sonyps4.ru

Как строятся rgb цвета. Цветовая модель RGB

При выводе цветных компьютерных карт на печать тем или иным способом, неизбежно возникает проблема обеспечения точности при передаче исходных цветов оригинала. Эта проблема возникает по целому ряду причин.

Во-первых, сканеры и мониторы работают в аддитивной цветовой модели RGB , основанной на правилах сложения цветов, а печать осуществляется в субтрактивной модели CMYK , в которой действуют правила вычитания цветов.

Во-вторых , способы передачи изображения на мониторе компьютера и на бумаге различны.

В-третьих , процесс репродуцирования происходит поэтапно и осуществляется на нескольких устройствах, таких как сканер, монитор, фотонаборный автомат, что требует их настройки в целях минимизации искажений цвета на протяжении всего технологического цикла - процесс калибровки.

Модель RGB.

Цветовая модель RGB (рис. 1) (R - Red - красный, G - Green - зеленый, B - Blue - синий) используется для описания цветов, видимых в проходящем или прямом свете. Она адекватна цветовому восприятию человеческого глаза. Поэтому построение изображения на экранах мониторов, в сканерах, цифровых камерах и других оптических приборах соответствует модели RGB. В компьютерной RGB-модели каждый основной цвет может иметь 256 градаций яркости , что соответствует 8-битовому режиму .

Рис. 1. Цветовая модель RGB

Модель CMY (CMYK)

Цветовая модель CMY (рис. 2) C - Cyan - голубой, M - Magenta - пурпурный, Y - Yellow - желтый, используется для описания цветов, видимых в отраженном свете (например, для цвета краски, нанесенной на бумагу). Теоретически сумма цветов CMY максимальной интенсивности должна давать чистый черный цвет. В реальной же практике из-за несовершенства красящих пигментов краски и изначальной неустойчивости к голубому цвету при цветоделении, сумма голубой, пурпурной и желтой красок дают грязно-коричневый цвет. Поэтому в печати используется еще и четвертый краситель - черный - blacK , который дает насыщенный, однородный черный цвет. Его применяют для печати текста и оформления других важных деталей, а также для корректировки общего тонального диапазона изображений. Насыщенность цвета в модели CMYK измеряется в процентах , так что каждый цвет имеет 100 градаций яркости .

Основной задачей процесса репродуцирования - является конвертация изображения из модели RGB в модель CMYK . Данное преобразование осуществляется при помощи специальных программных фильтров с учетом всех будущих установок печати: системы триадных красок, коэффициента растискивания растровой точки, способа генерации черного цвета, баланса красок и других. Таким образом, цветоделение является сложным процессом, от которого во многом зависит качество итогового изображения. Но даже при оптимальной конвертации из RGB в CMYK неизбежно происходит потеря некоторых оттенков. Это связано с разной природой данных цветовых моделей. Следует отметить также, что модели RGB и CMYK не могут передать всего спектра цветов, видимых человеческим глазом.

Рис. 2. Цветовая модель СMY

Модель HSB.

Характеризовать цвет можно с использованием других визуальных компонентов. Так, в модели HSB базовое цветовое пространство строится по трем координатам: цветовому тону (Hue) ; насыщенности (Saturation) ; яркости (Brightness) . Эти параметры можно представить в виде трех координат, с помощью которых можно графически определять положение видимого цвета в цветовом пространстве.

Рис. 3. Цветовая модель HSB

На центральной вертикальной оси откладывается яркость (рис. 3), а на горизонтальной - насыщенность . Цветовому тону соответствует угол, под которым ось насыщенности отходит от оси яркости . В районе внешнего радиуса находятся насыщенные, яркие цветовые тона, которые по мере приближения к центру смешиваются и становятся менее насыщенными. При перемещении по вертикальной оси цвета различных тонов и насыщенности становятся либо светлее, либо темнее.

В центре, где все цветовые тона смешиваются, образуется нейтральный серый цвет.

Данная цветовая модель хорошо согласуется с восприятием человека: цветовой тон является эквивалентом длины волны света, насыщенность - интенсивности волны, а яркость характеризует количество света.

Система CIE.

Цветовое пространство можно использовать для описания диапазона тех цветов, которые воспринимаются наблюдателем или воспроизводятся устройством. Этот диапазон называется гаммой . Данный трехмерный формат также очень удобен для сравнения двух или нескольких цветов. Трехмерные цветовые модел и и трехзначные цветовые системы , такие как RGB , CMY и HSB , называются трехкоординатными колориметрическими данными .

Для любой системы измерения требуется повторяемый набор стандартных шкал. Для колориметрических измерений цветовую модель RGB в качестве стандартной использовать нельзя, потому что она неповторяема - это пространство зависит от конкретного устройства. Поэтому возникла необходимость создания универсальной цветовой системы. Такой системой является CIE. Для получения набора стандартных колориметрических шкал, в 1931 году Международная комиссия по освещению - Commission Internationale de l"Eclairage (CIE ) - утвердила несколько стандартных цветовых пространств, описывающих видимый спектр. При помощи этих систем можно сравнивать между собой цветовые пространства отдельных наблюдателей и устройств на основе повторяемых стандартов.

Цветовые системы СIЕ подобны другим трехмерным моделям, рассмотренным выше, поскольку, для того, чтобы определить положение цвета в цветовом пространстве, в них тоже используется три координаты. Однако в отличие от описанных выше пространства CIE - то есть CIE XYZ, CIE L*a*b* и CIE L*u*v* - не зависят от устройства, то есть диапазон цветов, которые можно определить в этих пространствах, не ограничивается изобразительными возможностями того или иного конкретного устройства или визуальным опытом определенного наблюдателя.

CIE XYZ.

Главное цветовое пространство CIE - это пространство CIE XYZ. Оно построено на основе зрительных возможностей так называемого стандартного наблюдателя , то есть гипотетического зрителя, возможности которого были тщательно изучены и зафиксированы в ходе проведенных комиссией CIE длительных исследований человеческого зрения. В этой системе три основных цвета (красный, зеленый и синий) стандартизированы по длине волны и имеют фиксированные координаты в координатной плоскости xy.

0.72

0.28

0.18

0.27

0.72

0.08

l, mm

700.0

564.1

435.1

По полученным в результате исследований данным была построена диаграмма цветности xyY - хроматическая диаграмма (рис. 11).

Все оттенки, видимые человеческим глазом, расположены внутри замкнутой кривой. Основные цвета модели RGB образуют вершины треугольника. В данном треугольнике заключены цвета, отображаемые на мониторе. Цвета модели CMYK, которые могут быть воспроизведены при печати, заключены в многоугольник. Третья координата Y, перпендикулярна к любой точке кривой и отображает градации яркости того или иного цвета.

Модель CIE Lab

Данная модель создана как усовершенствованная модель CIE и также является аппаратно-независимой. Идея, лежащая в основе модели Lab, состоит в том, что каждый шаг в увеличении числового значения одного канала соответствует одному и тому же визуальному восприятию, что и другие шаги.

В модели Lab:

Величина L характеризует светлоту (Lightness) (от 0 до 100%);

Индекс а определяет диапазон цвета по цветовому колесу от зеленого до красного (- 120 (зеленый) до +120 (красный));

Индекс b определяет диапазон от синего (- 120) до желтого (+120).

В центре колеса насыщенность цветов равна 0.

Цветовой охват Lab полностью включает цветовые охваты всех других цветовых моделей и человеческого глаза. Издательские программы используют модель Lab как промежуточную при конвертации RGB CMYK.

Наверняка многие слышали о таких цветовых моделях как RGB и CMYK, но на самом деле таких схем не 2 и не 5, а больше.

Цветовые модели бывают разные и о них пойдет сегодня речь.

RGB - R ed G reen B lue, как известно, что почти любой цвет можно задать комбинацией трех цветов - красный+зеленый+синий.

Вот из википедии пример такой модельки:

Данная модель называется аддитивной, так как для указания любого из цветов, используется добавление одного из цветовых каналов к черному. Что прекрасно видно на рисунке

Принцип RGB основан на восприятии цвета сетчаткой глаза человека:

Как видно из рисунка и описания, если ни один из цветовых каналов не задан - изображение будет черным. Если же задать все цветовые каналы по-максимуму, то получится белый цвет.

В отличии от CMYK, RGB-модель охватывает гораздо большое число цветовых тонов и нашла свое широкое применение в телевизорах и мониторах. В телевизорах (ЭЛТ) как раз стоят 3 "пушки", которые бомбардируют пучки цвета на экран. В LCD экранах жидкие-кристаллы также состоят из RGB составляющих.

В компьютерах RGB модель так и задается в виде чисел от 0 до 255 для каждого цвета. Если брать html, то черный цвет будет #000000 , красный #FF0000 , зеленый #00FF00 , синий #0000FF , а белый как #FFFFFF . Серый цвет буде что-то вроде #d3d3d3 .

Те, кто знаком с полиграфией, знают, что там используется другая цветовая модель - CMYK. C - Cyan, M - magenta, Y - yellow, K - blacK (насчет K много споров, многие считают его производным от k ey plate - ключевая поверхность, кто-то от k ontur - контурная пленка, а кто-то от k obalt - темно-серый цвет). По-русски это Голубой, Пурпурный, Желтый и Черный цвета.

Так же, как и в RGB, используется задание цвета путем указания процентного содержания одного из цветовых каналов.

Причем г+п+ж = черный цвет, но эстетам полиграфии этого мало. Они имеют дело с различным оборудованием и с различным материалом, на котором печатается изображение. Для полиграфии важно насколько изображение итоговое копирует оригинал. Ведь при использовании RGB модели, печать на черном и на белом фоне (а также, например, на кремовом) - будет отличаться. А вот CMYK модель позволяет нивелировать (свести к минимуму) подобные косяки. Причем для конкретного оборудования и конкретного материала рекомендуется создавать свою схему CMYK, что приводит к расходам на настройщика. Прям пианино, а не принтер =)

В разных странах свои стандарты CMYK также. В Америке одни, в Европе другие и тд.

Черный цвет (а в CMYK-принтера, например, лазерных цветных, 4 картриджа), который задается смешиванием 100%-но насыщенных г+п+ж приводит также к излишнему намоканию бумаги (поверхности), что приводит к ее деформации от влаги. Поэтому и стоит отдельный картридж. Ну и отдельный черный цвет дешевле других (поэтому и в обычных принтерах есть цветной отдельный и отдельный черный картридж).

Раз мы уже говорили выше о восприятии глазом RGB-модели, то для CMYK она такая же:

Если очень близко друг к друг разместить 3 (или 4, в случае с CMYK) разноцветных точки, то сетчатка сольет их в одну точку с определенным цветом. Вот для примера увеличенное изображение курсора мышки на БЕЛОМ фоне обычного LCD монитора:

Макросьемка курсора на белом фоне для TN+film матрице монитора:

Точно также и для остальных цветовых моделей. Глаз сам дорисовывает цвет.

CIE XYZ - линейная трехкомпонентная цветовая модель, основана на изучении человеческого глаза организацией CIE (Commission Internationale de l"Eclairage ). Ученые создали модель стандартного человеческого глаза и уже на ее основе цветовую модель. Грубо говоря, CIE XYZ это то, как видет трехкомпонентное изображение стандарный человек .

Из википедии:

Как известно, цветовое зрение человека обусловлено наличием трёх видов световосприимчивых рецепторов на сетчатке глаза, максимумы спектральной чувствительности которых локализованы в области 420, 534 и 564 нм, что соответствует синему, зелёному и жёлтому (хотя в литературе обычно пишут «красному») цветам. Они являются базовыми, все остальные тона воспринимаются как их смешение в определённой пропорции. Например, чтобы получить жёлтый спектральный цвет, совсем необязательно воспроизводить его точную длину волны 570—590 нм, достаточно создать такой спектр излучения, который возбуждает рецепторы глаза сходным образом. Это явление называется .

Комитет CIE провёл множество экспериментов с огромным количеством людей, предлагая им сравнивать различные цвета, а затем с помощью совокупных данных этих экспериментов построил так называемые функции соответствия цветов (color-matching functions) и универсальное цветовое пространство (universal color space), в котором был представлен диапазон видимых цветов, характерный для среднестатистического человека.

Функции соответствия цветов — это значения каждой первичной составляющей света — красной, зелёной и синей, которые должны присутствовать, чтобы человек со средним зрением мог воспринимать все цвета видимого спектра. Этим трём первичным составляющим были поставлены в соответствие координаты X, Y и Z.

YUV - линейная трехкомпонентная цветовая модель, в основе которой стоит яркость и две цветоразностных компоненты. Подобную модель мы уже рассматривали в .

Кратко модель можно описать так:

Для любого пикселя (если речь идет о компьютерном изображении) создается слой яркости (в оттенках серого), а также 2 слоя, необходимых для восстановления оригинала. Модель использовалась для перехода от ч/б ТВ к цветному, так как старые телевизоры могли использовать лишь один слой, а новые цветные все 3 компонента. Думаю технология аналогичная используется и в окрашивании старых советских кино в цвет.

Модель YUV:

HSV (Hue, Saturation, Value — тон, насыщенность, значение) или HSB (Hue, Saturation, Brightness — оттенок, насыщенность, яркость) - цветовая модель, тоже трехкомпанентная.

Как видно из рисунка, данные модели представляются в трехмерном формате (цилиндр и конус). Из-за трехмерности не совсем удобно их использовать в качестве цветовой модели внутри ПО и изображений, но зато в качестве визуализации они подходят очень кстати.

Думаю подобные палитры в графических редакторах видели многие из вас:

Для выбора цвета из палитры, действительно, такой формат представления удобен и часто используется в прикладном ПО.

RYB - модель на основе 3х компонентов - Красного, Желтого и Синего цветов. Раньше считалась правильной, но не все цвета можно такой моделью задать, особенно оттенки зеленого. Основана на палитре художников, которые смешивают краски для получения нужного цвета, но художники используют не 3 цвета, а большее количество, поэтому модель не используется сейчас уже.

Lab — аббревиатура названия двух разных (хотя и похожих) . Более известным и распространенным является CIELAB (точнее, CIE 1976 L*a*b*), другим — Hunter Lab (точнее, Hunter L, a, b). Таким образом, Lab — это неформальная аббревиатура, не определяющая цветовое пространство однозначно. Чаще всего, говоря о пространстве Lab, подразумевают CIELAB.

При разработке Lab преследовалась цель создания цветового пространства, изменения цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета. Таким образом математически корректировалась бы нелинейность восприятия цвета человеком. Оба цветовых пространства рассчитываются относительно определенного значения . Если значение точки белого дополнительно не указывается, подразумевается, что значения Lab рассчитаны для стандартного осветителя D50. (c) Wikipedia

Для простых смертных, RGB и CMYK это то, как мы будем кодировать цвета для машин, причем не учитывая итог (CMYK учитывает итог путем калибровки инструмента и цветовой модели). А вот LAB обеспечивает отображение именно того цвета, который увидит человек. Часто используется как промежуточная цветовая модель при переводе из одной модели к другой.

NCS (Natural Color System , естественная система цвета) — цветовая модель, предложенная Скандинавским институтом цвета (Skandinaviska Färginstitutet AB), Стокгольм, Швеция. Она основана на системе противоположных цветов и нашла широкое применение в промышленности для описания цвета продукции.

За основу взяты 6 цветов: Белый, черный, голубой, желтый, зеленый и красный.

Остальные цвета получаются путем задания темноты, насыщенности и двух основных цветов.

Вроде (беру из головы):

Оранжевый: 5% темноты, 80% насыщенности, 50% желтого, 50% красного.

Ну и в таком духе.

Цветовая модель Пантон , система PMS (Pantone Matching System) — стандартизованная система подбора цвета, разработанная американской фирмой Pantone Inc в середине XX века. Использует цифровую идентификацию цветов изображения для полиграфии печати как смесевыми, так и красками. Эталонные пронумерованные цвета напечатаны в специальной книге, страницы которой веерообразно раскладываются.

Существуют и другие цветовые модели, я отобрал наиболее приглянувшиеся и интересные. Для наших простых нужд хватает RGB, YUV, LAB моделей, для полиграфии добавляются еще CMYK и другие.

Вообще довольно интересно было узнать о том, как вроде бы простой цвет задают совершенно разными моделями.

HEX / HTML

Цвет в формате HEX - это ни что иное, как шестнадцатеричное представление RGB.

Цвета представляются в виде трёх групп шестнадцатеричных цифр, где каждая группа отвечает за свой цвет: #112233, где 11 - красный, 22 - зелёный, 33 - синий. Все значения должны быть между 00 и FF.

Во многих приложениях допускается сокращённая форма записи шестнадцатеричных цветов. Если каждая из трёх групп содержит одинаковые символы, например #112233, то их можно записать как #123.

  1. h1 { color: #ff0000; } /* красный */
  2. h2 { color: #00ff00; } /* зелёный */
  3. h3 { color: #0000ff; } /* синий */
  4. h4 { color: #00f; } /* тот же синий, сокращённая запись */

RGB

Цветовое пространство RGB (Red, Green, Blue) состоит из всех возможных цветов, которые могут быть получены путём смешивания красного, зелёного, и синего. Эта модель популярна в фотографии, телевидении, и компьютерной графике.

Значения RGB задаются целым числом от 0 до 255. Например, rgb(0,0,255) отображается как синий, так как синий параметр установлен в его самое высокое значение (255), а остальные установлены в 0.

Некоторые приложения (в частности веб-браузеры) поддерживают процентную запись значений RGB (от 0% до 100%).

  1. h1 { color: rgb(255, 0, 0); } /* красный */
  2. h2 { color: rgb(0, 255, 0); } /* зелёный */
  3. h3 { color: rgb(0, 0, 255); } /* синий */
  4. h4 { color: rgb(0%, 0%, 100%); } /* тот же синий, процентная запись */

Цветовые значения RGB поддерживаются во всех основных браузерах.

RGBA

С недавних пор современные браузеры научились работать с цветовой моделью RGBA - расширением RGB с поддержкой альфа-канала, который определяет непрозрачность объекта.

Значение цвета RGBA задается в виде: rgba(red, green, blue, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: rgb(0, 0, 255); } /* синий в обычном RGB */
  2. h2 { color: rgba(0, 0, 255, 1); } /* тот же синий в RGBA, потому как непрозрачность: 100% */
  3. h3 { color: rgba(0, 0, 255, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: rgba(0, 0, 255, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: rgba(0, 0, 255, 0); } /* полностью прозрачный */

RGBA поддерживается в IE9+, Firefox 3+, Chrome, Safari, и в Opera 10+.

HSL

Цветовая модель HSL является представлением модели RGB в цилиндрической системе координат. HSL представляет цвета более интуитивным и понятным для восприятия образом, чем типичное RGB. Модель часто используется в графических приложениях, в палитрах цветов, и для анализа изображений.

HSL расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Lightness/Luminance (светлота/светлость/светимость, не путать с яркостью).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Lightness является процентным значением светлости (от 0% до 100%).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный */
  2. h2 { color: hsl(120, 100%, 75%); } /* светло-зелёный */
  3. h3 { color: hsl(120, 100%, 25%); } /* тёмно-зелёный */
  4. h4 { color: hsl(120, 60%, 70%); } /* пастельный зеленый */

HSL поддерживается в IE9+, Firefox, Chrome, Safari, и в Opera 10+.

HSLA

По аналогии с RGB/RGBA, для HSL имеется режим HSLA с поддержкой альфа-канала для указания непрозрачности объекта.

Значение цвета HSLA задается в виде: hsla(hue, saturation, lightness, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный в обычном HSL */
  2. h2 { color: hsla(120, 100%, 50%, 1); } /* тот же зелёный в HSLA, потому как непрозрачность: 100% */
  3. h3 { color: hsla(120, 100%, 50%, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: hsla(120, 100%, 50%, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: hsla(120, 100%, 50%, 0); } /* полностью прозрачный */

CMYK

Цветовая модель CMYK часто ассоциируется с цветной печатью, с полиграфией. CMYK (в отличие от RGB) является субтрактивной моделью, это означает что более высокие значения связаны с более тёмными цветами.

Цвета определяются соотношением голубого (Cyan), пурпурного (Magenta), жёлтого (Yellow), с добавлением чёрного (Key/blacK).

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию, а точнее, размер точки растра, выводимой на фотонаборном аппарате на плёнке данного цвета (или прямо на печатной форме в случае с CTP).

Например, для получения цвета «PANTONE 7526» следует смешать 9 частей голубой краски, 83 частей пурпурной краски, 100 - жёлтой краски, и 46 - чёрной. Это можно обозначить следующим образом: (9,83,100,46). Иногда пользуются такими обозначениями: C9M83Y100K46, или (9%, 83%, 100%, 46%), или (0,09/0,83/1,0/0,46).

HSB / HSV

HSB (также известна как HSV) похожа на HSL, но это две разные цветовые модели. Они обе основаны на цилиндрической геометрии, но HSB/HSV основана на модели «hexcone», в то время как HSL основана на модели «bi-hexcone». Художники часто предпочитают использовать эту модель, принято считать что устройство HSB/HSV ближе к естественному восприятию цветов. В частности, цветовая модель HSB применяется в Adobe Photoshop.

HSB/HSV расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Brightness/Value (яркость/значение).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Brightness является процентным значением яркости (от 0% до 100%).

XYZ

Цветовая модель XYZ (CIE 1931 XYZ) является чисто математическим пространством. В отличие от RGB, CMYK, и других моделей, в XYZ основные компоненты являются «мнимыми», то есть вы не можете соотнести X, Y, и Z с каким-либо набором цветов для смешивания. XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

LAB

Цветовая модель LAB (CIELAB, «CIE 1976 L*a*b*») вычисляется из пространства CIE XYZ. При разработке Lab преследовалась цель создания цветового пространства, изменение цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с XYZ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета.

Зачем нужны разные цветовые модели и почему один и тот же цвет может выглядеть по-разному

Предоставляя услуги дизайна как в области веб, так и в сфере полиграфии, мы нередко сталкиваемся с вопросом Клиента: почему одни и те же фирменные цвета в дизайн-макете сайта и в дизайн-макете полиграфической продукции выглядят по-разному? Ответ на этот вопрос заключается в различиях цветовых моделей: цифровой и полиграфической.

Цвет компьютерного экрана изменяется от черного (отсутствие цвета) до белого (максимальная яркость всех составляющих цвета: красного, зеленого и синего). На бумаге, напротив, отсутствию цвета соответствует белый, а смешению максимального количества красок - темно-бурый, который воспринимается как черный.

Поэтому при подготовке к печати изображение должно быть переведено из аддитивной ("складывающей") модели цветов RGB в субтрактивную ("вычитающую") модель CMYK . Модель CMYK использует противоположные исходным цвета - противоположный красному голубой, противоположный зеленому пурпурный и противоположный синему желтый.

Цифровая цветовая модель RGB

Что такое RGB?

Аббревиатура RGB означает названия трех цветов, использующихся для вывода на экран цветного изображения: Red (красный), Green (зеленый), Blue (синий).

Как формируется цвет RGB?

Цвет на экране монитора формируется при объединении лучей трех основных цветов - красного, зеленого и синего. Если интенсивность каждого из них достигает 100%, то получается белый цвет. Отсутствие всех трех цветов дает черный цвет.

Таким образом, любой цвет, который мы видим на экране, можно описать тремя числами, обозначающими яркость красной, зеленой и синей цветовых составляющих в цифровом диапазоне от 0 до 255. Графические программы позволяют комбинировать требуемый RGB-цвет из 256 оттенков красного, 256 оттенков зеленого и 256 оттенков синего. Итого получается 256 х 256 х 256 = 16,7 миллионов цветов.

Где используются изображения в режиме RGB?

Изображения в RGB используются для показа на экране монитора. При создании цветов, предназначенных для просмотра в браузерах, как основа используется та же цветовая модель RGB.

Полиграфическая цветовая модель CMYK

Что такое CMYK?

Система CMYK создана и используется для типографической печати. Аббревиатура CMYK означает названия основных красок, использующихся для четырехцветной печати: голубой (Сyan), пурпурный (Мagenta) и желтый (Yellow). Буквой К обозначают черную краску (BlacK), позволяющую добиться насыщенного черного цвета при печати. Используется последняя, а не первая буква слова, чтобы не путать Black и Blue.

Как формируется цвет CMYK?

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию. Например, для получения тёмно-оранжевого цвета следует смешать 30 % голубой краски, 45 % пурпурной краски, 80 % жёлтой краски и 5 % чёрной. Это можно обозначить следующим образом: (30/45/80/5).

Где используются изображения в режиме CMYK?

Область применения цветовой модели CMYK - полноцветная печать. Именно с этой моделью работает большинство устройств печати. Из-за несоответствия цветовых моделей часто возникает ситуация, когда цвет, который нужно напечатать, не может быть воспроизведен с помощью модели CMYK (например, золотой или серебряный).

В этом случае применяются краски Pantone (готовые смешанные краски множества цветов и оттенков), их также называют плашечными (поскольку эти краски не смешиваются при печати, а являются кроющими).

Все файлы, предназначенные для вывода в типографии, должны быть конвертированы в CMYK. Этот процесс называется цветоделением. RGB охватывает больший цветовой диапазон, чем CMYK, и это необходимо учитывать при создании изображений, которые впоследствии планируется печатать на принтере или в типографии.

При просмотре CMYK-изображения на экране монитора одни и те же цвета могут восприниматься немного иначе, чем при просмотре RGB-изображения. В модели CMYK невозможно отобразить очень яркие цвета модели RGB, модель RGB, в свою очередь, не способна передать темные густые оттенки модели CMYK, поскольку природа цвета разная.

Отображение цвета на экране монитора часто меняется и зависит от особенностей освещения, температуры монитора и цвета окружающих предметов. Кроме того, многие цвета, видимые в реальной жизни, не могут быть выведены при печати, не все цвета, отображаемые на экране, могут быть напечатаны, а некоторые цвета печати не видны на экране монитора.

Так, подготавливая логотип компании для публикации на сайте, мы используем RGB-модель. Подготавливая тот же логотип для печати в типографии (например, на визитках или фирменных бланках), мы используем CMYK-модель, и цвета этой модели на экране визуально могут немного отличаться от тех, которые мы видим в RGB. Не стоит этого опасаться: ведь на бумаге цвета логотипа будут максимально соответствовать тем цветам, которые мы видим на экране.

Цвет и его модели

Софья Скрылина, преподаватель учебного центра «Арт», г.Санкт-Петербург

В КомпьюАрт № 7"2012 была представлена статья о гармоничных цветовых сочетаниях и закономерностях влияния цвета на восприятие человека, что, несомненно, учитывают в своих проектах современные дизайнеры. Но при работе за компьютером и смешивании цветов на экране монитора возникают специфические проблемы. Дизайнер должен получить на экране монитора или на твердой копии именно те цвет, тон, оттенок и светлоту, которые требуются. Цвета на мониторе не всегда совпадают с природными красками. Очень непросто получить один и тот же цвет на экране, на распечатке цветного принтера и на типографском оттиске. Дело в том, что цвета в природе, на мониторе и на печатном листе создаются абсолютно разными способами.
Для однозначного определения цветов в различных цветовых средах существуют цветовые модели, о которых мы и поговорим в настоящей статье.

Модель RGB

Цветовая модель RGB — самый популярный способ представления графики, который подходит для описания цветов, видимых на мониторе, телевизоре, видеопроекторе, а также создаваемых при сканировании изображений.

Модель RGB используется при описании цветов, получаемых смешиванием трех лучей: красного (Red), зеленого (Green) и синего (Blue). Из первых букв английских названий этих цветов составлено название модели. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными, поскольку при сложении (смешивании) двух лучей основных цветов результат становится светлее. На рис. 1 показано, какие цвета получаются при сложении основных.

В модели RGB каждый базовый цвет характеризуется яркостью, которая может принимать 256 значений — от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256x256x256 = 16 777 216 цветов.

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление — это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе — зеленой, а третье — синей. Шестнадцатеричное представление — это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара цифр) — зеленого, а третье (третья пара) — синего.

Для проверки данного факта откройте палитру цветов в CorelDRAW или Photoshop. В поле R введите максимальное значение яркости красного цвета 255, а в поля G и B — нулевое значение. В результате поле образца будет содержать красный цвет, шестнадцатеричный код будет таким: FF0000 (рис. 2).

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Если к красному цвету добавить зеленый с максимальной яркостью, введя в поле G значение 255, получится желтый цвет, шестнадцатеричное представление которого — FFFF00.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная — черному. Поэтому белый цвет имеет в десятичном представлении код (255, 255, 255), а в шестнадцатеричном — FFFFFF16. Черный цвет кодируется соответственно (0, 0, 0) или 00000016.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях R = 200, G = 200, B = 200 или C8C8C816 получается светло-серый цвет, а при значениях R = 100, G = 100, B = 100 или 64646416 — темно-серый. Чем более темный оттенок серого цвета вы хотите получить, тем меньшее число нужно вводить в каждое текстовое поле.

Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны! При переносе цветного изображения на бумагу используется совершенно другая цветовая модель.

Модель CMYK

При печати на бумагу наносится краска — материал, который поглощает и отражает цветовые волны различной длины. Таким образом, краска выступает в роли фильтра, пропускающего строго определенные лучи отраженного цвета, вычитая все остальные.

Цветовую модель CMYK используют для смешения красок печатающие устройства — принтеры и типографские станки. Цвета этой модели получаются в результате вычитания из белого базовых цветов модели RGB. Поэтому их называют субтрактивными.

Базовыми для CMYK являются следующие цвета:

  • голубой (Cyan) — белый минус красный (Red);
  • пурпурный (Magenta) — белый минус зеленый (Green);
  • желтый (Yellow) — белый минус синий (Blue).

Помимо этих, используется еще и черный цвет, который является ключевым (Key) в процессе цветной печати. Дело в том, что реальные краски имеют примеси, поэтому их цвет не соответствует в точности теоретически рассчитанным голубому, пурпурному и желтому. Смешение трех основных красок, которые должны давать черный цвет, дает вместо этого неопределенный грязно-коричневый. Поэтому в число основных полиграфических красок и внесена черная.

На рис. 3 представлена схема, из которой видно, какие цвета получаются при смешении базовых в CMYK.

Следует отметить, что краски модели CMYK не являются столь чистыми, как цвета модели RGB. Этим объясняется небольшое несоответствие базовых цветов. Согласно схеме, представленной на рис. 3, при максимальной яркости должны получаться следующие комбинации цветов:

  • смешение пурпурного (M) и желтого (Y) должно давать красный цвет (R) (255, 0, 0);
  • смешение желтого (Y) и голубого (C) должно давать зеленый цвет (G) (0, 255, 0);
  • смешение пурпурного (M) и голубого (C) должно давать синий цвет (B) (0, 0, 255).

На практике получается несколько иначе, что мы далее и проверим. Откройте диалоговое окно палитры цветов в программе Photoshop. В текстовые поля M и Y введите значение 100%. Вместо базового красного цвета (255, 0, 0) мы имеем красно-оранжевую смесь (рис. 4).

Теперь в текстовые поля Y и C введите значение 100%. Вместо базового зеленого цвета (0, 255, 0) получается зеленый цвет с небольшим оттенком синего. При задании яркости 100% в полях M и C вместо синего цвета (0, 0, 255) мы имеем синий цвет с фиолетовым оттенком. Более того, не все цвета модели RGB могут быть представлены в модели CMYK. Цветовой охват RGB шире, чем у CMYK.

Основные цвета моделей RGB и CMYK находятся в зависимости, представленной на схеме цветового круга (рис. 5). Эта схема применяется для цветовой коррекции изображений; примеры ее использования рассматривались в КомпьюАрт № 12"2011.

Модели RGB и CMYK являются аппаратно зависимыми. Для модели RGB значения базовых цветов определяются качеством люминофора у ЭЛТ или характеристиками ламп подсветки и цветовых фильтров панели у ЖК-мониторов. Если обратиться к модели CMYK, то значения базовых цветов определяются реальными типографскими красками, особенностями печатного процесса и носителя. Таким образом, одинаковое изображение может на различной аппаратуре выглядеть по-разному.

Как отмечалось ранее, RGB является наиболее популярной и часто применяемой моделью для представления цветных изображений. В большинстве случаев изображения подготавливаются для демонстрации через монитор или проектор и для печати на цветных настольных принтерах. Во всех этих случаях необходимо использовать модель RGB.

Замечание

Несмотря на то что в цветных принтерах используются чернила цветовой модели CMYK, чаще всего изображения, подготавливаемые для печати, необходимо преобразовать в модель RGB. Но распечатанное изображение будет выглядеть немного темнее, чем на мониторе, поэтому перед печатью его необходимо осветлить. Величина осветления для каждого принтера определяется опытным путем.

Модель CMYK необходимо применять в одном случае — если изображение готовится к печати на типографском станке. Более того, следует учесть, что модель CMYK не содержит столь же большого числа цветов, как модель RGB, поэтому в результате преобразования из RGB в CMYK изображение может утратить ряд оттенков, которые вряд ли получится восстановить обратным преобразованием. Поэтому старайтесь выполнять преобразование изображения в модель CMYK на конечном этапе работы с ним.

Модель HSB

Модель HSB упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Любой цвет определяется своим цветовым тоном (Hue) — собственно цветом, насыщенностью (Saturation) — процентом добавления к цвету белой краски и яркостью (Brightness) — процентом добавления черной краски. На рис. 6 показано графическое представление модели HSB.

Спектральные цвета, или цветовые тона, располагаются по краю цветового круга и характеризуются положением на нем, которое определяется величиной угла в диапазоне от 0 до 360°. Эти цвета обладают максимальной (100%) насыщенностью (S) и яркостью (B). Насыщенность изменяется по радиусу круга от 0 (в центре) до 100% (на краях). При значении насыщенности 0% любой цвет становится белым.

Яркость — параметр, определяющий освещенность или затемненность. Все цвета цветового круга имеют максимальную яркость (100%) независимо от тона. Уменьшение яркости цвета означает его затемнение. Для отображения этого процесса на модели добавляется новая координата, направленная вниз, на которой откладываются значения яркости от 100 до 0%. В результате получается цилиндр, образованный из серии кругов с уменьшающейся яркостью, нижний слой — черный.

С целью проверки данного утверждения откройте диалоговое окно выбора цвета в программе Photoshop. В поля S и B введите максимальное значение 100%, а в поле H — минимальное значение 0°. В результате мы получим чистый красный цвет солнечного спектра. Этому же цвету соответствует красный цвет модели RGB, его код (255, 0, 0), что указывает на взаимосвязь этих моделей (рис. 7).

В поле H изменяйте значение угла с шагом 20°. Вы будете получать цвета в том порядке, в каком они расположены в спектре: красный сменится оранжевым, оранжевый желтым, желтый зеленым и т. д. Угол 60° дает желтый цвет (255, 255, 0), 120°— зеленый (0, 255, 0), 180°— голубой (255, 0, 255), 240° — синий (0, 0, 255) и т.д.

Чтобы получить розовый цвет, на языке модели HSB — блеклый красный, необходимо в поле H ввести значение 0°, а насыщенность (S) понизить, например, до 50%, задав максимальное значение яркости (B).

Серый цвет для модели HSB — это сведенные к нулю цветовой тон (H) и насыщенность (S) с яркостью (B) меньше 100%. Вот примеры светло-серого: H = 0, S = 0, B = 80% и темно-серого цветов: H = 0, S = 0, B = 40%.

Белый цвет задается так: H = 0, S = 0, B = 100%, а чтобы получить черный цвет, достаточно снизить до нуля значение яркости при любых значениях тона и насыщенности.

В модели HSB любой цвет получается из спектрального добавлением определенного процента белой и черной красок. Поэтому HSB — очень простая в понимании модель, которую используют маляры и профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним черной или белой. Однако при смешивании художниками красок, полученных на основе базовых, цвет выходит за рамки модели HSB.

Модель Lab

Модель Lab основана на следующих трех параметрах: L — яркость (Lightness) и два хроматических компонента — a и b . Параметр a изменяется от темно-зеленого через серый до пурпурного цвета. Параметр b содержит цвета от синего через серый до желтого (рис. 8). Оба компонента меняются от -128 до 127, а параметр L — от 0 до 100. Нулевое значение цветовых компонентов при яркости 50 соответствует серому цвету. При значении яркости 100 получается белый цвет, при 0 — черный.

Понятия яркости в моделях Lab и HSB нетождественны. Как и в RGB, смешение цветов из шкал a и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра L .

Откройте окно выбора цвета в программе Photoshop, в поле яркости L введите значение 50, для параметра a введите наименьшее значение -128, а параметр b обнулите. В результате вы получите сине-зеленый цвет (рис. 9). Теперь попробуйте увеличить значение параметра a на единицу. Обратите внимание: ни в одной модели числовые значения не изменились. Попробуйте, увеличивая значение данного параметра, добиться изменения в других моделях. Скорее всего, у вас получится это сделать при значении 121 (зеленая составляющая RGB уменьшится на 1). Это обстоятельство подтверждает факт того, что модель Lab имеет бо льший цветовой охват по сравнению с моделями RGB, HSB и CMYK.

В модели Lab яркость полностью отделена от изображения, поэтому в некоторых случаях эту модель удобно использовать для перекраски фрагментов и повышения насыщенности изображения, влияя только на цветовые составляющие a и b . Также возможна регулировка контраста, резкости и других тоновых характеристик изображения за счет изменения параметра яркости L . Примеры коррекции изображения в модели Lab приводились в КомпьюАрт № 3"2012.

Цветовой охват модели Lab шире, чем у RGB, поэтому каждое повторное преобразование из одной модели в другую практически безопасно. Более того, можно перевести изображение в режим Lab, выполнить коррекцию в нем, а затем безболезненно перевести результат обратно в модель RGB.

Модель Lab аппаратно независима, служит ядром системы управления цвета в графическом редакторе Photoshop и применяется в скрытом виде при каждом преобразовании цветовых моделей как промежуточная. Ее цветовой диапазон покрывает диапазоны RGB и CMYK.

Индексированные цвета

Для публикации изображения в Интернете используется не вся цветовая палитра, состоящая из 16 млн цветов, как в режиме RGB, а только 256 цветов. Этот режим называется «Индексированные цвета» (Indexed Color). На работу с такими изображениями налагается ряд ограничений. К ним не могут быть применены фильтры, некоторые команды тоновой и цветовой коррекции, недоступны все операции со слоями.

С изображением, скачанным из Интернета (как правило в формате GIF) очень часто возникает следующая ситуация. Нарисовать в нем что-либо получится только цветом, отличным от выбранного. Это объясняется тем, что выбранный цвет выходит за рамки цветовой палитры индексированного изображения, то есть этого цвета нет в файле. В результате происходит замена выбранного в палитре цвета на ближайший похожий цвет из цветовой таблицы. Поэтому перед редактированием такого изображения необходимо перевести его в модель RGB. 

Статья подготовлена по материалам книги Софьи Скрылиной «Photoshop CS6. Самое необходимое»: http://www.bhv.ru/books/book.php?id=190413.



Загрузка...