sonyps4.ru

Классификация моделей по различным классификационным признакам. Модели и моделирование

Моделирование построено на использовании разнообразных мо­делей, что обусловливает необходимость определения ее понятия и классификацию моделей, применяемых в системном анализе.

Модель - это такой материальный или мысленно представляе­мый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

По своей природе модели делятся на физические, символиче­ские и смешанные.

Физические модели воплощены в каких-либо материальных объ­ектах, имеющих естественное или искусственное происхождение (ото­бранные в природе или созданные человеком для целей исследова­ния), и подразделяются на модели подобия и аналоговые. Первые ха­рактеризуются масштабными изменениями, выбираемыми в соответст­вии с критериями подобия, вторые - основаны на известных аналогиях между протеканием процессов в различных системах. Примером анало­говой модели является экономический эксперимент, когда результаты экспериментирования на одном или нескольких предприятиях перено­сятся на совокупность объектов близкой экономической природы.

Символические модели характеризуются тем, что параметры ре­ального объекта и отношения между ними представлены символами: семантическими (словами), математическими, логическими. Класс символических моделей весьма широк. Наряду со словесными описа­ниями функционирования объектов - сценариями - сюда также отно­сятся схематические модели: графики и блок-схемы, логические блок-схемы (например, алгоритмы программ) и таблицы решений, номо­граммы, а также математические описания - математические модели.

Смешанные модели применяются тогда, когда часть элементов и процессов не удается описать символами, и они моделируются физи­чески. К ним относятся также человеко-машинные модели, в которых имеется программа, реализующая на ЭВМ некоторую математическую модель, плюс человек, принимающий решение за счет обмена инфор­мацией с ней.

По целевому назначению различают модели структуры, функ­ционирования и стоимостные (модели расхода ресурсов).

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

Канонические модели, характеризующие взаимодействие объ­екта с окружением через входы и выходы:

Модели внутренней структуры, характеризующие состав компо­нентов объекта и связи между ними;

Модели иерархической структуры (дерево системы), в которых объект расчленяется на элементы более низкого уровня, действия ко­торых подчинены интересам целого.

Модели структуры обычно представлены в виде блок-схем, реже графов и матриц связей.

Модели функционирования включают широкий спектр симво­лических моделей:

Модели жизненного цикла системы, описывающие процессы существования систем от зарождения замысла их создания до пре­кращения функционирования;

Модели операций, выполняемых объектами и представляющих описание взаимосвязанной совокупности процессов функционирова­ния отдельных элементов объекта при реализации тех или иных функ­ций объектов;

Информационные модели, отображающие во взаимосвязи ис­точники и потребителей информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

Процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных опера­ций, в частности, реализации процедур принятия управленческих ре­шений;

Временные модели, описывающие процедуру функционирова­ния объектов во времени и распределение ресурса "время" по отдель­ным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны. Их со­вместное использование позволяет проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономиче­ским критериям.

В зависимости от степени формализации связей между фак­торами различают аналитические и алгоритмические модели.

Аналитические модели предполагают запись математической модели в виде алгебраических уравнений и неравенств, не имеющих разветвлений вычислительного процесса, при определении значений любых переменных, состояния модели, целевой функции и уравнений связи.

Алгоритмические модели описывают критерии и ограничения математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. Они приме­няются, когда модель сложной системы гораздо легче построить в ви­де алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логиче­ских условий - разветвлений хода течения процесса. Тематическое описание для элементов может быть очень простым, однако взаимо­действие большого количества простых, по математическому описа­нию, элементов позволяет описать сложность системы.

В зависимости от наличия случайных факторов различают стохастические и детерминированные модели.

В детерминированных моделях ни целевая функция, ни уравне­ния связи не содержат случайных факторов и для данного множества выходных значений модели, может быть получен один-единственный результат.

Для стохастических моделей характерно наличие факторов, ко­торые имеют вероятностную природу и характеризуются какими-либо законами распределения, а среди функций могут быть и случайные. Значения выходных характеристик в таких моделях могут быть пред­сказаны только в вероятностном смысле. Реализация таких моделей в большинстве случаев осуществляется методами имитационного мо­делирования.

В зависимости от фактора времени различают динамические и статические модели.

Модели, в которых входные факторы, а, следовательно, и ре­зультаты моделирования явно зависят от времени, называются дина­мическими, а модели, в которых зависимость от времени либо отсут­ствует совсем, либо проявляется слабо или неясно, называются ста­тическими

Вопрос 36

Процесс моделирования обязательно включает и построение аб­стракций и умозаключения по аналогии и конструирование новых сис­тем. Основная особенность моделирования в том, что это метод опо­средованного познания с помощью объектов заменителей. Модель выступает как своеобразный инструмент познания, который исследо­ватель ставит между собой и объектом и с помощью которого изучает интересующий его объект.

Первый этап моделирования - построение модели. Он пред­полагает наличие некоторых знаний об объекте - оригинале. На этом этапе важен вопрос о необходимой и достаточной мере сходства ори­гинала и модели. При разработке модели должны соблюдаться следующие прин­ципы:

1. Принцип компромисса между ожидаемой точностью резуль­татов моделирования и сложностью модели.

2. Принцип баланса, точности требует соразмерности систе­матической погрешности моделирования и случайной погрешности в задании параметров описания. Этот принцип устанавливает требова­ние соответствия между точностью исходных данных и точностью мо­дели, между точностью отдельных элементов модели, между система­тической погрешностью модели и случайной погрешностью при интер­претации и усреднении результатов.

3. Принцип разнообразия элементов модели, в соответствии с которым количество элементов должно быть достаточным для прове­дения конкретных исследований

4. Принцип наглядности модели трактует, что при прочих рав­ных условиях модель, которая привычна, удобна, построена на обще­принятых терминах, обеспечивает, как правило, более значительные результаты, чем менее удобная и наглядная.

5. Принцип блочного представления модели. Для его реали­зации следует соблюдать следующие правила:

Обмен информацией между блоками должен быть минималь­ным;

Блок модели, мало влияющей на интерпретацию результатов моделирования, является несущественным и подлежащим удалению;

Блок модели, осуществляющий взаимодействие с исследуемой частью системы, можно заменить множеством упрощенных эквивален­тов, не зависящих от исследуемой части, при этом моделирование проводится в нескольких вариантах по каждому упрощенному эквива­ленту;

При упрощении блока, воздействующего на исследуемую часть системы, следует рассмотреть возможность прямого упрощения замк­нутого контура без разрыва обратной связи. Для этого блок заменяют вероятным эквивалентом с оценкой его статистических характеристик, полученных путем автономного исследования упрощенного блока;

Замена блока воздействиями, наихудшими по отношению к ис­следуемой части системы

Второй этап моделирования - изучение модели. Здесь мо­дель выступает как состоятельный объект исследования. Одной из форм такого исследования является проведение экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели.

Третий этап моделирования - перенос знаний с модели на оригинал. Этот процесс проводится по определенным правилам. Зна­ния о модели должны быть скорректированы с учетом тех свойств объекта - оригинала, которые не нашли отражения или были измене­ны при построении модели.

Четвертый этап моделирования - практическая проверка по­лученных с помощью модели знаний и их использование при построении обобщенной теории объекта, его преобразования или управления им. В итоге происходит возвращение к проблематике реального объекта.

Моделирование представляет собой циклический процесс. Это оз­начает, что за первым четырехэтапным циклом может последовать вто­рой, третий и т.д. При этом знания об исследуемом объекте расширяют­ся, а исходная модель постепенно совершенствуются. Недостатки, об­наруженные после первого цикла моделирования, обусловленные ма­лым знанием объекта и ошибками в построении модели, можно испра­вить в последующих циклах. Таким образом, в методологии моделиро­вания заложены большие возможности саморазвития.

Понятие модели, ее функции. Общая классификация моделей. Этапы машинного моделирования. 1

Метод статистического моделирования. Общая характеристика. 3

Моделирование случайных воздействий: случайные события. 5

Генерация непрерывных случайных величин. Основные методы генерации. 6

Основные понятия планирования эксперимента. Понятие фактора, отклика. 10

Марковские СМО. Граф состояний. Правила составления уравнений Колмогорова. 14

Основные характеристики СМО и соотношения между ними. 16

Одноканальные СМО с ожиданием 16

Многоканальные СМО с ожиданием 18

Понятие модели, ее функции. Общая классификация моделей. Этапы машинного моделирования.

В настоящее время полное и всестороннее исследование реальных систем невозможно без методов моделирования на ЭВМ. Именно моделирование является средством, позволяющим без капитальных затрат решать проблемы построения больших систем, эффективного управления этими системами.

Общепринятого определения модели в настоящее время не существует. Приведем некоторые из них (наиболее распространенные).

Модель является представлением объекта, системы или понятия в некоторой форме, отличной от формы их реального существования.

Модель - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Математическая модель сложного объекта представляет собой некоторую знаковую систему, собственные свойства которой настолько близки к свойствам исследуемого объекта, что это позволяет при помощи экспериментов с ней на ЭВМ получить интересующую информацию о поведении или свойствах системы в заданных условиях.

Модель объекта может быть или точной копией этого объекта или отображать некоторые характерные свойства объекта в абстрактной форме. Модель служит обычно средством, помогающим нам в объяснении, понимании или совершенствовании системы. В настоящее время моделирование становится не только эффективным методом научных исследований сложных объектов, но и мощным инструментом конструирования и проектирования сложных систем. Качество решений задач, получаемых с помощью математического моделирования, определяется степенью адекватности модели реальному объекту (т.е. насколько результаты моделирования соответствуют результатам работы реального объекта. Результат моделирования зависит от степени адекватности модели, правильности исходных предпосылок, умения исследователя правильно применять используемые методы, правильной интерпретации результатов.

В настоящее время существует несколько больших классов моделей.

Так как выбор класса зависит от целей исследования и свойств сложной системы, рассмотрим основные функции, выполняемые моделями сложных систем.

    Объяснительная функция модели - модель может помочь упорядочить нечеткие или противоречивые понятия: выявить взаимозависимости, временные соотношения; помочь интерпретировать данные натурного эксперимента. Уже сама попытка формализовать - помогает в понимании функционирования объекта;

    Информационная функция - означает возможность использования модели как средства для накопления и хранения знаний об объекте;

    Обучающая функция - модель может служить для обучения и тренажа лиц, которые должны уметь справляться с всевозможными случайностями до возникновения реальной критической ситуации (модели космических кораблей, различные тренажеры, деловые игры);

    Предсказательная функция модели связана с возможностью прогнозировать с заданной точностью по некоторым данным натурных экспериментов поведение и свойства объекта (одна из наиболее важных);

    Функция постановки и проведения экспериментов : для объектов, где экспериментирование на реальных системах невозможно или нецелесообразно (люди, природа, атомные реакторы). Дает возможность характеризовать свойства объекта моделирования в различных состояниях.

Зачастую одна модель может выполнять одновременно несколько функций (использоваться для проведения экспериментов и для прогноза; проведения экспериментов и объяснения; для обучения и накопления знаний).

Классификация моделей

Модели вообще и имитационные модели в частности можно классифицировать различными способами. Каждый служит определенной цели.

Некоторые типовые группы моделей:

    статические и динамические;

    детерминированные и стохастические;

    дискретные и непрерывные.

Удобно представить себе имитационные модели в виде непрерывного спектра, простирающегося от точных моделей или макетов реальных объектов до совершенно абстрактных математических моделей:

Модели, находящиеся в начале спектра - физические или натурные , т.к. они внешне напоминают изучаемую систему. Здесь используются макеты в натуральную величину или уменьшенные модели. Статические физические модели (архитектурные объекты) помогают наглядно представить пространственные соотношения. Динамическая физическая модель - модель опытного завода (в масштабе) предназначается для изучения процесса функционирования систем.

Полномасштабные макеты - тренажеры. Модель может быть в уменьшенном масштабе (солнечная система) или в увеличенном (атом).

Аналоговыми являются модели, в которых свойство реального объекта представляется некоторым другим свойством аналогичного по поведению объекта. Примером может служить аналоговая ЭВМ, в которой изменение напряжения в сети определенной конфигурации может отображать поток товаров в некоторой системе. График также является аналоговой моделью: здесь расстояние отображает такие характеристики объекта, как время, срок службы, количество единиц и т.д. Графические решения возможны при планировании производства, для определенных задач линейного программирования, а также для игровых задач. Иногда графики используются совместно с математическими моделями. Схемы также являются аналоговыми моделями.

Моделирование, где во взаимодействие вступают люди и машинные компоненты, часто называется играми (управленческими, военными, планировочными). В деловых играх человек взаимодействует с информацией, поступающей с выхода вычислительной машины (которая моделирует все другие свойства системы), и принимает решение на основе полученной информации. Решения человека затем снова сводятся в машину в качестве входной информации.

К символическим или математическим моделям относятся те, в которых для представления процесса или системы используются символы, а не физические устройства. Обычный пример - системы дифференциальных уравнений.

В большинстве случаев в результате системных исследований появляются несколько различных моделей одной и той же системы.

Классификация кибернетических моделей

Кибернетика занимается процессами управления в живой и неживой природе, связанными с преобразованием информации. Поэтому рассмотрим существующие кибернетические модели (КМ).

Классификация КМ, связанная с математическим аппаратом, выделяет 5 основных классов:

    массового обслуживания и надежности (МО)

  • распознавания образов (РО)

    графовые

    алгебраические.

Каждый класс может быть разделен на подклассы, например, модели МО - на одноканальные, многоканальные, замкнутые.

При решении каждой конкретной задачи, при моделировании одной и той же системы могут быть использованы различные модели в зависимости от поставленной цели.

Этапы моделирования

С развитием вычислительной техники наиболее эффективным методом исследования больших систем стало машинное моделирование.

Этапы машинного моделирования реальных систем:

    определение системы - установление границ, ограничений и измерителей эффективности изучаемой системы;

    формулирование модели - переход от реальной системы к некоторой логической схеме (абстрагирование);

    подготовка данных - отбор данных, необходимых для построения модели, и представление их в соответствующей форме;

    трансляция модели - описание модели на языке, приемлемом для используемой ЭВМ;

    оценка адекватности - повышение до приемлемого уровня степени уверенности, с которой можно судить относительно корректности выводов о реальной системе, полученных на основании обращения к модели;

    стратегическое планирование - планирование эксперимента, который должен дать необходимую информацию;

    тактическое планирование - определение способа проведения каждой серии испытаний, предусмотренных планом эксперимента;

    экспериментирование - процесс осуществления имитации с целью получения желаемых данных и анализа чувствительности;

    интерпретация - построение выводов по данным, полученным путем имитации;

    реализация - практическое использование модели и /или результатов моделирования.

Если результаты удовлетворяют исследователя, то на этом процесс моделирования завершается, в противном случае возможен возврат на любой предыдущий этап моделирования.

Первые две большие группы: материальные и информационные. Названия этих групп как бы показывают, из чего сделаны модели.

Материальные модели иначе можно назвать предметными, физическими. Они воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение. Материальные модели определяют материальный, основанный на восприятии органами чувств подход к исследованию объекта (процесса, явления), то что можно увидеть, потрогать, услышать и т.п.

Примеры: Детские игрушки. Школьные пособия, физические и химические опыты, географические карты, схемы солнечной системы и звездного неба и многое другое.

3.1. Информационные модели нельзя потрогать или увидеть воочию, они не имеют материального воплощения, потому, что они строятся только на информации. В основе этого метода моделирования лежит информационный подход к изучению окружающей действительности. Информационные модели – совокупность информации, характеризующей свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром. Информация, характеризующая объект или процесс, может иметь разный объем и форму представления, выражаться различными средствами. Это многообразие настолько безгранично, насколько велики возможности каждого человека и его фантазии. В информационных моделях выделяют знаковые и вербальные модели.

3.2.1. Знаковая модель – информационная модель, выраженная специальными знаками, т. е. средствами любого формального языка. Это рисунки, тексты, графики и схемы. По способу реализации знаковые модели можно разделить на компьютерные и некомпьютерные.

3.2.2. Вербальная (от лат «verbalis» – устный) модель – информационная модель в мысленной или разговорной форме. Это модели, полученные в результате раздумий, умозаключений. Они могут так и остаться мысленными или быть выражены словесно. Примером такой модели может стать наше поведение при переходе улицы. Человек анализирует ситуацию на дороге (что показывает светофор, с какой скоростью и на каком расстоянии движутся автомобили и т. п.) и вырабатывает свою модель поведения. Если ситуация смоделирована удачно, то переход будет безопасным, если нет, то может произойти авария. К таким моделям можно отнести идею, возникшую в голове изобретателя, музыкальную тему, промелькнувшую в голове композитора, рифму, прозвучавшую пока в голове поэта. Знаковые и вербальные модели, как правило, взаимосвязаны. Мысленный образ, родившийся в мозгу человека, может быть облечен в зна-


Классификация моделей


Рисунок 4.2 Классификация моделей


ковую форму. И, наоборот, знаковая модель – помогает сформировать в сознании верный мысленный образ.

В научной среде выделяются и другие подходы к классификации моделей. Например, классификация моделей может быть проведена по следующим признакам:

По целевому назначению (1);

По характеру выполняемых функций (2);

По форме (3).

Рассмотрим эти классификации более подробно ниже.

1. Целевое назначение моделей .

Человек в практической деятельности обычно решает две задачи – экспертную и конструктивную . В экспертной задаче на основании имеющейся информации описывается прошлое, настоящее и предсказывается будущее. Суть конструктивной задачи заключается в том, чтобы создать нечто с заданными свойствами.Для решения экспертных задач применяют так называемые описательные модели, а для конструктивных – нормативные .

Описательные модели (дескриптивные, познавательные ) предназначены для описания свойств или поведения реальных существующих объектов. Они являются формой представления знаний о действительности.

Пример: План города, отчет о деятельности фирмы, характеристика.

Можно выделить цели описательного моделирования в зависимости от решаемых задач:

Изучение объекта (научные исследования) – наиболее полно и точно отразить свойства объекта;

управление – наиболее точно отразить свойства объекта в рабочем диапазоне изменения его параметров;

прогнозирование – построить модель, способную наиболее точно прогнозировать поведение объекта в будущем;

обучение – отразить в модели изучаемые свойства объекта.

Построение описательной модели происходит по схеме: наблюдение за объектом, кодирование наблюдений с помощью слов, символов, графических образов и фиксации закодированных результатов в виде модели.


Рисунок 4.3 Последовательность построения описательной модели

Нормативные модели (прескриптивные, прагматические ) предназначены для указания целей деятельности и определенного порядка (алгоритма) действий для их достижения. Они решают задачи приближения реальности к модели , поскольку модель играет роль стандарта или образца, под который подгоняется сама действительность, ее результаты.

Примеры: Законы, уставы организаций, планы застройки, бизнес-планы, программы действий, управленческие решения, проекты зданий, машин и т.д.

2. Функции моделей. Можно выделить следующие функции, выполняемые моделями:

исследовательская – применяется в научном познании;

практическая – применяется в практической деятельности (проектировании, управлении и т.д.);

тренинговая – используется для тренировки практических умений и навыков специалистов в различных областях;

обучающая – для формирования у обучаемых знаний, умений и навыков.

3. Форма представления моделей . Модели по форме бывают:

физические – материальные объекты, имеющие сходство с оригиналом (модель самолета, которая исследуется в аэродинамической трубе; модель плотины);

словесные (вербальные) – словесное описание чего-либо (структура предприятия, принцип работы устройства, внешность человека);

графические – описание в виде графических изображений (схемы, карты, графики, диаграммы);

знаковые – описание в виде символов и знаков (дорожные знаки, условные обозначения на схемах, математические соотношения. Разновидностью знаковых моделей являются математические модели (или математическое описание ).

Еще один подход к классификации - по процессу моделирования – видам моделирования.Применительно к социально-экономическим системам можно предложить такую классификацию видов моделирования:

· концептуальное моделирование , при котором с помощью некоторых специальных знаков, символов, операций над ними или с помощью естественного или искусственного языков истолковывается основная мысль (концепция) относительно исследуемого объекта;

· интуитивное моделирование, которое сводится к мысленному эксперименту на основе практического опыта работников (широко применяется в экономике);

· физическое моделирование, при котором модель и моделируемый объект представляют собой реальные объекты или процессы единой или различной физической природы, причем между процессами в объекте-оригинале и в модели выполняются некоторые соотношения подобия, вытекающие из схожести физических явлений;

· структурно-функциональное моделирование, при котором моделями являются схемы (блок-схемы), графики, чертежи, диаграммы, таблицы, рисунки, дополненные специальными правилами их объединения и преобразования;

· математическое (логико-математическое) моделирование , при котором моделирование, включая построение модели, осуществляется средствами математики и логики;

имитационное (программное) моделирование , при котором логико-математическая модель исследуемого объекта представляет собой алгоритм функционирования объекта, реализуемый в виде программного комплекса для компьютера. Имитационное моделирование – моделирование, при котором процесс, явление, объект, строится или описывается так, как они бы проходили в реальности. Модель может быть проиграна (метод «Деловых игр», «Суда» и т.п.) или описана логико-математической моделью в виде программного комплекса для компьютера (компьютерное моделирование) или в виде экономико–математических моделей (описание экономических и социальных систем и процессов). Следует добавить несколько слов о компьютерном моделировании , являющемся развитием имитационного моделирования. Компьютер может быть полезен при всех видах моделирования (за исключением физического моделирования, где компьютер тоже может использоваться, но, скорее, для целей управления процессом моделирования). Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, любой реальный объект или процесс, например процесс инфляции. Цели компьютерного моделирования могут быть различными, однако наиболее часто моделирование является центральной процедурой системного анализа.

Каждый из подходов к классификации моделей имеет свои достоинства и недостатки, характеристики и полноту охвата. Единый взгляд на этот вопрос, по всей видимости, еще впереди.

Модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Модель - создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.

Моделирование – процесс создания и использования модели.

Цели моделирования

  • Познание действительности
  • Проведение экспериментов
  • Проектирование и управление
  • Прогнозирование поведения объектов
  • Тренировка и обучения специалистов
  • Обработка информации

Классификация по форме представления

  1. Материальные - воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение (детские игрушки, наглядные учебные пособия, макеты, модели автомобилей и самолетов и прочее).
    • a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);
    • b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);
    • c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).
  2. Информационные - совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром).
    • 2.1. Вербальные - словесное описание на естественном языке).
    • 2.2. Знаковые - информационная модель, выраженная специальными знаками (средствами любого формального языка).
      • 2.2.1. Математические - математическое описание соотношений между количественными характеристиками объекта моделирования.
      • 2.2.2. Графические - карты, чертежи, схемы, графики, диаграммы, графы систем.
      • 2.2.3. Табличные - таблицы: объект-свойство, объект-объект, двоичные матрицы и так далее.
  3. Идеальные – материальная точка, абсолютно твердое тело, математический маятник, идеальный газ, бесконечность, геометрическая точка и прочее...
    • 3.1. Неформализованные модели - системы представлений об объекте оригинале, сложившиеся в человеческом мозгу.
    • 3.2. Частично формализованные .
      • 3.2.1. Вербальные - описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента).
      • 3.2.2. Графические иконические - черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты).
      • 3.2.3. Графические условные - данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем.
    • 3.3. Вполне формализованные (математические) модели.

Свойства моделей

  • Конечность : модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • Упрощенность : модель отображает только существенные стороны объекта;
  • Приблизительность : действительность отображается моделью грубо или приблизительно;
  • Адекватность : насколько успешно модель описывает моделируемую систему;
  • Информативность : модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модел;
  • Потенциальность : предсказуемость модели и её свойств;
  • Сложность : удобство её использования;
  • Полнота : учтены все необходимые свойства;
  • Адаптивность .
Так же необходимо отметить:
  1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.
  2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
  3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
  4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
  5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
  6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.

Единую классификацию моделей составить практически невозможно из-за многозначности понятия «модель» в современной жизни.

Рассмотрим классификацию моделей по степени их абстрагированияот оригинала(рис. 1.1).

Геометрическаямодель отображает пространственные и геометрические свойства оригинала (например, макеты архитектурных сооружений, выставочные модели самолетов, судов, автомобилей).

Физическая модель воспроизводит физические свойства оригинала. Такая модель представляет собой увеличенную или уменьшенную копию оригинала. Физическая модель создается по строгим законам теории подобия.

П р и м е р 1. Установка «Токамак», в которой реализуется термоядерная реакция в микромасштабе, является физической моделью термоядерных реакторов атомных электростанций.

П р и м е р 2 (из области авиастроения). Одной из серьезных задач, решаемых в процессе создания новой модели самолета, является выбор оптимальной обтекаемой формы и оптимизация аэродинамических характеристик. Решение этой задачи можно получить только экспериментальным путем. Конструкторы создают уменьшенную физическую модель самолета и помещают в специальную установку − аэродинамическую трубу, внутри которой создается поток воздуха с той же скоростью, с которой должна лететь модель. Специальные аэродинамические весы фиксируют нагрузки, действующие на отдельные элементы конструкции.

Аналоговая модель имеет физическую природу, отличную от оригинала, но динамика ее внутренних процессов может быть описана теми же математическими соотношениями, которые описывают процессы в моделируемой системе − оригинале. В качестве аналоговых моделей используются электрические, электронные, механические, гидравлические, пневматические и другие системы.

Рассмотрим примеры.

П р и м е р 3. Оригинал–механическая система – маятник, совершающий колебания относительно положения равновесия (рис. 1.2). Модель– электрическая система, представляющая собой колебательный контур (рис. 1.3).



Процесс колебания маятника и процесс изменения напряжения конденсатора во времени (в установившемся режиме) описываются одним и тем же дифференциальным уравнением для незатухающих гармонических колебаний

, (1.1)

где ω – частота колебаний.

Возможность взаимного замещения механической и электрической систем при моделировании основана на следующих положениях:

аналогом кинетической энергии механической системы является энергия магнитного поля электрической системы (накапливается на индуктивности);

аналогом потенциальной энергии механической системы является энергия электрического поля электрической системы (накапливается в конденсаторе).

П р и м е р 4. Оригинал– механическая система (рис. 1.4).


Модель – электрическая система (рис. 1.5)

Для механической системы выполняется условие:

т. е. сумма всех сил, действующих в системе, равна нулю.

Таким образом,

. (1.3)

Для электрической системы выполняется аналогичное условие:

(1.4)

т. е. сумма электродвижущих сил в замкнутой цепи равна сумме падений напряжения на отдельных ее элементах. Следовательно,


. (1.5)

Таким образом, наличию упругой силы в механической системе соответствует наличие напряжения на обкладках конденсатора. Инерционные свойства механической системы (за счет наличия массы m) в электрической системе отражаются с помощью индуктивности . Наличию сил трения в механической системе соответствует наличие активного сопротивления


Мнемоническаямодельотображает свойства объекта (оригинала) посредством схемы, графа, графика, чертежа, диаграммы, химической формулы и т. д. (рис. 1.6).

Математическаямодель отображает свойства объекта (оригинала) на языке математических формул и уравнений.

Вычислительная модель – программа, реализующая алгоритм решения математической модели.

Компьютерная модель представляет собой электронный эквивалент исследуемого объекта. Это комплекс специальных программных и аппаратных средств (абстрактная и физическая составляющие). Схема, представленная на рис. 1.7, отражает основные элементы компьютерного моделирования.

1.3. Математическое моделирование

Математическое моделирование занимает ведущее место среди всех видов моделирования.

Первые математические модели появились на заре развития математики, когда возникла необходимость количественного описания объектов и явлений окружающего мира: теорема Пифагора (VI в. до н. э.), законы Ньютона (XVIII в.), волновые уравнения Максвелла (XIX в.), теория относительности Эйнштейна (XX в.).

В настоящее время математическое моделирование – мощное средство развития науки и познания окружающего мира, а иногда это единственное средство решения проблемы.


П р и м е р 5 . Авиастроение. В предвоенные годы начала развиваться скоростная авиация. Авиаконструкторы столкнулись с серьезной проблемой – явлением «флаттера». Оно заключалось в следующем. Во время экспериментальных полетов на некоторых критических режимах неожиданно возникали резкие вибрации конструкции и самолет в считанные секунды разваливался на части. Причина – резонансные явления, вызванные взаимодействием элементов конструкции самолета и вихревых воздушных потоков на определенных скоростях полета. Проблема была решена академиком М. В. Келдышем. Он разработал математическую модель этого явления, создал на ее основе теорию флаттера и определил средства борьбы с ним.

П р и м е р 6.Энергетика. Прогнозирование будущего поведения атомных и термоядерных реакторов.

П р и м е р 7.Геофизика, астрофизика. Моделирование процессов развития звезд и солнечной активности, долгосрочных прогнозов землетрясений, цунами и т. д.

П р и м е р 8. Генетика. Моделирование законов наследственности и изменчивости организмов.

П р и м е р 9. Биотехнология. Создание новых видов горючего, новых лекарств.

П р и м е р 10. Космическая техника. Расчет траекторий летательных аппаратов, задачи обтекаемости конструкции и т. д.

П р и м е р 11. Задачи оптимального управления системой, процессом.

П р и м е р 12. Разработка новейших современных технологических процессов.

1.3.1. Цели математического моделирования

1) Интерпретация прошлого поведения объекта и обобщение имеющихся знаний о нем на основе выявления основных причинно-следственных связей.

2) Предсказание будущего поведения объекта – прогноз:

а) при варьировании условий испытания объекта (влияние внешних электрических и магнитных полей, колебания температуры, давления, наличие источника радиактивного излучения и т. д.);

б) при имитации экстремальных режимов работы объекта.

3) Обновление и совершенствование старой, ранее построенной модели на основе получения новой информации об оригинале.

4) Оптимизация параметров системы или ее структуры.

5) Создание алгоритма оптимального управления системой с точки зрения заданного критерия.

1.3.2. Требования к математической модели

1) Соответствие цели моделирования.

2) Адекватность. Модель считается адекватной, если отражает заданные свойства объекта с требуемой точностью. Математическая модель не может быть адекватной на всем множестве значений ее параметров. Всегда существует область адекватности модели (ОА) (рис.1.8), которая задается диапазоном значений параметров модели (ΔВ 1 и ΔВ 2), в пределах которого она должна быть адекватной реальному объекту.

1.3.3.Этапы математического моделирования

1-й этап. Постановка цели моделирования. Модель должна замещать реальный объект с такой степенью абстракции, которая более всего выгодна для достижения заданной цели.

2-й этап. Создание концептуальной модели, т. е. содержательного описания моделируемого объекта. Концептуальная модель включает в себя следующие сведения:

− состав и структура объекта;

− причинно-следственные связи между параметрами объекта;

− количество параметров, достаточное для адекватного описания объекта;

− класс исследуемого объекта и создаваемой модели;

− условия функционирования объекта.

На этом этапе разработчику математической модели приходится решать три проблемы.

Проблема 1. Поиск компромисса между простотой модели и ее адекватностью реальному объекту.

Любой реальный объект в процессе функционирования подвергается влиянию множества факторов (внешних и внутренних). Чем большее количество факторов учитывается в модели, тем более адекватной становится модель. Однако при этом она может стать настолько сложной и громоздкой, что возникнут следующие проблемы:

− отсутствие эффективных методов исследования такой модели;

− рост затрат на моделирование превысит рост эффекта от внедрения модели.

Нельзя входить и в другую крайность – чрезмерно упрощать модель за счет пренебрежения влиянием существенных факторов. Это приведет к неадекватности модели и, соответственно, к искажению результатов моделирования. Поэтому необходим жесткий отбор влияющих факторов, их четкое разграничение на основные (О) и второстепенные (В). Основные факторы должны быть учтены в модели, а второстепенные отброшены (рис. 1.9). При этом не наносится существенного ущерба качеству модели.

Проблема 2. Определение границ применимости создаваемой модели.

Результаты, полученные с помощью конкретной модели, считаются справедливыми только в рамках оговоренных условий (в пределах области адекватности).

П р и м е р 13. Сформировать математическую модель, описывающую процесс падения тела на Землю.

В основе этого явления лежит закон всемирного тяготения, сформулированный Ньютоном: любые два тела притягиваются с силой, прямо пропорциональной произведению их масс, обратно пропорциональной квадрату расстояния между ними.

Если в качестве этих двух тел рассматривать металлический шарик и Землю, то на языке математики падение шарика можно описать соотношением:

где – постоянная;

m и М З – масса шарика и Земли,

R – расстояние между центрами притягивающихся тел.

Согласно второму закону Ньютона, если на тело действует сила F, то его движение описывается соотношением:

Так как рассматривается процесс падения тела, то следует a заменить на ускорение свободного падения . Тогда модель падения шара примет вид:

или – (1.8)

это модель в общем виде. Теперь необходимо ее конкретизировать для данных условий проведения эксперимента. Опыт с шаром проводится в лаборатории (т. е. вблизи поверхности Земли). Следовательно, можно принять, что расстояние между центрами Земли и шарика равно радиусу Земли: R= R З. Тогда математическая модель примет вид:

Эта модель позволяет дать исчерпывающее описание процесса падения шара в любой момент времени t: определить высоту h, на которой находится шар, а также его скорость v:

(1.10)

(1.11)

Границы применимости этой модели:

– тело падает с небольшой высоты, пренебрежимо малой по сравнению с радиусом Земли;

– тело имеет компактную форму и обладает достаточной массой;

– можно пренебречь фактором сопротивления воздуха.

При нарушении хотя бы одного из этих условий данная модель не будет адекватной. Например, эту модель нельзя применить для описания следующих процессов: приземления парашютиста, падения листьев с дерева, падения осколка метеорита на Землю и т. д.

В каждом из перечисленных случаев в различной степени сказывается влияние таких ранее не учтенных факторов, как сила сопротивления воздуха, притяжение Луны, Солнца, убывание плотности атмосферы с высотой, вращение Земли, ветер, по-разному дующий на разных высотах, фактическое отличие формы Земли от шара (она является телом более сложной геометрической формы).

Проблема 3. Определение уровня детализации исследуемого объекта.

Любая физическая система представляет собой совокупность элементов. Каждый элемент в свою очередь можно расчленить на подэлементы. Процесс расчленения теоретически может быть бесконечным. Задача исследователя – выбрать оптимальный уровень детализации моделируемого объекта. Уровень детализации определяется целью моделирования и степенью знаний о свойствах элементов объекта.

Детализацию целесообразно производить до такого уровня, на котором для каждого элемента можно определить зависимость параметров выходных сигналов от параметров входных сигналов. Стремление повысить уровень детализации приводит к чрезмерной громоздкости модели и резкому увеличению ее размерности.

3-й этап. Формирование математической модели, т. е. запись модели в формализованном виде:

все соотношения записывают в аналитической форме;

логические условия выражают в виде систем неравенств;

случайные процессы заменяют их типовыми моделями.

4-й этап. Исследование математической модели. Инструментами исследования являются численные и аналитические методы.

5-й этап.Анализ результатов моделирования с последующим выводом об адекватности модели либо о необходимости ее доработки, либо о ее непригодности.

1.3.4. Классификация математических моделей

Математические модели можно классифицировать по форме их представления (рис. 1.10). За основу второй классификации (рис. 1.11) взят характер модели.


2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ФОРМЕ

СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ



Загрузка...