач. Эти пункты применимы и к простым типам данных, так что базовые механизмы для поддержки типов данных, которые были рассмотрены в "Элементарные структуры данных" , можно адаптировать для наших целей. Однако язык C++ предлагает важное расширение механизма структур, называемое классом ( class ). Классы исключительно полезны при создании уровней абстракции и поэтому рассматриваются в качестве основного инструмента, который используется для этой цели в оставшейся части книги.

Определение 4.1. Абстрактный тип данных (АТД) - это тип данных (набор значений и совокупность операций для этих значений), доступ к которому осуществляется только через интерфейс. Программу, которая использует АТД, будем называть клиентом, а программу, содержащую спецификацию этого типа данных - реализацией.

Именно слово только делает тип данных абстрактным: в случае АТД клиентские программы не имеют доступа к значениям данных никаким другим способом, кроме операций, описанных в интерфейсе. Представление этих данных и функции, реализующие эти операции , находятся в реализации и полностью отделены интерфейсом от клиента. Мы говорим, что интерфейс является непрозрачным: клиент не может видеть реализацию через интерфейс .

В программах на языке C++ это различие обычно проводится немного четче, так как проще всего создать интерфейс , включив в него представление данных , но указав, что клиентским программам не разрешен прямой доступ к данным. Другими словами, разработчики клиентских программ могут знать представление данных , но никоим образом не могут его использовать.

В качестве примера рассмотрим интерфейс типа данных для точек ( программа 3.3) из раздела 3.1 "Элементарные структуры данных" . В этом интерфейсе явно объявляется, что точки представлены как структуры, состоящие из пары чисел с плавающей точкой, обозначаемых x и у. Подобное применение типов данных является обычным в больших системах программного обеспечения: мы разрабатываем набор соглашений о представлении данных (а также определяем ряд связанных с ними операций) и делаем эти правила доступными через интерфейс , чтобы ими могли пользоваться клиентские программы, входящие в состав большой системы. Тип данных обеспечивает согласованность всех частей системы с представлением основных общесистемных структур данных. Какой бы хорошей такая стратегия ни была, она имеет один изъян: если необходимо изменить представление данных , то потребуется изменить и все клиентские программы. Программа 3.3 снова дает нам простой пример: одна из причин разработки этого типа данных - удобство работы клиентских программ с точками, и мы ожидаем, что в случае необходимости у клиентов будет доступ к отдельным координатам точки. Но мы не можем перейти к другому представлению данных (скажем, к полярным координатам, или трехмерным координатам, или даже к другим типам данных для отдельных координат) без изменения всех клиентских программ.

В отличие от этого, программа 4.1 содержит реализацию абстрактного типа данных, соответствующего типу данных из программы 3.3, но с использованием класса языка C++, в котором сразу определены как данные, так и связанные с ними операции . Программа 4.2 является клиентской программой, работающей с этим типом данных. Эти две программы выполняют те же самые вычисления, что и программы 3.3 и 3.8. Они иллюстрируют ряд основных свойств классов, которые мы сейчас рассмотрим.

Когда мы пишем в программе определение наподобие int i, мы указываем системе зарезервировать область памяти для данных (встроенного) типа int , к которой можно обращаться по имени i. В языке C++ для подобных сущностей имеется термин объект . При записи в программе такого определения, как POINT p, говорят, что создается объект класса POINT , к которому можно обращаться по имени p. В нашем примере каждый объект содержит два элемента данных, с именами x и у. Как и в случае структур, к ним можно обращаться по именам вроде p.y.

Элементы данных x и у называются данными-членами класса. В классе могут быть также определены функции-члены, которые реализуют операции , связанные с этим типом данных. Например, класс , определенный в программе 4.1, имеет две функции-члена с именами POINT и distance .

Клиентские программы, такие как программа 4.2, могут вызывать функции-члены, связанные с объектом, указывая их имена точно так же, как и имена данных, находящихся в какой-нибудь структуре struct. Например, выражение p.distance(q) вычисляет расстояние между точками p и q (такое же расстояние должен возвращать и вызов q.distance(p) ). Функция POINT() - первая функция в программе 4.1 - является особой функцией-членом, называемой конструктором: у нее такое же имя, как и у класса, и она вызывается тогда, когда требуется создать объект этого класса.

Программа 4.1. Реализация класса POINT (точка)

В этом классе определен тип данных , который состоит из набора значений, представляющих собой "пары чисел с плавающей точкой" (предполагается, что они интерпретируются как точки на декартовой плоскости), а также две функции-члена, определенные для всех экземпляров класса POINT : функция POINT() , которая является конструктором, инициализирующим координаты случайными значениями от 0 до 1, и функция distance(POINT) , вычисляющая расстояние до другой точки. Представление данных является приватным ( private ), и обращаться к нему или модифицировать его могут только функции-члены. Сами функции-члены являются общедоступными ( public ) и доступны для любого клиента. Код можно сохранить, например, в файле с именем POINT .cxx.

#include class POINT { private: float x, у; public: POINT() { x = 1.0*rand()/RAND_MAX; у = 1.0*rand()/RAND_MAX; } float distance(POINT a) { float dx = x-a.x, dy = y-a.y; return sqrt(dx*dx + dy*dy); } };

Программа 4.2. Программа-клиент для класса POINT (нахождение ближайшей точки)

Эта версия программы 3.8 является клиентом, который использует АТД POINT , определенный в программе 4.3. Операция new создает массив объектов POINT (вызывая конструктор POINT () для инициализации каждого объекта случайными значениями координат). Выражение a[i].distance(a[j]) вызывает для объекта a[i] функцию-член distance с аргументом a[j] .

#include #include #include "POINT.cxx" int main(int argc, char *argv) { float d = atof(argv); int i, cnt = 0, N = atoi(argv); POINT *a = new POINT[N]; for (i = 0; i < N; i++) for (int j = i+1; j < N; j++) if (a[i].distance(a[j]) < d) cnt+ + ; cout << cnt << " пар в радиусе " << d << endl; }

Определение POINT p в программе-клиенте приводит к выделению области памяти под новый объект и затем (с помощью функции POINT() ) к присвоению каждому из двух его элементов данных случайного значения в диапазоне от 0 до 1.

Этот стиль программирования, который иногда называется объектно-ориентированным программированием, полностью поддерживается конструкцией class языка C++. Класс можно считать расширением понятия структуры, где не только объединяются данные, но и определяются операции с этими данными. Может существовать много разных объектов, принадлежащих одному классу, но все они подобны в том, что их данные-члены могут принимать один и тот же набор значений, и с этими данными-чле-нами может выполняться одна и та же совокупность операций - в общем, это экземпляры одного и того же типа данных. В объектно-ориентированном программировании объекты предназначены для обработки своих данных-членов (в отличие от использования независимых функций для обработки данных, хранимых в объектах).

Мы рассматриваем описанный выше пример небольшого класса просто чтобы познакомиться с основными чертами классов; поэтому он далеко не полон. В реальном коде для класса точки у нас будет намного больше операций. Например, в программе 4.1 отсутствуют даже операции , позволяющие узнавать значения координат x и y . Как мы увидим, добавление этих и других операций - довольно простая задача. В части 5 мы более подробно рассмотрим классы для точки и других геометрических абстракций, например, линий и многоугольников.

В языке C++ (но не в С) у структур также могут быть связанные с ними функции. Ключевое различие между классами и структурами связано с доступом к информации, который характеризуется ключевыми словами

Абстрактным принято называть тип данных, в явном виде не имеющийся в языке программирования, в этом смысле это понятие относительное - тип данных, отсутствующий в одном языке программирования, может присутствовать в другом.

Абстрактный тип данных (АТД) определяется независимо от способа его реализации:

    множеством возможных значений этого типа,

    и набором операций со значениями этого типа.

Использование АТД может быть ограничено этапом разработки программного обеспечения, но для его явного использования в программе надо иметь его реализацию на основе уже имеющихся (и ранее реализованных) типов данных в языке программирования:

    способ представления значений этого типа,

    и реализацию операций со значениями этого типа.

АТД не является предопределенным в языке программирования, и даже более того – операции конструирования таких типов, предопределенные в языке, перекладывают на разработчика-программиста вопрос о способе представления значений такого типа и реализации операций со значениями этого типа. А потому, для таких типов данных вопрос о выборе определений и способов реализации операций вида конструктор (значений и хранилищ данных) такого типа, селектор и модификатор компонентов (значений и хранилищ данных) такого типа возлагается на разработчика-программиста.

В концепции АТД особый статус имеют понятия интерфейс , открытый пользователю, и реализация , скрытая от него. Особая роль этих понятий в концепции АТД связана с основополагающим положением о независимости понятия АТД от способа его реализации.

В современных «практических языках программирования» для конструирования АТД обычно используется предопределенная операция конструирования типов class , которая дает разработчику-программисту не только средства группировки данных и операций (с этими данными) в единое целое, но и средства инкапсуляции, наследования и полиморфизма для управления способами конструирования и доступа к таким данным. Отметим, что класс описывает одну возможную реализацию АТД, отображение класса в АТД выражается функцией абстракции, но обратное отношение, обычно, не является функциональным, реализаций одного и того же АТД может быть несколько.

В исследованиях по абстрактным типам данных уже на раннем этапе была осознана важная роль понятия «параметризация типа ». Действительно, например АТД «Стек» не зависит от типа элементов стека, но реализовать этот АТД указанием на «элементы какого-то одинакового типа» невозможно. В язык программирования Ada соответствующие средства конструирования параметризованных типов данных были включены изначально, а в современных «практических языках программирования» какие средства появились только со времен появления разработки по STL-библиотеке . На сегодня понятие «обобщенное программирование» занимает значимое положение в практическом программировании благодаря включению в «практические языки программирования» средств конструирования параметризованных типов данных (шаблоны, template , generic) .

Всё вышесказанное означает, что с методологической и теоретической точки зрения необходимо более детальное точное определение понятия «абстрактный тип данных». В теории понятие «абстрактный тип данных» обычно определяется как многосортная (многоосновная) алгебраическая система , в которой дополнительно к множеству возможных значений (носителю) и набору операций над такими значениями выделены понятия:

    Сорт и сигнатура – эти понятия позволяют расклассифицировать и элементы носителя и операции с ними по их типам (для операций - по типам их аргументов и возвращаемого значения).

    Предикаты – отношения на элементах носителя. Это позволяет определять область возможных значений наложением ограничений (требований) на допустимые значения, а также в естественной трактовке работать с произвольными логическими выражениями, не принуждая интерпретировать их как функции принадлежности для множеств или как многозначные операции.

На такой основе можно рассматривать абстрактные типы данных с единой целостной логико-алгебраической точки зрения, включая вопросы о конструкторах (типов и значений), селекторах и модификаторах свойств для объектов такого типа .

Понятия «структура данных» и «абстрактный тип данных» в чем-то очень близкие. Можно конечно считать, что эти понятия - просто два взгляда на одно и то же. Способ представления значений АТД всегда основан на некоторой структуре данных, менее или более сложной, и реализация операций с такими значениями естественно зависит от этой выбранной структуры данных. С другой стороны, заинтересовавшую нас структуру данных при большом желании мы всегда можем оформить как АТД.

Но все же мы будем различать эти два понятия, учитывая:

    Абстрактный тип данных - подразумевает определенный уровень абстрагирования с целью фиксации прикладного (предметно-ориентированного) типа данных безотносительно к способам его реализации, и возможно включения этого типа данных в прикладную библиотеку, ну хотя бы для конкретной разработки конкретной программной системы. АТД может иметь несколько альтернативных реализаций, основанных на различных структурах данных.

    Структура данных - скорее некоторая схема организации данных и управления ими, которая предполагает соответствующие конкретизации при ее использовании в конкретных ситуациях при решении конкретных задач.

К абстрактным типам данных прежде всего естественно относятся математические базовые алгебраические системы – последовательности, множества, отношения и отображения (функциональные отношения, функции) . Но в программировании на переднем плане не исследование общих свойств этих математических понятий, а возможности их использования в разработке моделей решения задач предметной области, алгоритмов решения этих задач и эффективной реализации разработанных алгоритмов. А потому в программировании в виде АТД обычно оформляются с одной стороны ограниченные варианты этих базовых алгебраических систем, а с другой стороны расширенные специализированными наборами операций, представляющими прагматический интерес с точки зрения области применения.



Загрузка...