sonyps4.ru

Как выбрать охлаждение для процессора. Сравнительное тестирование различных моделей процессорных кулеров

Процессорный кулер Deepcool Lucifer V2 является переработанной версией обычного Deepcool Lucifer. По большому счёту, вторая версия отличается от первой только вентилятором, который способен работать со скоростью от 300 RPM. Напомним, что у первого Люцифера этот показатель был в дав раза выше.

Deepcool Lucifer V2 предназначен для тех, кому необходимо собрать тихий ПК с мощным процессором. Этот кулер способен рассеять до 130 Вт тепла, а значит, герой нашей статьи подойдёт для охлаждения даже самых горячих шестиядерных CPU. Впрочем, ничто не мешает использоваться второго Люцифера в любой другой конфигурации.

Внешний вид и комплектация

Кулер поставляется в удобной картонной коробке с ручкой для переноски. Надпись «Silent Version» намекает на то, что вентилятор у Второго Люцифера должен быть очень тихим.

Комплектация у Deepcool Lucifer V2 богатая, хотя точно так же можно сказать про любой универсальный кулер. Кроме радиатора и вентилятора в коробке находится набор креплений под большое количество процессорных разъёмов Intel и AMD.

Радиатор Второго Люцифера остался таким же массивным, как и у первой версии. Его большие размеры легко объяснимы: этот кулер предназначен для сборки тихих систем, а значит основная задача по рассеиванию тепла ложится именно на радиатор. Габариты радиатора без установленного вентилятора составляют 163 х 140 х 110 мм для длины, высоты и глубины соответственно.

Через 36 алюминиевых пластин проходит 6 тепловых трубок диаметром 6 мм каждая. Толщина одной пластины составляет 0,5 мм, а межрёберное расстояние – 2,4 мм.

Тепловые трубки не контактируют с процессором напрямую, за этот контакт отвечает отлично отполированное медное основание.

Форма у радиатора получилась необычной, при взгляде сверху он напоминает крупную тропическую бабочку. Такая конструкция нужна для установки такого большого радиатора на материнскую плату, но об этом мы поговорим в другой части обзора.

В комплекте с Вторым Люцифером поставляется всего один вентилятор, хотя скобы для установки второго Карлсона в наличии имеются. После сборки габариты кулера увеличатся до 168 х 146,5 х 136 мм для длины, высоты и глубины соответственно.


У вентилятора Второго Люцифера не было маркировки, поэтому определить его технические характеристики без подробного знакомства с сайтом Deepcool оказалось невозможно. Как мы уже писали выше, минимальная частота вращения составляет 300 RPM, создаваемый этим «пропеллером» уровень шума колеблется от 12,6 до 31,1 дБа, а максимальный воздухопоток составляет 81,33 CFM.

Для 140-мм вентилятора, работающего со скоростью в 300 об/мин характеристики выглядят очень интересно. Что же касается внешнего вида, то рамка «пропеллера» сделана из резины, а на её внутренней стороне находится специальное покрытие, снижающее вибрации.

Технические характеристики

Тип кулера: Башенный
Поддерживаемые сокеты Intel: LGA 775/1150/1151/1156, LGA 1366/2011/2011-V3
Поддерживаемые сокеты AMD: AM2/AM2+/AM3/AM3+, FM1/FM2
Размеры радиатора с вентилятором: 168 х 146,5 х 136 мм
Размеры радиатора без вентилятора: 163 х 140 х 110
Материалы радиатора: Алюминиевые рёбра и хромированная контактная медная пластина
Количество и размер тепловых трубок: 6 х 6мм
Тип контакта с процессором: Хромированная медная пластина
Количество рёбер: 36
Толщина ребра: 0,5 мм
Межрёберное расстояние: 2,4 мм
Количество и модель комплектных вентиляторов: 1 вентилятор, модель неизвестна
Тип подшипника: 1 гидродинамический
Скорость вращения вентилятора: от 300 RPM
Шум от вентилятора: от 12,6 до 31,1 дБа
Создаваемый воздухопоток: 81,33 CFM
Напряжение вентилятора: Неизвестно
Потребляемая сила тока: Неизвестно
Вес кулера: 906 гр. с вентилятором и 760 гр. без вентилятора
Ориентировочная цена: 2 800 рублей

Установка на материнскую плату

Установка кулера не представляет сложностей и подробно описана в инструкции. Установка и тестирование кулера проводились на материнской плате .

Сперва надо собрать заднюю плату в соответствии с типом сокета. Для этого достаточно вставить четыре металлических шпильки в нужные отверстия и закрепить их при помощи комплектных резиновых прокладок. Для установки Deepcool Lucifer V2 на сокет Intel LGA1366 достаточно воспользоваться комплектными переходниками, которые ввинчиваются в сокет.


Мы тестировали Deepcool Lucifer V2 на материнской плате ASUS Maximus VIII Gene с процессорным разъёмом Intel LGA 1151. На этих материнских плата установить кулер можно как вдоль, так поперёк. Такой выбор может пригодится тем, кто захочет направить вентилятор вверх, чтобы он брал холодный воздух с верхней стороны системного блока.

Разумеется, подобный способ установки будет актуален только в том случае, если планируется собрать ПК без дискретной видеокарты (иначе в её сторону будет выдуваться тёплый воздух) и если в верхней части корпуса есть отверстия для вентиляции.


При монтаже радиатора иным способом можно столкнуться с проблемой установки вентилятора. В материнских платах, у которых оперативная память устанавливается слева и справа от сокета, вентилятор кулера может помешать установке модулей памяти с очень высокими радиаторами. Впрочем, используемая нами оперативная память Geil, оснащённая высокими радиаторами не помешала монтажу второго Люцифера.

Вначале обзора мы упомянули о странной форме радиатора, теперь пришла пора разобраться в этом подробнее. Такая форма необходима для того, чтобы пользователь смог затянуть крепёжные винты во время финальной установки кулера. Для этого понадобится очень длинная отвёртка, которой в комплекте, к сожалению, не оказалось. Поэтому установить Второго Люцифера без использования сторонних инструментов вряд ли получится.


Тестирование

Тестирование проходило с использованием термопасты, найденной в коробке c кулером. Для тестирования использовался открытый тестовый стенд. Для увеличения нагрузки на процессор вместо дискретной видеокарты использовалось его встроенное видеоядро. Во время тестирования температура в комнате составляла 22 °C.

Тестовый стенд:

  • Процессор Intel Core i5-6600K
  • Материнская плата:
  • Кулер: Deepcool Lucifer V2.
  • Оперативная память DDR4 Geil EVO Potenza DDR4-3000
  • Блок питания AeroCool KCAS 600W
  • Windows 10 64 Bit

В режиме синтетической нагрузки, которая никогда не будет встречаться обычным пользователям ПК, Deepcool Lucifer V2 показал себя очень хорошо. максимальная температура процессора составила всего 68 градусов. При этом максимальная скорость вращения вентилятора составила 980 оборотов в минуту, а шума от вентилятора было почти не слышно.

Заключение

Кулер Deepcool Lucifer V2 можно смело советовать тем, кто хочет собрать тихий ПК. Вторая версия «Люцифера» сделана специально для таких задач, минимальная скорость вращения его вентилятора составляет всего 300 оборотов в минуту. Впрочем, даже при полученной нами максимальной скорости вращения (около 1000 об/мин) шума от этого кулера было немного.

Что касается цены, то на момент написания этой статьи, Deepcool Lucifer V2 только начинает появляться на полках магазинов, и его цена составляет около 2700 рублей. Даже с учётом выросшего курса доллара это немного.

Минусы:

  • Установка кулера невозможна бел длинной отвёртки, которая не входит в комплект
  • Большой радиатор – может не подойти для систем с экзотической оперативной памятью и очень высокими радиаторами

Плюсы:

  • Совместимость со всеми процессорными сокетами AMD и Intel
  • Тихий вентилятор
  • Хорошие температурные показатели под нагрузкой

Князь тишины: обзор процессорного кулера Deepcool Lucifer V2 was last modified: Март 10th, 2016 by Konstantin

Как выбрать кулер ЦП | Основы (почему больше - лучше)

Любая электрическая цепь имеет сопротивление, и именно принцип электрического сопротивления заложен как в ЦП, так и в тостеры. У электрических полупроводников есть необычная черта – они могут менять сопротивление с низкого на высокое при подаче электрического тока определенным способом. Эти состояния представлены в логической схеме как единицы и нули. Хотя логические схемы ЦП не предназначены для нагрева чего-либо, по сути, мы используем в компьютерах маленькие электроплитки.

Группы логических схем, выполняя обработку данных, сильно нагреваются. Потому перед разработчиками стоит задача предотвратить плавление небольших кусочков стекла, на которых вытравлены эти схемы. Для этого придумали теплоотводы в виде массивных металлических радиаторов – это и есть ключевые элементы системы охлаждения процессора.

И все же термин "теплоотвод" означает что-то, что поглощает тепло. Рассеять большой объем тепла в относительно холодный воздух радиаторам помогают их ребра, которые увеличивают площадью рассеивающей поверхности. Благодаря этим ребрам стандартный теплоотвод ЦП превращается в особый тип радиатора, если не обращать внимание на терминологию. Как и у большинства радиаторов основным их принципом теплоотдачи является конвекция (и немного – тепловое излучение), это когда нагретый воздух поднимается вверх, замещаясь снизу холодным.

Тепловыделение процессора зависит от его тактовой частоты, напряжения, сложности схемы и материала, на котором выгравирована схема. Для охлаждения некоторых процессоров малой мощности достаточно радиаторов с малым числом ребер, однако большинство пользователей настольных ПК хотят получить больше производительности, что приводит к повышенному выделению тепла, которое нужно рассеивать.

Когда естественная конвекция недостаточно быстро заменяет теплый воздух холодным, процесснеобходимо ускорить, что достигается за счет установки вентилятора. На фотографии выше показан редкий, полностью медный кулер. Медь быстрее передает тепло, чем алюминий, но она также весит больше и стоит дороже. Чтобы добиться лучшего соотношения цены к охлаждению и охлаждения к весу производители часто используют медный стержень, окруженный алюминиевыми ребрами.

Дополнительные вентиляторы и увеличенная площадь поверхности радиатора повышают эффективность процессорного кулера. Жидкостное охлаждение позволяет устанавливать огромные радиаторы, которые крепятся не к материнской плате, а к корпусу компьютера. На ЦП устанавливается так называемый водоблок, который передает тепло жидкости. Помпа устанавливается сбоку от радиатора (как на фото выше) и перекачивает воду (или хладагент) через каналы радиатора и водоблока.

Любое из описанных выше решений максимизирует контакт с циркулирующим воздухом, но они не будут работать эффективно при отсутствии хорошего контакта поверхности ЦП и кулера. Для заполнения пространства между поверхностями используется теплопроводящий материал , он вытесняет воздух, который действует как изолятор. В комплекте большинства кулеров для ЦП он присутствует. У многих моделей он сразу нанесен на контактирующую поверхность. Но вместо заводских материалов энтузиасты часто выбирают теплопроводящие составы сторонних производителей, хотя наши тесты показали, что разница между ними довольно мала .

Для экстремального охлаждения используются компрессорные установки с хладагентом. Такие системы способны снизить температуру ЦП гораздо ниже температуры окружающего воздуха. Но, как правило, они используют гораздо больше энергии, чем сам процессор. Есть версии, которые сжимают и охлаждаются воздух для производства жидкого азота. Однако серьезные опасения вызывает конденсация вокруг холодных компонентов, поэтому даже самые простые "холодильники" обычно используют только на выставках и соревнованиях.

Правило "больше – лучше", применимое к кулерам, в данном случае ограничивается размерами вашего корпуса, но также необходимо учитывать и несколько других факторов. Поскольку эта статья написана для новичков, мы будем рассматривать модели только из нашего списка лучших процессорных кулеров . В него входят большие воздушные кулеры (высота более 150 мм), низкопрофильные кулеры (до 76 мм), кулеры средних размеров (от 76 до 150 мм), а также готовые жидкостные системы охлаждения.

Как выбрать кулер ЦП | А что насчет "боксовых" кулеров?

"Боксовые" или "коробочные" кулеры – это кулеры, которые поставляются производителями ЦП в комплекте с их продуктами. Обычно они не рассчитаны на повышенное тепловыделение процессора в разгоне или для установки в ограниченном пространстве узких компьютерных корпусов. Системная плата, как правило, снижает скорость вращения вентиляторов, чтобы уменьшить уровень шума и первой реагирует на повышение температуры ЦП увеличением скорости вращения вентилятора вплоть до максимума. Если при максимальной скорости вращения вентилятора кулер не в состоянии понизить температуру ЦП до приемлемого уровня, система снижает тактовую частоту и напряжение ЦП. Это процесс мы называем тепловым регулированием (дросселированием) или троттлингом. В самом худшем случае можно наблюдать картину, когда гудящий компьютер не в состоянии обеспечить необходимый уровень производительности.

Кулеры сторонних производителей обычно имеют большую площадь рассеивающей поверхности, а также более крупные вентиляторы, позволяющие прокачивать большие объемы воздуха при меньшем шумовыделении. На фотографии выше слева направо показаны: система водяного охлаждения с радиатором под два 140-миллиметровых вентилятора, большой воздушный кулер с двумя радиаторами, два поколения штатных или коробочных кулеров Intel и широкий низкопрофильный кулер, спроектированный в первую очередь для систем HTPC.

В комплекте с процессорами FX-8370 AMD предоставляет кулер Wraith , который является очередной попыткой поднять эффективность охлаждения коробочных кулеров.


Изменение температуры в процессе нагрева процессора

Несмотря на хорошие показатели нового кулера AMD, покупатели все же иногда вынуждены покупать сторонние кулеры, поскольку некоторые высокопроизводительные модели ЦП поставляются без них.

В последнее время AMD и Intel начали поставлять компактные жидкостные системы охлаждения, удовлетворяющие требования очень горячих процессоров к охлаждению, и покупателям нет необходимости обращаться к альтернативным брендам. Растущая популярность креплений для 120-миллиметровых вентиляторов в современных корпусах позволяет устанавливать маленькие СВО в корпуса разных форм и размеров, что выгодно отличает их от воздушных кулеров аналогичных габаритов.

Как выбрать кулер ЦП | Поиск лучшей позиции для установки

Компьютерные корпуса типа "башня" имеют меньше всего ограничений по установке больших кулеров. Современные корпуса становятся шире, чтобы в них могли разместиться высокие процессорные кулеры, а также выше, чтобы умещать радиаторы в верхней части, и иногда длиннее, для установки радиаторов и вентиляторов на передней панели. Перемещение внутренних отсеков или сокращение их количества позволяют разработчикам получить больше пространства для установки радиаторов без необходимости увеличения размеров корпуса.

Корпуса по-прежнему разрабатываются так, чтобы воздух проходил спереди-назад и снизу-вверх, но в современных моделях впускное отверстие блока питания больше не используется для помощи маленькому вытяжному вентилятору (80 или 92 мм) на задней панели. Теперь там устанавливают большой 140 или 120-миллиметровый вытяжной вентилятор в паре с вентилятором на передней панели. Направление воздушного потока можно поменять в противоположную сторону, но так воздух будет двигаться против конвекции, а работа пылевых фильтров, которые обычно устанавливаются спереди и снизу корпуса, становиться бессмысленной.

Однако некоторые дешевые корпуса не учитывают современные тренды. Как показано выше, тепловые трубки большого воздушного кулера выходят за пределы боковой стенки башенного корпуса традиционных размеров. Максимальная высота поддерживаемых кулеров ЦП обычно указана в спецификациях модели на сайте производителя корпуса.

Тем не мене, корпус не всегда является ограничивающим фактором при выборе кулера ЦП. Например, конструкция Zalman CNPS12X имеет смещение на 6 мм в сторону видеокарты, чтобы кулер не упирался в верхнюю панель корпуса. Производитель рассчитывал на то, что во многих системных платах для геймеров вместо верхнего слота расширения имеется свободное пространство. В нашем случае этого пространства нет, поэтому пришлись монтировать кулер задом наперед, чтобы протестировать его на открытом стенде.

Еще один пример, Thermalright Archon SB-E шириной 170 мм не имеет смещения и нависает над верхним слотом в любой ориентации. Можно было перевернуть кулер лицом к видеокарте, но тогда он задевал бы за модули ОЗУ. Такая конструкция была рассчитана на системные платы без установленной карты в верхнем слоте, к тому же обязательно должно оставаться свободное место между матплатой и верхней панелью корпуса. Это довольно распространенные требования для геймерских систем, но не в нашем случае.

Пока мы говорили лишь о том, что могут возникнуть проблемы с установкой большого кулера на большую системную плату, но посмотрите на модели плат меньшего форм-фактора. Вот где могут быть настоящие проблемы. Разнообразные платы формата mini ITX привносят свои ограничения на пространства между разъемом ЦП и памятью, платами расширения, радиаторами регуляторов напряжения и левым краем некоторых корпусов. Самые широкие низкопрофильные кулеры обычно имеют смещение хотя бы в одном направлении от центра, чтобы максимально использовать свободное место.

Некоторые кулеры могут быть смещены даже в двух направлениях. Обратите внимание, что кулер на фото выше спроектирован так, чтобы вентилятор находился подальше от видеокарты (смещение влево) и переднего края платы (смещение назад). Мы всегда указываем наличие смещения в наших обзорах кулеров, так вы сможете хотя бы приблизительно оценить, подойдет ли кулер для вашей системной платы.

Если покупатель не может выявить возможные проблемы с установкой, можно использовать кулер меньшего размера или СВО, при наличии на корпусе места для крепления радиатора.

Как выбрать кулер ЦП | Всегда ли СВО является лучшим решением?

Самые большие охлаждающие системы для самых больших корпусов, как правило, жидкостные. Гибкие шланги позволяют (в зависимости от конструкции корпуса) устанавливать радиаторы на передней панели – там, где забирается холодный воздух. В этом случае тепло от ЦП возвращается в корпус, но большой объем проходящего через радиатор воздуха, уменьшает его влияние на другие компоненты.

Однако наиболее распространенный вариант монтажа радиатора СВО – на верхней панели корпуса. Лучше всего, если вентиляторы находятся под ним и "дуют" вверх. Проблемы могут возникать, когда тепло от мощной и горячей видеокарты выходит в корпус ниже радиатора. В этом случае более теплый воздух, попадаемый на радиатор, будет снижать эффективность работы СВО. Очень важно спланировать систему охлаждения заранее, поскольку большинство высокопроизводительных видеокарт имеют различные варианты исполнения их собственной системы охлаждения, которая может выводить горячий воздух как в корпус, так и за его пределы.

Если вы беспокоитесь, что тепло от видеокарты будет негативно влиять на эффективность радиатора СВО, расположенного на верхней панели, можно использовать видеокарту, которая выводит основную массу тепла через вентиляционные отверстия в торцевой части (как у серебристой карты на фотографии выше). Тем не менее, обозреватели видеокарт часто рекомендуют видеокарты с двумя или тремя вентиляторами (как черная карта на фотографии выше), которые ставят в приоритет лучшее соотношение генерируемого шума к температуре, и не учитывают влияние теплового воздуха на компоненты, которые находятся выше видеокарты. С точки зрения воздухообмена внутри корпуса и эффективности работы кулера ЦП, видеокарты, отводящие теплый воздух внутрь корпуса, можно отнести к вредным факторам.

Споры о первостепенной важности охлаждения видеокарты или процессора можно решить с помощью жидкостного охлаждения для ЦП и GPU.

Альтернативой жидкостному охлаждению являются большие воздушные кулеры, у которых ребра радиатора контактируют с основой посредством тепловых трубок. В наших тестах некоторые воздушные кулеры даже обходили модели, использующие для охлаждения жидкость. И хотя системы жидкостного охлаждения обычно обеспечивают более низкие температуры ЦП, по соотношению охлаждения к шуму воздушные кулеры и СВО примерно равны (обратите внимание, что жидкостный кулер Kraken X61 и воздушный NH-D15 имеют примерно одинаковые размеры).


Акустическая эффективность: относительная температура/относительный уровень шума) – 1, базовое значение = 0

Отсутствие помпы, в сравнении с СВО, позволяет снизить стоимость воздушного кулера, однако у этих двух решений есть недостатки, в первую очередь, это размеры. Во-первых, большой воздушный кулер расположен непосредственно на ЦП и часто блокирует доступ к слотам памяти и некоторым разъемам. Радиатор жидкостных кулеров крепится к одной из панелей корпуса, а на процессор устанавливается только водоблок или комбинация водоблока и помпы. С другой стороны, жидкость в системах "замкнутого цикла", не имеющих отверстий для доливки, может со временем убывать из-за микроскопических утечек. У больших воздушных кулеров нет помпы, которая постепенно изнашивается и постоянно гудит. И хотя современные помпы работают очень тихо, шум все же присутствует.

Большие воздушные кулеры не только затрудняют доступ к ОЗУ и некоторым разъемам, но они также громоздкие и тяжелые. Возможно, это самый большой недостаток по сравнению с СВО. Со временем такие кулеры могут ослабить текстолит системной платы и нанести ей непоправимый ущерб при неловком обращении или просто переносе. А также согнуть контакты ЦП в разъемах Intel Land Grid Array (LGA). Не редки случаи, когда в процессе транспортировки собранной системы большие воздушные кулеры отваливались от платы и повреждали видеокарту.

В целом, жидкостные кулеры лучше воздушных, хотя в плане охлаждения ЦП это справедливо не всегда. Обычно мы используем большие воздушные кулеры исключительно в стационарных системах и переключаемся на СВО, когда собираем ПК, который будет переезжать, или когда требуется нечто большее, чем компактный кулер, который мы рекомендуем начинающим сборщикам.

Теперь у вас есть информация, необходимая для понимания наших обзоров кулеров. Надеемся, что она будет полезна.

В настоящее время наиболее эффективными являются башенные кулеры на медных тепловых трубках. При грамотной реализации для обеспечения охлаждения любого серийного процессора в конструкции радиатора достаточно трех-четырех тепловых трубок. Дальнейшее наращивание числа трубок в радиаторах далеко не всегда приводит к снижению пиковых температур процессора, поэтому гнаться за этим не стоит. Пластины радиаторов и сами тепловые трубки обычно никелируются, что позволяет сохранять им практически идеальный внешний вид на протяжении всего срока службы.

При выборе кулера стоит обратить внимание на метод контакта трубок с основанием и пластинами радиатора. Если используется пайка (ее следы всегда хорошо заметны на стыках), такому устройству можно доверить свой процессор, а вот к простой опрессовке пластин на трубках и отсутствию желобков в основании стоит отнестись с долей скептицизма, хотя в среднем ценовом сегменте пайка встречается крайне редко. Широко распространены ставшие популярными в последние годы кулеры с технологией прямого контакта, когда у радиатора нет основания, а его роль выполняют тепловые трубки, обработанные в зоне основания до плоской поверхности. В таких моделях нужно обращать внимание на расстояние между трубками в основании - чем оно меньше, тем равномернее будет осуществляться теплообмен, а значит и эффективность кулера будет выше.

Размер радиатора действительно имеет значение. Чем больше площадь ребер и чем больше их количество, тем выше площадь радиатора и тем большее количество тепла он сможет рассеять. Не стоит недооценивать и различные виды оптимизации радиаторов - торцы ребер переменной высоты, расставленные в шахматном порядке трубки, а вот от испарительных камер или радиаторов радиальной формы эффект чаще всего минимален.

Стоит упомянуть и про кулеры так называемой «топ-конструкции», у которых радиатор расположен параллельно материнской плате, а вентилятор нагнетает воздушный поток к ее плоскости. Высота этих кулеров невелика (не более 150 мм), однако ввиду конструктивных ограничений их площадь сравнительно мала, поэтому их эффективность, как правило, ниже кулеров башенных конструкций. Зато воздушным потоком таких кулеров лучше охлаждаются элементы околопроцессорного пространства и радиаторы на материнской плате.

Уровень шума

Если эффективности даже самых простых воздушных кулеров оказывается вполне достаточно для штатных режимов работы процессоров, то их уровень шума устраивает далеко не всех. Единственным источником шума в воздушных кулерах является вентилятор. В общем и целом можно ориентироваться на следующие цифры: для 80- и 92-мм вентиляторов скорость должна составлять не выше 1500-1700 об/мин ; для 120-мм вентиляторов - не выше 1200-1300 об/мин ; для 140-мм вентиляторов и более - не выше 1000-1200 об/мин .

Практически все выпускаемые в настоящее время системы охлаждения оснащаются вентиляторами с поддержкой режима автоматической регулировки скорости , в зависимости от степени нагрузки на процессор и/или его температуры. Такие вентиляторы практически бесшумны в режиме низкой нагрузки на процессор и то же время чутко реагируют на любое ее повышение. Алгоритм регулировки задается в BIOS материнской платы, либо через программное обеспечение.

Немаловажной составляющей вентилятора является тип подшипника. Самый распространенный и дешевый - подшипник скольжения (sleeve bearing), типичный срок службы которого составляет 30 000 часов или около 3 лет непрерывной работы. Но на практике такие подшипники служат недолго, и уже после половины срока эксплуатации начинают шуметь. Более долговечны (и дороги) подшипники качения (ball bearing), которые могут прослужить более 100 000 часов, и при высоком качестве изготовления могут сохранять низкий уровень шума на протяжении всего срока службы. Компромиссным вариантом являются гидродинамические подшипники (FDB bearing). Как правило, они вдвое долговечнее подшипников скольжения и имеют низкий уровень шума.

Страница 1: Лучший кулер CPU для разгона: рекомендации Hardwareluxx Страница 2: Начальный уровень: башенные кулеры Страница 3: Уровень выше: кулеры с двумя радиаторами Страница 4: СВО с замкнутым контуром Страница 5: Тесты: температуры Страница 6: Тесты: уровень шума

Чтобы получить высокие результаты разгона, необходима достаточно производительная система охлаждения. В нашем обзоре мы рассмотрим несколько кулеров разных типов в разных ценовых категориях и выберем лучшие модели для разгона.

Температура ядер процессора должна оставаться на достаточно низком уровне, с приличным запасом до максимальной температуры TJMAX, чтобы не только защищать процессор от перегрева, но и обеспечивать высокие результаты разгона.

Как показали тесты различных CPU, при повышении температуры ядер увеличивается и энергопотребление, при этом масштабирование частоты оказывается хуже, чем при низких температурах. Неслучайно многие оверклокеры предпочитают разгонять систему на балконе – в таком случае получается более эффективно охладить центральный процессор.

Впрочем, под распределителем может скапливаться слишком много тепла, и отвести его не успеет даже лучший воздушный кулер в мире. В таких случаях требуется экстремальное охлаждение или другие меры.


Само ядро CPU, по крайней мере, у CPU для массового рынка, намного меньше распределителя тепла (источник: Intel)

Данная проблема хорошо известна у всех процессоров Intel после 2-го поколения Core под названием "Sandy Bridge". В частности, у третьего и четвертого поколения "Ivy Bridge" и "Haswell" многие пользователи жаловались на то, что Intel стала использовать не самую эффективную термопасту под распределителем тепла вместо припоя с более высокой теплопередачей.

Из-за данных изменений процессоры нагревались сильнее предшественников "Sandy Bridge" при прежней тактовой частоте и VCore, на высоких частотах дополнительный нагрев состоял 20-30 °C.

Но Intel с поколением Haswell Refresh решила пойти навстречу энтузиастам, представив процессоры "Devil"s Canyon", в которых был улучшен теплопередающий материал (TIM) под распределителем тепла, что позволило улучшить температуры примерно на 5 °C. Но для продолжительной работы на высоких тактовых частотах энтузиасты всё равно предпочитают снимать распределитель тепла и заменять TIM на жидкий металл.



У некоторых процессоров тепло не успевает отводиться от кристалла и накапливается под распределителем тепла. Поэтому энтузиасты модифицируют процессоры (

Поднимите руку те, кто хочет, чтобы установленная в компьютере, которым вы пользуетесь, система охлаждения процессора была одновременно эффективной и тихой. Давно вы заглядывали в раздел «системы охлаждения» какого-либо компьютерного интернет-магазина? Сколько там предлагается моделей? Десятки только воздушных, а ведь есть еще и жидкостные. Натолкнулся я тут на ресурсе uk.hardware.info на материал, который позволит с большой долей объективности выбрать лучший процессорный кулер – сравнительное тестирование и список моделей, которые подверглись проверке, предлагаю вашему вниманию.

Участники тестирования

Участниками проверки стали системы охлаждения башенной конструкции с тепловыми трубками.

Это наиболее популярный вид систем охлаждения, известный много лет, и за все это время постоянно совершенствовавшийся. Причем весь этот процесс улучшения привел к тому, что внешне все кулеры весьма похожи друг на друга. Различия кроются в количестве используемых тепловых трубок, количестве и размере вентиляторов.

Основные характеристики в таблице. Цена (если модель продается в России или не снята с производства) – ориентировочная, на начало февраля 2018-го года.

Название Кол-во трубок Вент. Ск. вр., об/мин Мат-ал Размеры, мм (ШхВxГ) Вес, гр Цена,
Antec A40 Pro 4 1 х 92 800-2200 Al 100x136x75 570 1525
Antec C400 4 1 х 120 800-1900 Al 125x155x76 830
Arctic Freezer i11 3 1 х 92 500-2000 Al + Cu 108x130x90 408
Arctic Freezer i32 4 1 х 120 1350 Al 150×123×95 641 3000
Be quiet! Pure Rock Slim 3 1 х 92 2200 Al 97x125x82 360 1620
Be quiet! Shadow Rock Slim 4 1 х 120 450-1500 Al + Cu 137x161x61 730 2800
Cooler Master Hyper 212 LED 4 1 х 120 600-1600 Al 120x160x84 734 1900
Cooler Master Hyper 412S 4 1 х 120 900-1300 Al 132x160x99 609 1710
Cooler Master Hyper 612 Ver. 2 6 1 х 120 800-1300 Al + Cu 139x161x127 886 2900
Cooler Master Hyper TX3i 3 1 х 92 800-2800 Al + Cu 92x139x51 470
Cooler Master MasterAir Maker 8 8 2 х 140 600-1800 Al 145x172x135 1350 7225
Cooler Master MasterAir Pro 3 3 1 х 92 650-3000 Al 117x140x78 390 2240
Cooler Master MasterAir Pro 4 4 1 х 120 350-2000 Al 129x159x84 472 2900
Cryorig H5 Ultimate 4 1 х 140 700-1300 Al 143x160x111 920 3400
Cryorig H5 Universal 4 1 х 140 700-1300 Al 143x160x98 863 3400
Cryorig H7 Quad Lumi 3 1 х 120 300-1600 Al 123x145x98 711 2334
Cryorig M9i 3 1 х 92 600-2200 Al 102x125x87 425 1520
Enermax ETS-T40F-BK 4 1 х 120 800-1800 Al 126x162x68 460 2900
Enermax ETS-T50-AXE 5 1 х 120 800-1800 Al 139x160x112 860
Gelid Antarctica 5 1 х 140 450-1500 Al 140х160х74 635 2425
Gelid Phantom 5 2 х 120 750–1600 Al 118×126×160 1000
Gelid Phantom Black 5 2 х 120 750–1600 Al 118×126×160 1000
Gelid Snowstorm 3 1 х 92 900-2200 Al + Cu 102x138x66 372 1285
Gelid Tranquillo Rev.4 3 1 х 120 750-1600 Al 128x154x87 580 2050
Gigabyte Aorus ATC700 3 2 х 120 500-1700 Al 133x158x59 670
LC Power Cosmo Cool LC-CC-120-X3 6 3 х 120 600-1800 Al 158x170x140 1483
MSI Core Frozr L 4 1 х 120 500-1800 Al 140x155x84 960
Noctua NH-D9L 4 1 х 92 400-2000 Al + Cu 95x110x95 531 3200
Noctua NH-D15 6 2 х 140 300-1500 Al + Cu 150x165x161 1320 5300
Noctua NH-U9S 6 1 х 92 400-2000 Al + Cu 95x125x95 618 3760
Noctua NH-U12S 5 1 х 120 1500 Al + Cu 125x158x71 755 3900
Noctua NH-U14S 6 1 х 140 1500 Al + Cu 150x165x78 935 4660
Phanteks PH-TC12DX White 4 2 х 120 600-1800 Al 126х157х107 868
Phanteks PH-TC14PE Black 5 2 х 120 700-1300 Al + Cu 140x171x151 1250
Raijintek Themis 3 1 х 120 100-1500 Al + Cu 122x158x75 472
Scythe Byakko 3 1 х 92 300-2300 Al 102x130x83 415 1360
Scythe Fuma 6 2 х 120 300-1400 Al 130x149x137 920 3500
Scythe Katana 4 3 1 х 92 300-1500 Al 100x143x103 480 1700
Scythe Mugen 4 PCGH Edition 6 2 х 120 800 Al + Cu 130x157x138 625 3800
Scythe Mugen 5 6 1 х 120 300-1200 Al 130x155x110 890 4200
Scythe Mugen 5 PCGH Edition 6 2 х 120 300-800 Al 133x155x130 1020
Scythe Mugen Max 6 1 х 140 500-1300 Al + Cu 145x161x111 870 3060
Spire Kepler V2 2 1 х 92 2000 Al + Cu 97x125x76 377
Thermalright Macho Direct 5 1 х 140 300-1300 Al 158x152x142 810 2500
Thermalright True Spirit 140 Direct 4 1 х 140 300-1300 Al 140x161x102 810 2400
Thermalright True Spirit 140 Power 6 1 х 140 900-1300 Al + Cu 155x172x81 1040 2850
Thermaltake Frio Extreme Silent 14 6 2 х 140 300-1200 Al 151x160x149 1320 4500
Thermaltake Frio Silent 14 3 1 х 140 300-1200 Al 150x160x65 620 2130
X2 Eclipse Advanced Black 6 1 х 120 400-1500 Al 127x156x53 740
Zalman CNPS11X Performa 4 1 х 120 1000-1600 Al 132x154x95 450 1800
Zalman CNPS9800 Max 2 1 х 120 900-2000 Cu 120x150x60 488 2230
Zalman CNPS9900 Max Blue 3 1 х 135 900-1700 Cu 135x152x94 755 2930

Впрочем, есть и различия. Так, в некоторых моделях используется конструкция, в которой с процессором контактирует металлическое (алюминиевое или медное) основание, через которое тепло отдается трубкам. Другой подход предусматривается прямой контакт тепловых трубок с крышкой CPU.

Отличается и подход к установке вентиляторов и их количеству. Наиболее часто встречающийся вариант – один «карлсон», установленный сбоку и продувающий воздух через ребра радиатора. Зачастую можно установить второй вентилятор с противоположной стороны «на выдув». Некоторые модели имеют такую пару изначально.

Есть и другой конструктив, когда вентилятор устанавливается посередине, между блоками радиатора. Имеется возможность установки еще одного вентилятора сборку, например, «на вдув».

Диаметры используемых вентиляторов – 92, 120 или 140 мм. В последнем случае общая высота системы охлаждения составляет порядка 17 см, что надо учитывать при покупке. Надо проверить, есть ли возможность установить такую систему в ваш корпус.

Методика тестирования

Для получения максимально точных результатов, отражающих возможность того или иного кулера снижать температуру, был создан специальный тестовый стенд, имитирующий процессорные разъемы 115x и 2011 с возможностью точного контроля нагрева поверхности для симуляции работы процессоров с различным TDP. В данном тесте использовались значения 65 Вт, 95 Вт и 130 Вт, характерные для CPU под указанные сокеты.

Все замеры производятся в закрытом ящике 55x55x28 см, имитирующем стандартный компьютерный корпус. На передней стенке располагаются 3 низкооборотных вдувных вентилятора, а на задней – один выдувной.

Воздуховод перед тестовым корпусом снабжен нагревательными элементами с вентиляторами, что позволяет контролировать температуру поступающего в тестовую камеру воздуха. В качестве таковой выбрана температура 35°C, которая моделирует условия, как и при работе, и, соответственно, нагреве, других компонентов компьютера – видеокарты, блока питания, и т. п.

Кулеры оценивались с точки зрения соотношения эффективности и шумности, что, думается, справедливо, т. к. отвечает главному пожеланию пользователей — качественно охлаждать, но не пытаться изображать из себя взлетающий вертолет.

В тесте на шумность замеры производились в звукоизолирующей камере с расстояния в 10 см. Проверки проводились при двух значениях питающего вентилятор(ы) напряжения: штатном 12 В и пониженном 7 В.

Эффективность проверялась также в двух режимах, при установке такой скорости вращения вентиляторов, при которой они создают шум 30 дБ (комфортный уровень, практически неслышимый в обычном корпусе), и 40 дБ (слышимый, но остающийся в допустимых пределах и не доставляющий еще дискомфорта).

Также кулеры тестировались на симуляторах сокетов 115x и 2011. В первом случае замеры проводились при имитации нагрузки в 65 Вт и 95 Вт, а для 2011 использовалось значение 130 Вт. Надо сказать, что, т. к. площадь сокета 2011 больше, а, значит, и площадь контакта с кулером, это улучшает распределение тепла и, в большинстве случаев, повышает эффективность испытываемых моделей.

Ряд кулеров отсутствует в некоторых тестах, т. к. это обуславливается объективными причинами, например, несовместимость с сокетом 2011, или изначально невозможно «добиться» от установленного вентилятора шума в 40 дБ.

Тестирование

Шум

Первая проверка включала в себя замеры шума, которые производились при подаче двух уровней напряжения — 12 В, что заставляло вентиляторы работать на максимальных оборотах, и 7 В, что соответствует минимальным оборотам.

Максимальные возможности охлаждения

В этом тесте выяснялись все возможности систем охлаждения. Обороты вентиляторов ставились на максимум, имитировалась нагрузка в 95 Вт на сокете 1150 и 130 Вт на сокете 2011.

Охлаждение при двух уровнях шума

Как было сказано выше, проверки проводились при двух уровнях издаваемого вентиляторами шума, 30 дБ и 40 дБ. Это показывает, на что можно рассчитывать от системы охлаждения в случае ее работы в комфортных для ушей пользователя условиях.





Заключение. Лучший процессорный кулер – который?

Надо сказать, что ни один из кулеров проверку не провалил. Справедливости ради уточним, что в данном случае предусматривается «штатное» использование систем охлаждения, т. е. с теми максимальными значениями тепловой мощности, на которые способны процессоры при работе без разгона.

Оверклокинг – тема отдельная, да и требования к кулеру несколько видоизменяются, т. к. при «гражданском» использовании наиболее интересен баланс между производительностью и тишиной, причем, даже с большим интересом в пользу последнего параметра. При разгоне же величина производимого шума, скорее, переходит в раздел желательных, ибо основная цель – выжать из процессора все, до последнего мегагерца, и чем-то жертвовать приходится.

Что касается протестированных моделей, то весьма привлекательной покупкой представляются Noctua NH-U14S, NH-D15, Thermaltake Frio Extreme Silent 14, Scythe Mugen 5 PCGH. Интересными вариантами могут быть также Scythe Mugen Max (подороже) или Gelid Tranquillo Rev.4 (вдвое дешевле) и ряд других. Думается, что результаты при тестировании на сокете 1150 при 30 дБ шума и нагрузке в 95 Вт позволяют понять, кто наиболее эффективно выполняет свою работу.

Несколько разочаровывающими выглядят результаты, например, Cooler Master MasterAir Maker 8. И дело не в том, что он работает плохо, нет, он охлаждает хорошо, но при своих размерах, весе и, особенно, цене, должен делать это лучше, чтобы стать привлекательным для покупки.

Данное тестирование – дополнительная информация к размышлению, которая может стать полезной при выборе охладителя для процессора, поможет найти тот вариант, который усладит слух тишиной, а процессору обеспечит комфортную работу.



Загрузка...